化工进展 ›› 2020, Vol. 39 ›› Issue (10): 3987-3994.DOI: 10.16085/j.issn.1000-6613.2019-2039

• 能源加工与技术 • 上一篇    下一篇

3D打印微生物燃料电池阳极及其性能特性

杨杰男1,2(), 付乾1,2(), 李俊1,2, 张亮1,2, 熊珂睿1,2, 廖强1,2, 朱恂1,2   

  1. 1.重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030
    2.重庆大学工程热物理研究所,重庆 400030
  • 出版日期:2020-10-05 发布日期:2020-10-09
  • 通讯作者: 付乾
  • 作者简介:杨杰男(1994—),男,硕士研究生,研究方向为生物电化学。E-mail:2206014290@qq.com
  • 基金资助:
    国家自然科学基金面上项目(51776025);国家自然科学基金优秀青年项目(51622602);重庆市留学人员创业创新支持计划(cx2017017);中央高校基本科研业务费前沿交叉学科培育(2018CDQYDL0049)

3D printed microbial fuel cell anode and its performance characteristics

Jienan YANG1,2(), Qian FU1,2(), Jun LI1,2, Liang ZHANG1,2, Kerui XIONG1,2, Qiang LIAO1,2, Xun ZHU1,2   

  1. 1.Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
    2.Ministry of Education Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
  • Online:2020-10-05 Published:2020-10-09
  • Contact: Qian FU

摘要:

微生物燃料电池是一种处理废水同时产生电能的新型装置,阳极作为微生物燃料电池的重要组件极大地影响电池性能。针对微生物燃料电池传统三维电极结构不合理导致电极内部物质传输受限,电池功率密度较低的问题,本文采用3D打印技术并碳化的方式构建了结构可控的微生物燃料电池阳极,通过热重分析得到合适的碳化条件,并通过进一步的电化学分析和电极微观形貌拍摄研究了电极内部孔道结构对微生物生长情况和电池性能的影响。实验结果表明:电极孔径尺寸为0.4mm时,电池具有最优性能,其最大功率密度达12.85W/m2,比采用碳布阳极的MFC提升10倍,较采用碳毡阳极的燃料电池高38%;具有可控孔道结构电极的传荷阻抗和传质阻抗是限制电极性能的主要因素,通过优化孔道尺寸和结构分布可降低其传荷及传质阻抗,可以进一步提升电池性能。

关键词: 3D打印阳极, 微生物燃料电池, 废水, 电化学, 均匀孔电极, 优化

Abstract:

Microbial fuel cell (MFC) is a promising renewable technology that can simultaneously treat wastewater and generate electricity. However, the performance of MFC is significantly limited by the bioanode, which is the key component of MFC. The structure of traditional three-dimensional (3D) porous electrodes significantly limits the material transfer inside the electrode and affects the battery power density. Herein, we use 3D printing technology to construct a structure-controlled anode for MFC. The effects of pore structure on the growth of microorganisms inside the electrode and the performance of MFC were studied by electrochemical analysis and scanning electron microscopy (SEM). The results showed that the MFC using the 3D-printed electrode with a pore size of 0.4mm achieved the highest power density of 12.85W/m2, which was 10 times higher than that with carbon cloth and 38% higher than that with carbon felt. The charge transfer resistance and mass transfer resistance of the 3D-printed electrode were the main factors limiting the performance of anodes, which could be further reduced by optimizing the channel size and structure distribution.

Key words: 3D printing electrode, microbial fuel cell, waste water, electrochemistry, uniform pore electrode, optimization

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn