化工进展 ›› 2019, Vol. 38 ›› Issue (02): 1097-1106.DOI: 10.16085/j.issn.1000-6613.2018-0751
收稿日期:
2018-04-12
修回日期:
2018-08-13
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
吕永康
作者简介:
<named-content content-type="corresp-name">李文英</named-content>(1985—),女,博士研究生,讲师,研究方向为水污染控制及资源化利用。E-mail:<email>lwy8507@126.com</email>。|吕永康,教授,博士生导师,长期从事煤化工、环境工程与技术领域的科学研究工作。E-mail:<email>yongkanglv@163.com</email>。
基金资助:
Wenying LI1,2(),Yuxiang LIU1,Ruipeng REN1,Yongkang LÜ1()
Received:
2018-04-12
Revised:
2018-08-13
Online:
2019-02-05
Published:
2019-02-05
Contact:
Yongkang Lü
摘要:
近年来,使用微生物燃料电池(MFC)处理含氮水与废水受到广泛关注,在脱除水与废水中氮元素污染的同时,回收部分能量,克服了传统含氮废水处理高能耗的缺陷。本文在微生物脱氮技术的基础上,综合国内外相关研究文献,简述了MFC处理含氮水与废水研究的最新进展,系统总结了4种不同形式的脱氮MFC,主要包括反硝化脱氮MFC、硝化脱氮MFC、同步硝化反硝化脱氮MFC以及厌氧氨氧化脱氮MFC,详细介绍了各种脱氮形式MFC的产电和脱氮性能以及适用条件,分析了每种脱氮MFC的脱氮产电机理以及影响因素(包括MFC运行参数、外接电阻、电极材料以及MFC构型等);最后提出了未来MFC在处理含氮水与废水方面的主要研究方向:开发新型性价比高的电极催化材料及膜材料,优化运行条件,提高产电生物膜的稳定性以及进一步细致探究不同形式的脱氮产电机理等,从而扩大运行规模。
中图分类号:
李文英, 刘玉香, 任瑞鹏, 吕永康. 微生物燃料电池在水与废水脱氮方面的研究进展[J]. 化工进展, 2019, 38(02): 1097-1106.
Wenying LI, Yuxiang LIU, Ruipeng REN, Yongkang LÜ. Research progress on removal of nitrogen in water and wastewater by microbial fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 1097-1106.
电阻 /Ω | 电压 /mV | 电流 /mA | 功率密度 /W·m-3 | NO3 -和NO2 - 去除率/mg·L-1 | 阴极库伦 效率/% |
---|---|---|---|---|---|
100 | 360±12.57 | 3.60±0.13 | 1.30±0.13 | 56.02±1.47 | 8.11±0.26 |
50 | 300±10.93 | 6.00±0.11 | 1.80±0.11 | 58.43±1.69 | 12.96±0.44 |
10 | 205±7.11 | 20.50±0.07 | 4.20±0.07 | 62.47±2.33 | 41.45±0.93 |
5 | 110±3.29 | 22.00±0.03 | 2.42±0.03 | 64.81±2.06 | 42.48±0.89 |
开路 | — | — | — | 49.28±1.58 | — |
表1 不同外电阻EAM-MFC系统脱氮及产电性能[48]
电阻 /Ω | 电压 /mV | 电流 /mA | 功率密度 /W·m-3 | NO3 -和NO2 - 去除率/mg·L-1 | 阴极库伦 效率/% |
---|---|---|---|---|---|
100 | 360±12.57 | 3.60±0.13 | 1.30±0.13 | 56.02±1.47 | 8.11±0.26 |
50 | 300±10.93 | 6.00±0.11 | 1.80±0.11 | 58.43±1.69 | 12.96±0.44 |
10 | 205±7.11 | 20.50±0.07 | 4.20±0.07 | 62.47±2.33 | 41.45±0.93 |
5 | 110±3.29 | 22.00±0.03 | 2.42±0.03 | 64.81±2.06 | 42.48±0.89 |
开路 | — | — | — | 49.28±1.58 | — |
1 | JOO H S, HIRAI M , SHODA M .Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by alcaligenes faecalis No. 4[J]. Journal of Bioscience & Bioengineering,2005,100(2): 184-191. |
2 | LI F M , LU L , ZHENG X ,et al .Enhanced nitrogen removal in constructed wetlands:effects of dissolved oxygen and step-feeding[J].Bioresource Technology, 2014, 169(5): 395-402. |
3 | FAN J L , ZHANG J , GUO W S , et al .Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands[J].Bioresource Technology, 2016, 214: 871-875. |
4 | GUO Y Y , PENG Y Z , WANG B , et al .Achieving simultaneous nitrogen removal of low C/N wastewater and external sludge reutilization in a sequencing batch reactor[J]. Chemical Engineering Journal, 2016, 306: 925-932. |
5 | JIANG C , YANG Q , WANG D B , et al .Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell[J]. Chemical Engineering Journal, 2016, 308: 783-790. |
6 | ZHOU X , WANG X Z , ZHANG H , et al .Enhanced nitrogen removal |
of low C/N domestic wastewater using a biochar-amended aerated | |
vertical flow constructed wetland[J]. Bioresource Technology, 2017, 241:269-275. | |
7 | KIM J K, PARK K J , CHO K S, et al .Aerobic nitrification-denitrification by heterotrophic bacillus strains[J]. Bioresource Technology, 2005, 96(17):1897-1906. |
8 | FAN J , TAO T , ZHANG J , et al .Performance evaluation of a modified anaerobic/anoxic/oxic (A2/O) process treating low strength wastewater [J]. Desalination, 2009, 249(2): 822-827. |
9 | JIN L Y , ZHANG G G , TIAN H F .Current state of sewage treatment in China[J]. Water Research, 2014, 66: 85-98. |
10 | BURTON F L , STENSEL H D , TCHOBANOGLOUS G , et al .Wastewater engineering: treatment and reuse[J].McGraw-Hill Series in Water Resources and Environmental Engineering, 2003, 73(1): 50-51. |
11 | GAO D W , PENG Y Z , LI B K , et al .Shortcut nitrification-denitrification by real-time control strategies[J]. Bioresource Technology, 2009, 100(7): 2298-2300. |
12 | ZHANG F , HE Z .Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells[J].Journal of Chemical Technology & Biotechnology, 2011, 87(1): 153-159. |
13 | GUDE V G .Energy and water autarky of wastewater treatment and power generation systems[J]. Renewable & Sustainable Energy Reviews, 2015, 45: 52-68. |
14 | VIRDIS B , RABAEY K , ROZENDAL R A , et al . Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells[J].Water Research, 2010, 44(9): 2970-2980. |
15 | LOGAN B E , HAMOLERS B , ROZENDAL R , et al .Microbial fuel cells: methodology and technology[J].Environmental Science & Technology, 2006, 40(17): 5181-5192. |
16 | LI Y , WU Y N , PURANIK S , et al .Metals as electron acceptors in single-chamber microbial fuel cells[J].Journal of Power Sources, 2014, 269(4): 430-439. |
17 | LI Y , WU Y N , LIU B C , et al .Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system[J].Bioresource Technology, 2015, 192: 238-246. |
18 | MIN B , KIM J, OH S, et al .Electricity generation from swine wastewater using microbial fuel cells[J].Water Research, 2005, 39(20): 4961-4968. |
19 | SEVDA S , DOMINGUEZ-BENETTON I , VANBROEKHOVEN K , et al . High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell[J].Applied Energy, 2013, 105(2): 194-206. |
20 | TOCZYLOWSKA-MAMINSKA R , SZYMONA K , MADEJ H , et al .Cellulolytic and electrogenic activity of Enterobacter cloacae in mediatorless microbial fuel cell[J].Applied Energy, 2015, 160: 88-93. |
21 | CHEN Y G , LUO J Y , YAN Y Y , et al .Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells[J].Applied Energy, 2013, 102(2): 1197-1204. |
22 | LEE Y W, MARTIN L , GRASEL P , et al .Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology[J].Environmental Technology, 2013, 34(17/18/19/20): 2727-2736. |
23 | YAN H , REGAN J M .Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas[J].Biotechnology & Bioengineering, 2013, 110(3): 785-791. |
24 | 冯锦霞, 朱建军, 陈立 .我国地下水硝酸盐污染防治及评估预测方法[J]. 地下水, 2006, 28(4): 58-62. |
FENG J X , ZHU J J , CHEN L . Nitrate contamination of groundwater and its control and evaluation forecast methods[J]. Groundwater, 2006, 28(4): 58-62. | |
25 | 梁乾伟, 胡承志, 李永, 等 .ACF电吸附去除饮用水中的硝酸盐[J].环境工程学报, 2016, 10(7): 3510-3514. |
LIANG Q W , HU C Z , LI Y , et al .Removal of nitrate from drinking water by ACF eletrosorption[J].Chinese Journal of Environmental Engineering, 2016, 10(7): 3510-3514. | |
26 | GATSEVA P D , ARGUROVA M D .High-nitrate levels in drinking water may be a risk factor for thyroid dysfunction in children and pregnant women living in rural Bulgarian areas[J].International Journal of Hygiene & Environmental Health, 2008, 211(5/6): 555-559. |
27 | 朱加乐, 王欣泽, 沈剑, 等 .十四烷基三甲基溴化铵改性活性炭吸附水中硝酸盐和磷酸盐[J].化工进展, 2017, 36(7): 2676-2683. |
ZHU J L , WANG X Z , SHEN J , et al .Adsorption of nitrate and phosphate by MTAB-modified activated carbon[J].Chemical Industry and Engineering Progress, 2017, 36(7): 2676-2683. | |
28 | ZHOU W L , SUN Y J , WU B T , et al .Autotrophic denitrification fornitrate and nitrite removal using sulfur-limestone[J].Journal of Environmental Sciences, 2011, 23(11): 1761-1769. |
29 | SAMATYA S , KABAY N , YUKSEL U , et al .Removal of nitrate from aqueous solution by nitrate selective ion exchange resins[J].Reactive & Functional Polymers, 2006, 66(11): 1206-1214. |
30 | GREGORY K B , BOND D R , LOVELEY D R .Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004, 6(6): 596-604. |
31 | CLAUWAERT P , RABAEY K , AELTERMAN P , et al .Biological denitrification in microbial fuel cells[J].Environmental Science & Technology, 2007, 41(9): 3354-3360. |
32 | VIRDIS B , RABAEY K , YUAN Z , et al .Microbial fuel cells for simultaneous carbon and nitrogen removal[J].Water Research, 2008, 42(12): 3013-3024. |
33 | MORRIS J M , FALLGREN P H , JIN S .Enhanced denitrification through microbial and steel fuel-cell generated electron transport[J].Chemical Engineering Journal, 2009, 153(1): 37-42. |
34 | ZHANG Y , ANGELIDAK I .A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC)[J].Water Research, 2013, 47(5): 1827-1836. |
35 | MVV N S, RAO K K , RUGGERI B , et al . Denitrification of water in a microbial fuel cell (MFC) using seawater bacteria[J]. Journal of Cleaner Production, 2018, 178: 449-456. |
36 | SHEN J Y , HE R , HAN W Q , et al .Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR)[J]. Journal of Hazardous Materials, 2009, 172(2/3): 595-600. |
37 | OH J, YOON S M , PARK J M .Denitrification in submerged biofilters of concentrated-nitrate wastewater[J].Water Science & Technology A: Journal of the International Association on Water Pollution Research, 2001, 43(1): 217-223. |
38 | ZHANG J Q , ZHENG P , ZHANG M , et al .Kinetics of substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC)[J].Bioresource Technology, 2013, 149(4): 44-50. |
39 | 张吉强 .微生物燃料电池同步脱氮产电性能及机理研究[D].杭州: 浙江大学, 2014. |
ZHANG J Q .Simultaneous nitrogen removal and electricity generation in microbial fuel cell and its mechanism[D].Hangzhou: Zhejiang University, 2014. | |
40 | SUKKASEM C , XU S , PARK S , et al .Effect of nitrate on the performance of single chamber air cathode microbial fuel cells[J].Water Research, 2008, 42(19): 4743-4750. |
41 | DUCE R A , LAROCHE J , ALTIERIK, et al .Impacts of atmospheric anthropogenic nitrogen on the open ocean[J].Science, 2008, 320(5878): 893-897. |
42 | HE Z , KAN J , WANG Y , et al .Electricity production coupled to ammonium in a microbial fuel cell[J].Environmental Science & Technology, 2009, 43(9): 3391-3397. |
43 | ZHAN G , ZHANGL, LI D , et al .Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell[J].Bioresource Technology, 2012, 116(7): 271-277. |
44 | XIE Z , CHEN H , ZHANG J , et al .Influence and mechanism of dissolved oxygen on the performance of ammonia-oxidation microbial fuel cell[J].International Journal of Hydrogen Energy, 2013, 38(25): 10607-10615. |
45 | XIE S , LIANG P , CHEN Y , et al .Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system[J].Bioresource Technology, 2011, 102(1): 348-354. |
46 | LI Y , WILLIAMS I , XU Z , et al .Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells(MFCs)[J].Applied Energy, 2016, 163: 352-360. |
47 | ZHANG G Y , ZHANG H M , ZHANG C Y , et al .Simultaneous nitrogen and carbon removal in a single chamber microbial fuel cell with a rotating biocathode[J].Process Biochemistry, 2013, 48(5/6): 893-900. |
48 | WU Y , YANG Q , ZENG Q N , et al .Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode[J].Chemical Engineering Journal, 2017, 316: 315-322. |
49 | 赵慧敏, 赵剑强 .同运行方式对微生物燃料电池处理氨氮废水的影响[J].化工进展, 2016, 35(5): 1549-1554. |
ZHAO H M , ZHAO J Q .Influence of different operation modes on ammonia nitrogen wastewater treatment of microbial fuel cell[J].Chemical Industry and Engineering Progress, 2016, 35(5): 1549-1554. | |
50 | KUENEN J G .Anammox bacteria: from discovery to application[J].Nature Reviews Microbiology, 2008, 6(4): 320-326. |
51 | JETTEN M S , LV N , STROUS M , et al .Biochemistry and molecular biology of anammox bacteria[J].Critical Reviews in Biochemistry & Molecular Biology, 2009, 44(2/3): 65-84. |
52 | STROUS M , PELLETIER E , MANGENOT S , et al .Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature, 2006, 440(7085): 790-794. |
53 | 谢作甫 .MFC脱氮产电性能及电导率研究[D].杭州: 浙江大学, 2014. |
