1 |
ZHANG Jianlu, XIE Zhong, ZHANG Jiujun, et al. High temperature PEM fuel cells[J]. Journal of Power Sources, 2006, 160(2): 872-891.
|
2 |
TIAN Liliang, ZHANG Weiqi, XIE Zheng, et al. Enhanced performance and durability of high-temperature polymer electrolyte membrane fuel cell by incorporating covalent organic framework into catalyst layer[J]. Acta Physico Chimica Sinica, 2020, 37(1): 2009049.
|
3 |
李金晟, 葛君杰, 刘长鹏, 等. 燃料电池高温质子交换膜研究进展[J]. 化工进展, 2021, 40(9): 4894-4903.
|
|
LI Jinsheng, GE Junjie, LIU Changpeng, et al. Review on high temperature proton exchange membranes for fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4894-4903.
|
4 |
XIAO Meiling, GAO Liqin, WANG Ying, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. Journal of the American Chemical Society, 2019, 141(50): 19800-19806.
|
5 |
ZHANG Jun, ZHANG Caizhi, LI Jin, et al. Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation[J]. Renewable Energy, 2021, 180: 313-328.
|
6 |
Vikalp JHA, HARIHARAN R, KRISHNAMURTHY Balaji. A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120311.
|
7 |
Susanta K DAS, GIBSON Hilniqua A. Three dimensional multi-physics modeling and simulation for assessment of mass transport impact on the performance of a high temperature polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2021, 499: 229844.
|
8 |
MAXIMINI Marius, ENGELHARDT Philip, BRENNER Martin, et al. Fast start-up of a diesel fuel processor for PEM fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(31): 18154-18163.
|
9 |
ABDUL RASHEED Raj Kamal, EHTESHAMI Seyyed Mohsen Mousavi, CHAN Siew Hwa. Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process[J]. International Journal of Hydrogen Energy, 2014, 39(5): 2246-2260.
|
10 |
李英, 张香平. 用于高温质子交换膜燃料电池的聚合物电解质膜研究进展[J]. 化工进展, 2018, 37(9): 3446-3453.
|
|
LI Ying, ZHANG Xiangping. Research progress of polymer electrolyte membrane for high temperature proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3446-3453.
|
11 |
PARK Hyanjoo, KIM Hoyoung, KIM Dong-Kwon, et al. Performance deterioration and recovery in high-temperature polymer electrolyte membrane fuel cells: Effects of deliquescence of phosphoric acid[J]. International Journal of Hydrogen Energy, 2020, 45(57): 32844-32855.
|
12 |
CHEN Chenyu, LAI Wei-Hsiang. Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell[J]. Journal of Power Sources, 2010, 195(21): 7152-7159.
|
13 |
LI Qingfeng, JENSEN Jens Oluf, SAVINELL Robert F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Progress in Polymer Science, 2009, 34(5): 449-477.
|
14 |
王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第一部分: 关键材料[J]. 化工进展, 2020, 39(6): 2370-2389.
|
|
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells: part Ⅰ: Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389.
|
15 |
ABDUL RASHEED Raj Kamal, CHAN Siew Hwa. Transient carbon monoxide poisoning kinetics during warm-up period of a high-temperature PEMFC—Physical model and parametric study[J]. Applied Energy, 2015, 140: 44-51.
|
16 |
ANDREASEN Søren Juhl, KÆR Søren Knudsen. Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4655-4664.
|
17 |
ZHANG Caizhi, YU Tao, YI Jun, et al. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system[J]. Energy Conversion and Management, 2016, 129: 36-42.
|
18 |
HUANG Hao, ZHOU Yibo, DENG Hao, et al. Modeling of high temperature proton exchange membrane fuel cell start-up processes[J]. International Journal of Hydrogen Energy, 2016, 41(4): 3113-3127.
|
19 |
SINGDEO Debanand, Tapobrata DEY, GHOSH Prakash C. Modelling of start-up time for high temperature polymer electrolyte fuel cells[J]. Energy, 2011, 36(10): 6081-6089.
|
20 |
ABDUL RASHEED Raj Kamal, ZHANG Caizhi, CHAN Siew Hwa. Numerical analysis of high-temperature proton exchange membrane fuel cells during start-up by inlet gas heating and applied voltage[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10390-10406.
|
21 |
ZHANG Jun, ZHANG Caizhi, HAO Dong, et al. 3D non-isothermal dynamic simulation of high temperature proton exchange membrane fuel cell in the start-up process[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2577-2593.
|
22 |
GEETHU Varghese, VENKATESH Babu K P, VARGHESE Joseph Thadathil, et al. A numerical investigation on thermal gradients and stresses in high temperature PEM fuel cell during start-up[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121365.
|
23 |
WANG Y, SAUER D U, KOEHNE S, et al. Dynamic modeling of high temperature PEM fuel cell start-up process[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19067-19078.
|
24 |
CHOI Mingoo, KIM Minjin, SOHN Young-Jun, et al. Development of preheating methodology for a 5kW HT-PEMFC system[J]. International Journal of Hydrogen Energy, 2021, 46(74): 36982-36994.
|
25 |
KURZ T, KÜFNER F, GERTEISEN D. Heating of low and high temperature PEM fuel cells with alternating current[J]. Fuel Cells, 2018, 18(3): 326-334.
|
26 |
QU Jian, SUN Qin, WANG Hai, et al. Performance characteristics of flat-plate oscillating heat pipe with porous metal-foam wicks[J]. International Journal of Heat and Mass Transfer, 2019, 137: 20-30.
|
27 |
HUANG Bi, JIAN Qifei, LUO Lizhong, et al. Research on the in-plane temperature distribution in a PEMFC stack integrated with flat-plate heat pipe under different startup strategies and inclination angles[J]. Applied Thermal Engineering, 2020, 179: 115741.
|
28 |
LI Ji, LI Xingping, ZHOU Guohui, et al. Development and evaluation of a supersized aluminum flat plate heat pipe for natural cooling of high power telecommunication equipment[J]. Applied Thermal Engineering, 2021, 184: 116278.
|
29 |
FAGHRI Amir, GUO Zhen. Integration of heat pipe into fuel cell technology[J]. Heat Transfer Engineering, 2008, 29(3): 232-238.
|
30 |
Romuald RULLIÈRE, Frédéric LEFÈVRE, LALLEMAND Monique. Prediction of the maximum heat transfer capability of two-phase heat spreaders—Experimental validation[J]. International Journal of Heat and Mass Transfer, 2007, 50(7/8): 1255-1262.
|
31 |
SILVA Ana Paula, GALANTE Renan M, PELIZZA Pablo R, et al. A combined capillary cooling system for fuel cells[J]. Applied Thermal Engineering, 2012, 41: 104-110.
|
32 |
SHIRZADI Navid, ROSHANDEL Ramin, SHAFII Mohammad Behshad. Integration of miniature heat pipes into a proton exchange membrane fuel cell for cooling applications[J]. Heat Transfer Engineering, 2017, 38(18): 1595-1605.
|
33 |
TETUKO Anggito P, SHABANI Bahman, ANDREWS John. Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4264-4277.
|
34 |
Marcos Vinício ORO, DE OLIVEIRA Rogério Gomes, BAZZO Edson. An integrated solution for waste heat recovery from fuel cells applied to adsorption systems[J]. Applied Thermal Engineering, 2018, 136: 747-754.
|
35 |
YANG Mingguang, QUAN Zhenhua, ZHAO Yaohua, et al. Experimental and numerical study on thermal management of air-cooled proton exchange membrane fuel cell stack with micro heat pipe arrays[J]. Energy Conversion and Management, 2023, 275: 116478.
|
36 |
WANG Lincheng, QUAN Zhenhua, ZHAO Yaohua, et al. Experimental investigation on thermal management of proton exchange membrane fuel cell stack using micro heat pipe array[J]. Applied Thermal Engineering, 2022, 214: 118831.
|