1 |
丁仲礼. 中国碳中和框架路线图研究[J]. 中国工业和信息化, 2021(8): 54-61.
|
|
DING Zhongli. Study on the roadmap of carbon neutralization framework in China[J]. China Industry and Information Technology, 2021(8): 54-61.
|
2 |
国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[R]. [2023-02-28]. http://www.gov.cn/shuju/2023-02/28/content_5743623.htm.
|
|
National Bureau of Statistics. Statistical communique of the People's Republic of China on the 2022 national economic and social development[R]. [2023-02-28]. http://www.gov.cn/shuju/2023-02/28/content_5743623.htm.
|
3 |
白旭东, 王建勋. 330MW锅炉配风方式对NO x 排放浓度和锅炉经济性的影响分析[J]. 化工进展, 2021, 40(S2): 25-29.
|
|
BAI Xudong, WANG Jianxun. Experimental research of influence of air distribution for a W-flame boiler on NO x emission and economical operation[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 25-29.
|
4 |
石荣雪, 张适宜, 张胜寒. 基于大数据分析的电厂锅炉水冷壁失效研究[J]. 化工进展, 2016, 35(9): 2640-2646.
|
|
SHI Rongxue, ZHANG Shiyi, ZHANG Shenghan. Failure investigation on boiler water wall tubes in power plant by large data analysis[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2640-2646.
|
5 |
SUN Xu, NING Yuheng, YANG Jian, et al. Study on high temperature corrosion mechanism of water wall tubes of 350MW supercritical unit[J]. Engineering Failure Analysis, 2021, 121: 105131.
|
6 |
XIONG Xiaohe, LIU Xing, TAN Houzhang, et al. Investigation on high temperature corrosion of water-cooled wall tubes at a 300MW boiler[J]. Journal of the Energy Institute, 2020, 93(1): 377-386.
|
7 |
于英利, 付旭晨, 戴莹莹, 等. 燃煤电站锅炉水冷壁壁面高温腐蚀问题分析与对策[J]. 化工进展, 2020, 39(S1): 90-96.
|
|
YU Yingli, FU Xuchen, DAI Yingying, et al. Analysis and countermeasure of high temperature corrosion on water wall of coal-fired power plant boiler [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 90-96.
|
8 |
王新宇, 黄亚继, 徐力刚, 等. 调节同层二次风以缓解双切圆锅炉高温腐蚀的数值模拟[J]. 化工进展, 2022, 41(5): 2292-2300.
|
|
WANG Xinyu, HUANG Yaji, XU Ligang, et al. Numerical simulation on regulating secondary air in same layer to alleviate high temperature corrosion of dual tangential boiler[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2292-2300.
|
9 |
KUNG S C. Further understanding of furnace wall corrosion in coal-fired boilers[J]. Corrosion, 2014, 70(7): 749-763.
|
10 |
XU Hong, ZHOU Shangkun, ZHU Yiming, et al. Experimental study on the effect of H2S and SO2 on high temperature corrosion of 12Cr1MoV[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1956-1964.
|
11 |
YUAN Maobo, DENG Lei, ZHANG Jingkun, et al. Prediction of H2S corrosion depth for water-cooled wall in lower furnace of utility boiler[J]. Fuel, 2022, 329: 125466.
|
12 |
YUAN Maobo, LIU Hu, WU Ying, et al. Coordinate transformation method for heat reallocation in the spiral water-cooled wall temperature calculation[J]. International Journal of Thermal Sciences, 2022, 177: 107557.
|
13 |
YUAN Maobo, DENG Lei, LIU Hu, et al. Numerical investigation on H2S formation characteristics in air-staging combustion of a tangentially coal-fired boiler[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2022, 44(1): 1854-1863.
|
14 |
AL-ABBAS A H, NASER J, DODDS D. CFD modelling of air-fired and oxy-fuel combustion in a large-scale furnace at Loy Yang A brown coal power station[J]. Fuel, 2012, 102: 646-665.
|
15 |
LIU Hu, ZHANG Lei, LI Qianqian, et al. Effect of FGR position on the characteristics of combustion, emission and flue gas temperature deviation in a 1000MW tower-type double-reheat boiler with deep-air-staging[J]. Fuel, 2019, 246: 285-294.
|
16 |
ZHU Tao, NING Xing, TANG Chunli, et al. Numerical investigation on combustion and NO x formation characteristics under deep-staging conditions within a cyclone barrel[J]. Fuel, 2022, 313: 122714.
|
17 |
LI Zhenshan, CHEN Hu, ZHANG Zhi. Experimental and modeling study of H2S formation and evolution in air staged combustion of pulverized coal[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5363-5371.
|
18 |
王为术. 超(超)临界锅炉内螺纹水冷壁管流动传热与水动力特性[M]. 北京: 中国电力出版社, 2012: 137-139.
|
|
WANG W S. Flow, heat transfer and hydrodynamic characteristics of internal thread water wall tube in supercritical boiler[M]. Beijing: China Electric Power Press, 2012: 137-139.
|
19 |
EDGE P J, HEGGS P J, POURKASHANIAN M, et al. An integrated computational fluid dynamics-process model of natural circulation steam generation in a coal-fired power plant[J]. Computers & Chemical Engineering, 2011, 35(12): 2618-2631.
|
20 |
QI Jing, ZHOU Keyi, HUANG Junlin, et al. Numerical simulation of the heat transfer of superheater tubes in power plants considering oxide scale[J]. International Journal of Heat and Mass Transfer, 2018, 122: 929-938.
|
21 |
HUANG Dan, WU Zan, SUNDEN Bengt, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505.
|
22 |
WANG Jizhou, ZHANG Yanping, LI Yu, et al. A non-equal fragment model of a water-wall in a supercritical boiler[J]. Journal of the Energy Institute, 2015, 88(2): 143-150.
|
23 |
ZHANG Wei, WANG Huan, YAN Kai, et al. Mathematical modeling and thermal-hydrodynamic analysis of vertical water wall in a SCFB boiler with annular furnace[J]. Applied Thermal Engineering, 2016, 102: 742-748.
|
24 |
熊小鹤, 吕钊敏, 阮仁晖, 等. 某切圆燃烧锅炉水冷壁高温腐蚀现象及其与H2S含量的关系研究[J]. 广东电力, 2022, 35(7): 107-113.
|
|
XIONG Xiaohe, Zhaomin LYU, RUAN Renhui, et al. Water wall high-temperature corrosion of tangentially fired boiler and the correlation with hydrogen sulfide concentration[J]. Guangdong Electric Power, 2022, 35(7): 107-113.
|
25 |
孟繁兵, 高松. 四角切圆锅炉硫化氢生成特性的研究[J]. 黑龙江电力, 2019, 41(1): 87-90.
|
|
MENG Fanbing, GAO Song. Study on generation characteristics of H2S in tangentially fired boiler[J]. Heilongjiang Electric Power, 2019, 41(1): 87-90.
|
26 |
项岱军, 王煜伟, 王小华, 等. 锅炉不同配风方式下炉内高温腐蚀影响特性研究与运行防控[J]. 锅炉技术, 2021, 52(4): 8-11, 42.
|
|
XIANG Daijun, WANG Yuwei, WANG Xiaohua, et al. Study on high temperature corrosion characteristics in boiler under different air distribution modes and operation prevention and control[J]. Boiler Technology, 2021, 52(4): 8-11, 42.
|