XIE Z F .Performance of nitrogen removal and electricity generation in MFC and research on conductivity[D].Hangzhou: Zhejiang University, 2014. | |
54 | 陶琴琴 .微生物燃料电池同步脱氮除磷及产电性能研究[D].广州: 华南理工大学, 2015. |
TAO Q Q .Simultaneous nitrogen and phosphorus removal and electricity generation in microbial fuel cells[D].Guangzhou: South China University of Technology, 2015. | |
55 | 王鑫, 冯玉杰, 曲有鹏, 等 .温度对啤酒废水微生物燃料电池产电性能的影响[J]. 环境科学, 2008, 29(11): 138-142. |
WANG X , FENG Y J , QU Y P , et al .Effect of temperature on performance of microbial cell using beer wastewater[J].Environmental Science, 2008, 29(11): 138-142. | |
56 | LI W Q , ZHANG S H , CHEN G , et al .Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite[J].Applied Energy, 2014, 126: 136-141. |
57 | 徐功娣 .微生物燃料电池原理与应用[M].哈尔滨: 哈尔滨工业大学出版社, 2012. |
XU G D .Principle and application of microbial fuel cell[M]. Harbin: Harbin Institute of Technology Press, 2012. | |
58 | VIRDIS B , RABAEY K , ROZENDAL R A , et al .Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells[J].Water Research, 2010, 44(9): 2970-2980. |
59 | 张立成, 程亚楠, 于洋, 等 .阴极室碳氮比对微生物燃料电池的影响[J].中国给水排水, 2014(23): 98-100. |
ZHANG L C , CHENG Y N , YU Y , et al .Effect of C/N ratio in cathode chamber on microbial fuel cell[J].China Water&Wastewater, 2014(23): 98-100. | |
60 | GUO K , SOERIYADI A H , FENG H , et al .Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems[J].Bioresource Technology, 2015, 195: 46-50. |
61 | MOOK W T , AROUA M K T , CHAKRABARTI M H , et al .A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems[J]. Journal of Industrial & Engineering Chemistry, 2013, 19(1): 1-13. |
62 | 杨倩, 徐源, 蒋阳月, 等 .微生物燃料电池电极材料的最新研究进展[J].化工进展, 2013, 32(10): 2423-2428. |
YANG Q , XU Y , JIANG Y Y , et al . Research progress of electrode materials for microbial fuel cells[J]. Chemical Industry and Engineering Progress, 2013, 32(10): 2423-2428. | |
63 | GUO K , PREVOTEAU A , PATIL S A , et al .Engineering electrodes for microbial electrocatalysis[J].Current Opinion in Biotechnology, 2015, 33: 149-156. |
64 | HUANG L , REGAN J M , QUAN X .Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells[J].Bioresource Technology, 2011, 102(1): 316-323. |
65 | CHENG S , LIU H , LOGAN B E .Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(1): 364-369. |
66 | LOGAN B E .Exoelectrogenic bacteria that power microbial fuel cells[J].Nature Reviews Microbiology, 2009, 7(5): 375-381. |
67 | FANG C , MIN B , ANGELIDAKI I .Nitrate as an oxidant in the cathode chamber of a microbial fuel cell for both power generation and nutrient removal purposes[J].Applied Biochemistry & Biotechnology, 2011, 164(4): 464-474. |
68 | AHN Y, IVANOV I , NAGAIAH T C , et al .Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells[J].Journal of Power Sources, 2014, 269(4): 212-215. |
69 | 白立俊, 王许云, 何海波, 等 .M-N-C阴极催化剂的制备及其在微生物燃料电池中的应用[J].化工学报, 2014, 65(4): 1267-1272. |
BAI L J , WANG X Y , HE H B , et al .Preparation and characterization of M-N-C as cathode catalysts for microbialfuel cell[J].CIESC Journal, 2014, 65(4): 1267-1272. | |
70 | YAN H J , SAITO T , REGAN J M .Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode[J].Water Research, 2012, 46(7): 2215-2224. |
71 | 杨芳, 李兆华, 肖本益 .微生物燃料电池内阻及其影响因素分析[J].微生物学通报, 2011, 38(7): 1098-1105. |
YANG F , LI Z H , XIAO B Y .Analysis of internal resistance and its influencing factors of MFC[J].Microbiology China, 2011, 38(7): 1098-1105. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[7] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[8] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[13] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[14] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[15] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |