1 | YE D D, YANG Y, LI J, et al. Performance of a microfluidic microbial fuel cell based on graphite electrodes[J]. International Journal of Hydrogen Energy, 2013, 38(35):15710-15715. | 2 | LI J, ZHANG J, YE D D, et al. Optimization of inner diameter of tubular bamboo charcoal anode for a microbial fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(33):19242-19248. | 3 | LOGAN B E, REGAN J M. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends in Microbiology, 2006, 14(12):0-518. | 4 | RABAEY K, ROZENDAL, RENE A. Microbial electrosynthesis —— Revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology, 2010, 8(10):706-716. | 5 | RABAEY K, VERSTRAETE W. Microbial fuel cells: novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6):291-298. | 6 | XIE X, YU G, LIU N, et al. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells[J]. Energy & Environmental Science, 2012, 5(5): 6862-6866. | 7 | MASHKOUR MEHRDAD, RAHIMNEJAD MOSTAFA. Effect of various carbon-based cathode electrodes on the performance of microbial fuel cell[J]. Biofuel Research Journal, 2015, 8: 296-300. | 8 | WU G, BAO H, XIA Z, et al. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells[J]. Journal of Power Sources, 2018, 384: 86-92. | 9 | HINDATU Y, ANNUAR M S M, GUMEL A M. Mini-review: anode modification for improved performance of microbial fuel cell[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 236-248. | 10 | ZHAI D D, FANG Z, JIN H W, et al. Vertical alignment of polyaniline nanofibers on electrode surface for high performance microbial fuel cells[J]. Bioresource Technology, 2019, 288(9): 121499-121505. | 11 | WEI J, LIANG P, HUANG X. Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology, 2011, 102(20): 9335-9344. | 12 | LOGAN B, CHENG S, WATSON V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3341-3346. | 13 | 黄霞, 范明志, 梁鹏, 等. 微生物燃料电池阳极特性对产电性能的影响[J]. 中国给水排水, 2007, 23(3): 8-13. | 13 | HUANG X, FAN M Z, LIANG P, et al. Influence of anode characteristics of microbial fuel cell on electrical performance[J]. China Water & Wastewater, 2007, 23(3): 8-13. | 14 | LI J, LIU C, LIAO Q, et al. Improved performance of a tubular microbial fuel cell with a composite anode of graphite fiber brush and graphite granules[J]. International Journal of Hydrogen Energy, 2013, 38(35): 15723-15729. | 15 | POEHERE CHONG, ERABLE BENJAMIN, BERGEL ALAIN. Effect of pore size on the current produced by 3-dimensional porous microbial anodes: a critical review[J]. Bioresource Technology, 2019, 289: 121641-121653. | 16 | BIAN B, SHI D, CAI X, et al. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell[J]. Nano Energy, 2018, 44: 174-180. | 17 | ZHANG L, ZHU X, LI J, et al. Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances[J]. Journal of Power Sources, 2011, 196(15): 6029-6035. | 18 | ZHANG Y P, CHEN X, YUAN Y, et al. Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43: 16240-16247. | 19 | 刘兴倩, 王许云, 郭庆杰. PEDOT/MWCNTS复合阳极的制备及在MFC中的应用[J]. 化工学报, 2013, 64(5): 1773-1779. | 19 | LIU X Q, WANG X Y, GUO Q J. Preparation of PEDOT/MWCNTS composite anode and its application in MFC[J]. CIESC J., 2013, 64(5):1773-1779. | 20 | 侯俊先, 刘中良, 张培远. 石墨烯修饰微生物燃料电池阳极的研究[J]. 工程热物理学报, 2013, 34(7): 1319-1322. | 20 | HOU J X, LIU Z L, ZHANG P Y. Study on graphene modified microbial fuel cell anode[J]. Journal of Engineering Thermophysics, 2013, 34(7): 1319-1322. | 21 | 张军, 李俊, 叶丁丁, 等. 阳极电极电解处理对微生物燃料电池性能影响[J]. 工程热物理学报, 2014, 35(6): 1206-1209. | 21 | ZHANG J, LI J, YE D D, et al. Effect of anode electrode electrolytic treatment on performance of microbial fuel cell[J]. Journal of Engineering Thermophysics, 2014, 35(6): 1206-1209. | 22 | ZHAO N, MA Z K, SONG H H, et al. Polyaniline/reduced graphene oxide-modified carbon fiber brush anode for high-performance microbial fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43: 17867-17872. | 23 | ZHONG D, LIAO X, LIU Y, et al. Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using a petaline NiO@ polyaniline-carbon felt anode[J]. Bioresource Technology, 2018, 258: 125-134. | 24 | PU K B, MA Q, CAI W F, et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell[J]. Biochemical Engineering Journal, 2018, 132: 255-261. | 25 | ZHONG D J, LIAO X R, LIU Y Q, et al. Quick start-up and performance of microbial fuel cell enhanced with a polydiallyldimethylammonium chloride modified carbon felt anode[J]. Biosensors and Bioelectronics, 2018, 119: 70-78. | 26 | YOU J, PREEN R J, BULL L, et al. 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing[J]. Sustainable Energy Technologies and Assessments, 2017, 19: 94-101. |
|