化工进展 ›› 2024, Vol. 43 ›› Issue (4): 1700-1710.DOI: 10.16085/j.issn.1000-6613.2023-0656
• 化工过程与装备 • 上一篇
收稿日期:
2023-04-23
修回日期:
2023-06-25
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
王维
作者简介:
祝妍妮(1997—),女,硕士研究生,研究方向为喷雾干燥。E-mail:zhuyanni@mail.dlut.edu.cn。
基金资助:
ZHU Yanni(), WANG Wei(), SUN Yanchenhao, WEI Gang, ZHANG Dawei
Received:
2023-04-23
Revised:
2023-06-25
Online:
2024-04-15
Published:
2024-05-13
Contact:
WANG Wei
摘要:
为了分析离心式喷雾干燥塔内物理场分布和液滴运动规律,采用欧拉-拉格朗日法,耦合单液滴干燥模型,建立了喷雾干燥过程的三维稳态数学模型。以70%(湿基)麦芽糊精溶液为原料液,在中试喷雾干燥系统上进行实验,测定了塔内温度分布。结果表明,模拟的塔内特征点温度与实验结果吻合良好,平均相对误差为1.84%,验证了模拟结果的准确性和可靠性。考察塔内连续相传递过程发现,三维物理场分布不是轴对称的,塔中心区域具有较高的温度、较低的水蒸气含量和较大的气流速度。分析液滴运动轨迹和干燥过程发现,较大的液滴干燥时间较长,较小的液滴干燥时间短但由于发生回旋返混停留时间较长。模拟研究了进风温度、雾化盘转速和进风角度对塔内物理场分布和液滴干燥行为的影响,分析了喷雾干燥过程的传质传热机理。
中图分类号:
祝妍妮, 王维, 孙闫晨昊, 魏岗, 张大为. 基于单液滴蒸发的离心喷雾干燥数值模拟[J]. 化工进展, 2024, 43(4): 1700-1710.
ZHU Yanni, WANG Wei, SUN Yanchenhao, WEI Gang, ZHANG Dawei. Numerical simulation of centrifugal spray drying based on single-droplet evaporation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1700-1710.
截面/mm | A | B | C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
实验值/K | 模拟值/K | 相对误差/% | 实验值/K | 模拟值/K | 相对误差/% | 实验值/K | 模拟值/K | 相对误差/% | |||
250 | 357.8 | 352.0 | 1.62 | 355.3 | 351.9 | 0.96 | 401.0 | 429.9 | 4.85 | ||
450 | 362.3 | 356.6 | 1.57 | 364.0 | 354.4 | 2.64 | 392.6 | 406.6 | 3.57 | ||
650 | 356.5 | 359.3 | 0.79 | 366.2 | 357.5 | 2.38 | 385.4 | 391.9 | 1.69 | ||
850 | 353.2 | 361.8 | 2.43 | 364.9 | 356.8 | 2.22 | 376.4 | 382.9 | 1.73 | ||
1050 | 354.4 | 362.4 | 2.26 | 360.6 | 361.1 | 0.14 | 373.6 | 376.6 | 0.8 | ||
1200 | 356.7 | 362.6 | 1.65 | 368.8 | 364.8 | 1.08 | 370.6 | 373.6 | 0.81 |
表1 塔内温度模拟值与实验测量值对比
截面/mm | A | B | C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
实验值/K | 模拟值/K | 相对误差/% | 实验值/K | 模拟值/K | 相对误差/% | 实验值/K | 模拟值/K | 相对误差/% | |||
250 | 357.8 | 352.0 | 1.62 | 355.3 | 351.9 | 0.96 | 401.0 | 429.9 | 4.85 | ||
450 | 362.3 | 356.6 | 1.57 | 364.0 | 354.4 | 2.64 | 392.6 | 406.6 | 3.57 | ||
650 | 356.5 | 359.3 | 0.79 | 366.2 | 357.5 | 2.38 | 385.4 | 391.9 | 1.69 | ||
850 | 353.2 | 361.8 | 2.43 | 364.9 | 356.8 | 2.22 | 376.4 | 382.9 | 1.73 | ||
1050 | 354.4 | 362.4 | 2.26 | 360.6 | 361.1 | 0.14 | 373.6 | 376.6 | 0.8 | ||
1200 | 356.7 | 362.6 | 1.65 | 368.8 | 364.8 | 1.08 | 370.6 | 373.6 | 0.81 |
雾化盘转速 /r·min-1 | 切向速度ut/m·s-1 | 径向速度ur/m·s-1 | 液滴平均直径Dvs/µm |
---|---|---|---|
24000 | 60.32 | 1.69 | 76.45 |
27000 | 67.86 | 1.83 | 69.33 |
30000 | 75.40 | 1.96 | 63.53 |
表2 不同转速时的液滴参数
雾化盘转速 /r·min-1 | 切向速度ut/m·s-1 | 径向速度ur/m·s-1 | 液滴平均直径Dvs/µm |
---|---|---|---|
24000 | 60.32 | 1.69 | 76.45 |
27000 | 67.86 | 1.83 | 69.33 |
30000 | 75.40 | 1.96 | 63.53 |
1 | 王喜忠, 于才渊, 周才君. 喷雾干燥[M]. 2版. 北京: 化学工业出版社, 2003: 443. |
WANG Xizhong, YU Caiyuan, ZHOU Caijun. Spray drying[M]. 2nd ed. Beijing: Chemical Industry Press, 2003: 443. | |
2 | JERNDAL Erik, MATTISSON Tobias, THIJS Ivo, et al. NiO particles with Ca and Mg based additives produced by spray-drying as oxygen carriers for chemical-looping combustion[J]. Energy Procedia, 2009, 1(1): 479-486. |
3 | 储茂泉, 刘国杰. 喷雾干燥法制备载药微球时的形貌与粒度控制[J]. 化工学报, 2004, 55(11): 1903-1907. |
CHU Maoquan, LIU Guojie. Morphology and size control of drug-loaded microsphere by spray drying method[J]. Journal of Chemical Industry and Engineering, 2004, 55(11): 1903-1907. | |
4 | 李玲芳, 范长岭, 文政, 等. 喷雾干燥法制备球形Li3V2(PO4)3/C正极材料及其电化学性能[J]. 化工进展, 2019, 38(3): 1482-1486. |
LI Lingfang, FAN Changling, WEN Zheng, et al. Synthesis of spherical Li3V2(PO4)3/C by spray drying and its electrochemical performance as cathode material[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1482-1486. | |
5 | KISHIMOTO Y, YAMASHITA O, MAKITA K. Magnetic properties of sintered sendust alloys using powders granulated by spray drying method[J]. Journal of Materials Science, 2003, 38(16): 3479-3484. |
6 | GUO Baoyu, FLETCHER David F, LANGRISH Tim A G. Simulation of the agglomeration in a spray using Lagrangian particle tracking[J]. Applied Mathematical Modelling, 2004, 28(3): 273-290. |
7 | RAZMI Ramin, JUBAER Hasan, Michał KREMPSKI-SMEJDA, et al. Recent initiatives in effective modeling of spray drying[J]. Drying Technology, 2021, 39(11): 1614-1647. |
8 | BLEI Stefan, SOMMERFELD Martin. CFD in drying technology-spray-dryer simulation[M]//Modern Drying Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014: 155-208. |
9 | WAWRZYNIAK Paweł, JASKULSKI Maciej, Ireneusz ZBICIŃSKI, et al. CFD modelling of moisture evaporation in an industrial dispersed system[J]. Advanced Powder Technology, 2017, 28(1): 167-176. |
10 | Meng Wai WOO. Computationalfluid dynamics simulation of spray dryers: An engineer’s guide[M]//MUJUMDAR Arun S. Advances in Drying Science & Technology. Boca Raton: CRC Press, 2017: 1-7. |
11 | HARVIE D J E, LANGRISH T A G, FLETCHER D F. Numerical simulations of gas flow patterns within a tall-form spray dryer[J]. Chemical Engineering Research and Design, 2001, 79(3): 235-248. |
12 | LANGRISH T A G, WILLIAMS J, FLETCHER D F. Simulation of the effects of inlet swirl on gas flow patterns in a pilot-scale spray dryer[J]. Chemical Engineering Research and Design, 2004, 82(7): 821-833. |
13 | JASKULSKI Maciej, TRAN Thi Thu Hang, TSOTSAS Evangelos. Design study of printer nozzle spray dryer by computational fluid dynamics modeling[J]. Drying Technology, 2020, 38(1/2): 211-223. |
14 | LANGRISH T A G, FLETCHER D F. Spray drying of food ingredients and applications of CFD in spray drying[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(4): 345-354. |
15 | HUANG Lixin, KUMAR Kurichi, MUJUMDAR A S. A parametric study of the gas flow patterns and drying performance of co-current spray dryer: Results of a computational fluid dynamics study[J]. Drying Technology, 2003, 21(6): 957-978. |
16 | WAWRZYNIAK Pawel, PODYMA Marek, ZBICINSKI Ireneusz, et al. Model of heat and mass transfer in an industrial counter-current spray-drying tower[J]. Drying Technology, 2012, 30(11/12): 1274-1282. |
17 | 吕凤, 张扬, 马才云, 等. 甘露醇喷雾干燥过程中液滴粒度分布变化的群体粒数衡算模拟和实验研究[J]. 化工进展, 2019, 38(2): 772-778. |
Feng LYU, ZHANG Yang, MA Caiyun, et al. Simulation and experimental study on the evolution of droplet size distribution during spray drying of mannitol[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 772-778. | |
18 | Muzammil ALI, MAHMUD Tariq, HEGGS Peter John, et al. CFD modeling of a pilot-scale countercurrent spray drying tower for the manufacture of detergent powder[J]. Drying Technology, 2017, 35(3): 281-299. |
19 | MEZHERICHER M, LEVY A, BORDE I. Probabilistic hard-sphere model of binary particle-particle interactions in multiphase flow of spray dryers[J]. International Journal of Multiphase Flow, 2012, 43: 22-38. |
20 | CHEN X D, XIE G Z. Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model[J]. Food and Bioproducts Processing, 1997, 75(4): 213-222. |
21 | CHEN Xiaodong, LIN Sean Xu Qi. Air drying of milk droplet under constant and time-dependent conditions[J]. AIChE Journal, 2005, 51(6): 1790-1799. |
22 | Meng Wai WOO, DAUD Wan Ramli Wan, MUJUMDAR Arun S, et al. Comparative study of droplet drying models for CFD modelling[J]. Chemical Engineering Research and Design, 2008, 86(9): 1038-1048. |
23 | MALEKJANI Narjes, JAFARI Seid Mahdi. Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches[J]. Trends in Food Science & Technology, 2018, 78: 206-223. |
24 | MUJUMDAR Arun S, HUANG Lixin, CHEN Xiaodong. An overview of the recent advances in spray-drying[J]. Dairy Science & Technology, 2010, 90(2): 211-224. |
25 | POOZESH Sadegh, BILGILI Ecevit. Scale-up of pharmaceutical spray drying using scale-up rules: A review[J]. International Journal of Pharmaceutics, 2019, 562: 271-292. |
26 | JUBAER Hasan, AFSHAR Sepideh, MEJEAN Serge, et al. Computationally inexpensive simulation of agglomeration in spray drying while preserving structure related information using CFD[J]. Powder Technology, 2020, 372: 372-393. |
27 | LIN Sean Xu Qi, CHEN Xiaodong. A model for drying of an aqueous lactose droplet using the reaction engineering approach[J]. Drying Technology, 2006, 24(11): 1329-1334. |
28 | CROWE C T. Review—Numerical models for dilute gas-particle flows[J]. Journal of Fluids Engineering, 1982, 104(3): 297-303. |
29 | MEZHERICHER M, LEVY A, BORDE I. Spray drying modelling based on advanced droplet drying kinetics[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(11): 1205-1213. |
30 | HUANG Lixin, KUMAR Kurichi, MUJUMDAR A S. A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(6): 461-470. |
31 | HUANG Lixin, KUMAR Kurichi, MUJUMDAR A S. Simulation of a spray dryer fitted with a rotary disk atomizer using a three-dimensional computional fluid dynamic model[J]. Drying Technology, 2004, 22(6): 1489-1515. |
32 | GEORGE Oluwafemi Ayodele, CHEN Xiaodong, XIAO Jie, et al. An effective rate approach to modeling single-stage spray drying[J]. AIChE Journal, 2015, 61(12): 4140-4151. |
33 | XU Qilin Sean, CHEN Xiaodong. Improving the glass-filament method for accurate measurement of drying kinetics of liquid droplets[J]. Chemical Engineering Research and Design, 2002, 80(4): 401-410. |
34 | PATEL Kamlesh, CHEN Xiaodong, JEANTET Romain, et al. One-dimensional simulation of co-current, dairy spray drying systems—Pros and cons[J]. Dairy Science & Technology, 2010, 90(2): 181-210. |
35 | YANG Xingfu, XIAO Jie, Meng-Wai WOO, et al. Three-dimensional numerical investigation of a mono-disperse droplet spray dryer: Validation aspects and multi-physics exploration[J]. Drying Technology, 2015, 33(6): 742-756. |
36 | ADHIKARI B, HOWES T, BHANDARI B R, et al. Surface stickiness of drops of carbohydrate and organic acid solutions during convective drying: Experiments and modeling[J]. Drying Technology, 2003, 21(5): 839-873. |
37 | FU Nan, Meng Wai WOO, SELOMULYA Cordelia, et al. Shrinkage behaviour of skim milk droplets during air drying[J]. Journal of Food Engineering, 2013, 116(1): 37-44. |
38 | SHI Liming, BAYLESS David J. Comparison of boundary conditions for predicting the collection efficiency of cyclones[J]. Powder Technology, 2007, 173(1): 29-37. |
39 | MASTERS Keith. Spray drying handbook[M]. New York: John Wiley & Sons Inc, 1991: 725. |
40 | KIEVIET Frank Geert. Modeling quality in spray drying[D]. Netherlands:Endinhoven University of Technology, 1997. |
41 | ZHANG Shuo, LIU Nan, PAN Yanqiu, et al. Three-dimensional modelling of two-phase flow and transport in a pilot centrifugal spray dryer[J]. Chemical Physics Letters, 2021, 765: 138309. |
[1] | 杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666. |
[2] | 孙超, 艾诗钦, 刘月婵. 考虑物性变化及壳体传热的新型板壳式换热器板程流动传热数值模拟[J]. 化工进展, 2024, 43(4): 1676-1689. |
[3] | 禹言芳, 丁鹏程, 孟辉波, 石博文, 姚云娟. 非牛顿流体在叶片式静态混合器中的传热强化特性[J]. 化工进展, 2024, 43(3): 1145-1156. |
[4] | 尹少武, 李纤纤, 韩嘉维, 路明, 童莉葛, 王立. 分户式低谷电蓄热供暖系统的蓄放热特性[J]. 化工进展, 2024, 43(3): 1206-1213. |
[5] | 李京, 方庆, 周文浩, 吴国良, 王家辉, 张华, 倪红卫. 挡板构型对含钒页岩浸出槽内多相流行为的影响[J]. 化工进展, 2024, 43(2): 619-627. |
[6] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
[7] | 边汉青, 张兴凯, 廖锐全, 王栋, 李锐, 罗晓矗, 侯耀东, 白晓弘, 甘庆明. 管内相分隔状态下湿气两相流双参数测量方法[J]. 化工进展, 2024, 43(2): 722-733. |
[8] | 哈雯, 杨杨, 唐雨, 曹頔, 张超, 杨斌. 油水环状流截面相含率超声衰减法测量[J]. 化工进展, 2024, 43(2): 768-780. |
[9] | 邓磊, 袁茂博, 杨家辉, 岳洋, 姜家豪, 车得福. 适应锅炉调峰运行的水冷壁高温腐蚀预测模型[J]. 化工进展, 2024, 43(2): 925-936. |
[10] | 谢广烁, 张斯亮, 何松, 肖娟, 王斯民. 基于最佳预后元模型的颗粒污垢特性全局敏感性分析[J]. 化工进展, 2024, 43(1): 328-337. |
[11] | 封德彬, 王文, 马凡华. 掺氢天然气的管道输运特性仿真与分析[J]. 化工进展, 2024, 43(1): 390-399. |
[12] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[13] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[14] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[15] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |