化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3430-3439.DOI: 10.16085/j.issn.1000-6613.2023-0799

• 资源与环境化工 • 上一篇    

硫掺杂石墨烯作为MFC阴极性能和生物毒性检测

蓝瑞嵩1,2(), 刘丽华3, 张倩1,2, 陈博彦4, 洪俊明1,2()   

  1. 1.华侨大学化工学院,福建 厦门 361021
    2.福建省工业废水生化处理工程技术研究中心,福建 厦门 361021
    3.福建省厦门环境监测中心站,福建 厦门 361102
    4.台湾宜兰大学工学院化工与材料工程学系,台湾 宜兰 26047
  • 收稿日期:2023-05-12 修回日期:2023-06-27 出版日期:2024-06-15 发布日期:2024-07-02
  • 通讯作者: 洪俊明
  • 作者简介:蓝瑞嵩(2000—),男,硕士研究生,主要研究方向为掺杂氧化石墨烯。E-mail:lanruisong2022@163.com
  • 基金资助:
    福建省科技项目(2022I0030);国家自然科学基金(51978291);厦门市科技计划(3502Z20226012)

Performance and biotoxicity evaluation of sulfur-doped graphene as a cathode for MFC

LAN Ruisong1,2(), LIU Lihua3, ZHANG Qian1,2, CHEN Boyan4, HONG Junming1,2()   

  1. 1.College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
    2.Fujian Province Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, Fujian, China
    3.Fujian Xiamen Environmental Monitoring Central Station, Xiamen 361102, Fujian, China
    4.Department of Chemical and Materials Engineering, National I-Lan University, I -Lan 26047, Taiwan, China
  • Received:2023-05-12 Revised:2023-06-27 Online:2024-06-15 Published:2024-07-02
  • Contact: HONG Junming

摘要:

采用水热法制备了硫掺杂还原氧化石墨烯(S-rGO),表征发现S原子的掺杂会导致结构缺陷的形成,这些结构缺陷会增加活性位点。通过电化学测试,S-rGO的氧还原反应(ORR)性能优于rGO,其极限电流密度为4.08mA/cm2,高出rGO(3.48mA/cm2)17.3%,这表明S原子的掺杂能够有效提高rGO的ORR活性。将S-rGO与活性炭(AC)、炭黑(CB)以0.1∶0.25∶1的质量比混合作为微生物燃料电池阴极催化剂。结果表明,S-rGO催化的微生物燃料电池反应器每个周期可持续27h,输出电压为0.33V,而rGO催化的反应器每个周期可持续24h,输出电压为0.30V;CB催化的反应器每个周期可持续23h,输出电压为0.26V。以苯扎氯铵(BAC)为生物毒性物质,探讨了S-rGO修饰的微生物燃料电池作为毒性传感器的相关性能,根据电压与BAC浓度的线性拟合结果,发现S-rGO具有更高的毒性检测灵敏度和稳定性(相关系数为0.996),而传统的Pt/C阴极催化剂的相关系数为0.932,表明S-rGO在毒性检测领域具有巨大的应用潜力。

关键词: 微生物燃料电池, 阴极催化剂, 硫掺杂还原氧化石墨烯, 毒性检测, 苯扎氯铵

Abstract:

Sulfur-doped reduced graphene oxide (S-rGO) materials were prepared by hydrothermal method. The characterization revealed that doping of S atoms led to the formation of structural defects in the rGO, which increased the active site of the material. Electrochemical tests revealed that S-rGO exhibited better oxygen reduction reaction (ORR) performance than rGO. The limited current density of S-rGO was 4.08mA/cm2, which was 17.3% higher than that of rGO (3.48mA/cm2). This indicates that the S atom doping can effectively improve the ORR activity of rGO. S-rGO was mixed with activated carbon (AC) and carbon black (CB) at a mass ratio of 0.1∶0.25∶1 to prepare the cathode catalyst for microbial fuel cells. The results showed that the S-rGO-catalyzed microbial fuel cell reactor could operate for 27h per cycle and generate an output voltage of 0.33V, while the rGO-catalyzed reactor could run for 24h per cycle with an output voltage of 0.30V. The reactor catalyzed by CB could last for 23h per cycle and had an output voltage of 0.26V. Benzalammonium chloride (BAC) was used as a biotoxic substance to test the toxicity sensing performance of the S-rGO-modified microbial fuel cells. The linear fitting results of voltage and BAC concentration revealed that S-rGO had higher sensitivity and stability for toxicity detection (correlation coefficient was 0.996), whereas the correlation coefficient of the traditional Pt/C cathode catalyst was 0.932. All the above results indicates that S-rGO has great potential for application in the field of toxicity detection.

Key words: microbial fuel cell, cathode catalyst, sulfur-doped reduced graphene oxide, toxicity detection, benzalchloramine

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn