化工进展 ›› 2019, Vol. 38 ›› Issue (02): 1085-1096.DOI: 10.16085/j.issn.1000-6613.2018-2042
收稿日期:
2018-10-15
修回日期:
2018-11-22
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
宁平
作者简介:
<named-content content-type="corresp-name">刘树根</named-content>(1975—),男,博士,副教授,研究方向为污染物生物净化、废弃物资源化。E-mail:<email>bridgelsg@sina.com</email>。|宁平,教授,博士生导师,研究方向为工业废气净化及资源化,E-mail:<email>ningping58@sina.com</email>
基金资助:
Shugen LIU(),Ting LI,Ping NING(),Meng WU,Shuo YU
Received:
2018-10-15
Revised:
2018-11-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Ping NING
摘要:
磷化氢广泛产生于稻田耕作、垃圾填埋、废水处理、工业生产等过程,但环境中磷化氢的形成机制、转化途径等问题尚不清晰。本文从磷化氢的环境效益出发,分析了气体自由态与基质结合态磷化氢的产生及时空分布特性,归纳了磷化氢催化转化、光化学氧化、微生物降解等转化途径及作用机理,探讨了磷化氢生物地球化学循环过程存在的相关问题。综合磷化氢源汇解析、迁移转化等方面的现有研究及发展态势,后续研究可聚焦如下3个方面:①废水中磷化氢厌氧生成机制及过程强化;②水体富营养化与磷化氢及其氧化产物的响应关系;③磷化氢生物氧化的具体途径及作用机制。
中图分类号:
刘树根, 李婷, 宁平, 吴孟, 余硕. 环境中磷化氢的产生、分布及转化研究进展[J]. 化工进展, 2019, 38(02): 1085-1096.
Shugen LIU, Ting LI, Ping NING, Meng WU, Shuo YU. Research progress of the release, distribution and transformation of phosphine in environment[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 1085-1096.
环境介质 | 浓度 | 释放通量 /ng·m-2·h-1 | 研究者 |
---|---|---|---|
大气中的磷化氢 | |||
污水处理厂 | 11.6~382ng·m-3 | 0.09~9.17 | Devai等[ |
世界各地大气 | 0.041~0.885ng·m-3 | 1300 | Glindemann等[ |
中国北方水稻田上空 | 137ng·m-3 | 1.78 | Han等 [ |
中国南方水稻田上空 | 14.25ng·m-3 | 9.193~19.15 | 魏爱书[ |
太湖湖面上空 | 20.2~46ng·m-3 | -8.1~36.9 | 韩超[ |
南极米洛米岛大气 | 10.4~229ng·m-3 | 朱仁斌等[ | |
北极海面/地面上空 | 16.3~600.2ng·m-3 | 26.95~37.66 | 张蕤等[ |
厌氧消化气中的磷化氢 | |||
填埋场大气 | 0~24646ng·m-3 | Glindemann等[ | |
动物腐败产生的沼气 | 24~20300ng·m-3 | ||
含盐沼泽地 | 0.91~6.52 | ||
微咸沼泽地 | 0.42~3.03 | Devai等 [ | |
千层湖泊沉积物释放沼气 | |||
屠宰场废水释放沼气 | 179ng·m-3 | Roels等[ | |
人体排泄物释放沼气 | 42.3ng·m-3 | ||
工农业生产活动产生的磷化氢 | |||
粮食仓储熏蒸仓内 | 1257.84~2632.60mg·m-3 | 姜开友等[ | |
烟草熏蒸仓内 | 30.36~182.14mg·m-3 | 张建中等[ | |
微电子产品生产 | 0.15~0.17mg·m-3 | 贾晖等[ | |
黄磷尾气 | 500~1300mg·m-3 | Ning等[ |
表1 环境中的气态磷化氢
环境介质 | 浓度 | 释放通量 /ng·m-2·h-1 | 研究者 |
---|---|---|---|
大气中的磷化氢 | |||
污水处理厂 | 11.6~382ng·m-3 | 0.09~9.17 | Devai等[ |
世界各地大气 | 0.041~0.885ng·m-3 | 1300 | Glindemann等[ |
中国北方水稻田上空 | 137ng·m-3 | 1.78 | Han等 [ |
中国南方水稻田上空 | 14.25ng·m-3 | 9.193~19.15 | 魏爱书[ |
太湖湖面上空 | 20.2~46ng·m-3 | -8.1~36.9 | 韩超[ |
南极米洛米岛大气 | 10.4~229ng·m-3 | 朱仁斌等[ | |
北极海面/地面上空 | 16.3~600.2ng·m-3 | 26.95~37.66 | 张蕤等[ |
厌氧消化气中的磷化氢 | |||
填埋场大气 | 0~24646ng·m-3 | Glindemann等[ | |
动物腐败产生的沼气 | 24~20300ng·m-3 | ||
含盐沼泽地 | 0.91~6.52 | ||
微咸沼泽地 | 0.42~3.03 | Devai等 [ | |
千层湖泊沉积物释放沼气 | |||
屠宰场废水释放沼气 | 179ng·m-3 | Roels等[ | |
人体排泄物释放沼气 | 42.3ng·m-3 | ||
工农业生产活动产生的磷化氢 | |||
粮食仓储熏蒸仓内 | 1257.84~2632.60mg·m-3 | 姜开友等[ | |
烟草熏蒸仓内 | 30.36~182.14mg·m-3 | 张建中等[ | |
微电子产品生产 | 0.15~0.17mg·m-3 | 贾晖等[ | |
黄磷尾气 | 500~1300mg·m-3 | Ning等[ |
磷化氢分布 | 基质中含磷化氢 /ng·kg-1 | 消解方式 | 研究者 |
---|---|---|---|
土壤、海洋沉积物 | |||
牛排泄物 | 13.9 | 碱消化 | Gassmann等[ |
猪排泄物 | 5.6~16.8 | 碱消化 | |
土壤(工业地区) | 7~103 | 酸消化 | |
土壤(乡村) | 0.8~2.5 | 酸消化 | |
德国汉堡港表层沉积物 | 0.2~56.6 | 碱消化 | Gassmann等[ |
美国、匈牙利污水厂污泥 | 8.4~204 | 酸消化 | Devai等[ |
稻田土壤 | 2.3~269.7 | 酸消化 | 王谨丰[ |
胶州湾海洋沉积物 | 60~271 | 酸消化 | Yu等[ |
太湖表层沉积物 | 5.39~919 | 酸消化 | Niu等[ |
大连湾海洋沉积物 | 116.8~554.3 | 酸消化 | 封颖等[ |
南极生物圈 | |||
鸟粪沉积物 | 0.29~3.04 | 酸消化 | Zhu等[ |
北极生物圈 | |||
泰源土壤 | 2.15~50.42 | 酸消化 | 封颖等[ |
湖泊表层沉积物 | 17.55~58.62 | 酸消化 | |
海洋表层沉积物 | 26.2~140.9 | 酸消化 |
表2 环境中的基质结合态磷化氢
磷化氢分布 | 基质中含磷化氢 /ng·kg-1 | 消解方式 | 研究者 |
---|---|---|---|
土壤、海洋沉积物 | |||
牛排泄物 | 13.9 | 碱消化 | Gassmann等[ |
猪排泄物 | 5.6~16.8 | 碱消化 | |
土壤(工业地区) | 7~103 | 酸消化 | |
土壤(乡村) | 0.8~2.5 | 酸消化 | |
德国汉堡港表层沉积物 | 0.2~56.6 | 碱消化 | Gassmann等[ |
美国、匈牙利污水厂污泥 | 8.4~204 | 酸消化 | Devai等[ |
稻田土壤 | 2.3~269.7 | 酸消化 | 王谨丰[ |
胶州湾海洋沉积物 | 60~271 | 酸消化 | Yu等[ |
太湖表层沉积物 | 5.39~919 | 酸消化 | Niu等[ |
大连湾海洋沉积物 | 116.8~554.3 | 酸消化 | 封颖等[ |
南极生物圈 | |||
鸟粪沉积物 | 0.29~3.04 | 酸消化 | Zhu等[ |
北极生物圈 | |||
泰源土壤 | 2.15~50.42 | 酸消化 | 封颖等[ |
湖泊表层沉积物 | 17.55~58.62 | 酸消化 | |
海洋表层沉积物 | 26.2~140.9 | 酸消化 |
1 | 化工百科全书编委会 . 化工百科全书[M]. 北京:化学工业出版社, 1996: 436-437. |
Chemical Encyclopedia Editorial Board . Chemical encyclopedia[M]. Beijing: Chemical Industry Press, 1996: 436-437. | |
2 | 吴娜, 夏玉静 . 急性磷化氢中毒研究进展[J]. 中国职业医学, 2012, 39(4): 345-347. |
WU N , XIA Y J . Progress research on acute phosphine poisoning[J]. Chinese Occupational Medicine, 2012, 39(4): 345-347. | |
3 | PEPELKO B , SECKAR J , HARP P R , et al . Worker exposure standard for phosphine gas[J]. Risk Anal., 2004, 24(5): 1201-1213. |
4 | DEVAI I , FELFOLDY L , WITTNER I , et al . Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere[J]. Nature, 1988, 333(6171): 343-345. |
5 | HAN C , GENG J J , HONG Y N , et al . Free atmospheric phosphine concentrations and fluxes in different wetland ecosystems, China[J]. Environmental Pollution, 2011, 159(2): 630-635. |
6 | GENG J J , NIU X J , JIN X C , et al . Simultaneous monitoring of phosphine and of phosphorus species in Taihu lake sediments and phosphine emission from lake sediments[J]. Biogeochemistry, 2005, 76(2): 283-298. |
7 | HONG Y N , GENG J J , SONG Q , et al . Phosphorus fractions and matrix-bound phosphine in coastal surface sediments of the Southwest Yellow Sea[J]. Journal of Hazardous Materials, 2010, 181(1): 556-564. |
8 | HAN S H , ZHUANG Y H , LIU J A , et al . Phosphorus cycling through phosphine in paddy fields[J]. Science of the Total Environment, 2000, 258(3): 195-203. |
9 | DEVAI I , DELAUNE R D . Evidence for phosphine production and emission from Louisiana and Florida marsh soils[J]. Organic Geochemistry, 1995, 23(3): 277-279. |
10 | QU G F , ZHAO Q , JIAN R L , et al . Mechanism of PH3 absorption by Cu+-ILs/H2O two-liquid phase system[J]. Separation and Purification Technology, 2017, 187: 255-263. |
11 | 宁平, 易玉敏, 瞿广飞, 等 . PdCl2-CuCl2液相催化氧化净化黄磷尾气中PH3 [J]. 中南大学学报(自然科学版), 2009, 40(2): 340-345. |
NING P , YI Y M , QU G F , et al . Catalytic oxidation PH3 in yellow phosphoric tail gas with PdCl2 and CuCl2 solution[J]. Journal of Central South University (Science and Technology), 2009, 40(2): 340-345. | |
12 | 汪丽军, 刘涛, 董书军, 等 . 磷化氢熏蒸对桔小实蝇氧化代谢体系的影响研究[J]. 中国农学通报, 2013, 29(33): 351-357. |
WANG L J , LIU T , DONG S J , et al . The effect of phosphine fumigation on oxidative metabolism of bactrocera dorsalis hendel[J]. Chinese Agricultural Science Bulletin, 2013, 29(33): 351-357. | |
13 | 肖瑢, 刘树根, 杨希, 等 . 活性污泥体系中磷化氢生物降解特性[J]. 环境工程学报, 2018, 12(3): 855-862. |
XIAO R , LIU S G , YANG X , et al . Biodegradation characteristics of phosphine in activated sludge system[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 855-862. | |
14 | CHEN W Y , NIU X J , AN S R , et al . Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases[J]. Science of the Total Environment, 2017(599/600): 952-959. |
15 | GASSMANN G . Phosphine in the fluvial and marine hydrosphere[J]. Marine Chemistry, 1994, 45(3): 197-205. |
16 | 李建兵, 张桂玲, 张经, 等 . 大气中磷化氢的源与汇及其形成机理 [J]. 海洋湖沼通报, 2010(1): 103-114. |
LI J B , ZHANG G L , ZHANG J , et al . Sources and sinks in the atmosphere and formation mechanism of phosphine[J]. Transactions of Oceanology and Limnology, 2010(1): 103-114. | |
17 | TANG X J , LI L L , WANG C J , et al . Halloysite-nanotubes supported FeNi alloy nanoparticles for catalytic decomposition of toxic phosphine gas into yellow phosphorus and hydrogen[J]. Chemosphere, 2013, 91: 1368-1373. |
18 | 王殿轩, 冷本好, 安西友, 等 . 光源及温湿度条件对磷化氢光降解的影响 [J]. 植物检疫, 2013, 27(5): 45-49. |
WANG D X , LENG B H , AN X Y , et al . The effect of UV light wave, temperature and humidity on phosphine concentration degrading[J].Plant Quarantine, 2013, 27(5): 45-49. | |
19 | 杨丽娜, 易红宏, 唐晓龙, 等 . Fe-Cu混合氧化物催化湿式氧化低浓度磷化氢实验研究[J]. 中南大学学报(自然科学版), 2009, 40(6): 1505-1509. |
YANG L N , YI H H , TANG X L , et al . Catalytic wet air oxidation of low concentration phosphine with Fe-Cu mixed oxide[J]. Journal of Central South University (Science and Technology), 2009, 40(6): 1505-1509. | |
20 | 付梅, 宋秀贤, 俞志明, 等 . 伪矮海链藻抗氧化酶活性对磷化氢的响应特征[J]. 海洋环境科学, 2013, 32(6): 809-813. |
FU M , SONG X X , YU Z M , et al . Responses of activity of antioxidant enzyme in Thalassiosira pseudonana to phosphine[J]. Marine Environmental Science, 2013, 32(6): 809-813. | |
21 | 曹建平, 张朝升, 赵丽敏, 等 . 无机磷源及酶活性与厌氧污泥产磷化氢的关系[J]. 中国给水排水, 2017, 33(1): 110-113. |
CAO J P , ZHANG C S , ZHAO L M , et al . Relationships of inorganic phosphorus sources and enzymes activities to phosphine production from anaerobic activated sludge[J]. China Water & Wastewater, 2017, 33(1): 110-113. | |
22 | 王晓蓉, 丁丽丽, 牛晓君, 等 . 磷化氢在湖泊磷生物地球化学循环中的作用[J]. 环境化学, 2003, 22(5): 485-489. |
WANG X R , DENG L L , NIU X J , et al . Phosphine role in the biogeochemical cycling of phosphorus lakes[J]. Environment Chemistry, 2003, 22(5): 485-489. | |
23 | GASSMANN G , SCHORN E . Phosphine from harbor surface sediments[J]. Naturwissenschaften, 1993, 80(2): 78-80. |
24 | GLINDEMANN D , STOTTMEISTER U , BERGMANN A . Free phosphine from the anaerobic biosphere[J]. Environmental Science and Pollution Research, 1996, 3(1): 17-19. |
25 | GLINDEMANN D , BERGMANN A , STOTTMEISTER U , et al . Phosphine in the lower terrestrial troposphere[J]. Naturwissenschaften, 1996, 83(3): 131-133. |
26 | GENG J J , JIN X C , WANG Q , et al . Matrix bound phosphine formation and depletion in eutrophic lake sediment fermentation-simulation of different environmental factors[J]. Anaerobe, 2005, 11(5): 273-279. |
27 | FENG Z H , FENG T , LI Y , et al . Emission of phosphine in intertidal zone for aquaculture along the northern Jiangsu coast and its influencing factors[J]. Acta Ecologica Sinica, 2014, 34(15): 4167-4174. |
28 | DEVAI I , DELAUNE R D , DEVAI G , et al . Phosphine production potential of various wastewater and sewage sludge sources[J]. Analytical Letters, 1999, 32(7): 1447-1457. |
29 | 牛晓君, 张景飞, 王晓蓉, 等 . 磷化氢及其氧化产物动态释放对铜绿微囊藻(Microcystis aeruginosa)生长的影响[J]. 湖泊科学, 2003, 15(3): 263-268. |
NIU X J , ZHANG J F , WANG X R , et al . Effect on growth of Microcystis aeruginosa and phosphine oxide dynamically released[J]. Journal of Lake Sciences, 2003, 15(3): 263-268. | |
30 | ZHANG J , GENG J J , REN H Q , et al . Physiological and biochemical responses of Microcystis aeruginosa to phosphite[J]. Chemosphere, 2011, 85: 1325-1330. |
31 | NIU X J , GENG J J , WANG X R , et al . Temporal and spatial distributions of phosphine in Taihu Lake, China[J]. Science of the Total Environment, 2004, 323(1): 169-178. |
32 | HUDSON J J , TAYLOR W D , SCHINDLER D W .Phosphate concentrations in lakes[J]. Nature, 2000, 406: 54-56. |
33 | 耿金菊 . 湖泊沉积物中磷化氢的释放过程及其产生机制研究[D]. 南京: 南京大学, 2005. |
GENG J J . Investigation of phosphine release and its production mechanism in lake sediment[D]. Nanjing: Nanjing University, 2005. | |
34 | 李涛, 侯立军, 刘敏, 等 . 长江口近岸表层沉积物中基质结合态磷化氢的分布特征[J]. 环境科学, 2012, 33(10): 3443-3448. |
LI T , HOU L J , LIU M , et al . Distributions of matrix-bound phosphine in surface sediments of the yangtze estuary[J]. Environmental Science, 2012, 33(10): 3443-3448. | |
35 | 郭夏丽 . 厌氧生物除磷技术的基础研究[D]. 杭州: 浙江大学, 2005. |
GUO X L . Fundamental research on dephosphorization biotechnology[D]. Hangzhou: Zhejiang University, 2005. | |
36 | CAO J P , ZHANG C S , RONG H W , et al . Study on effects of electron donors on phosphine production from anaerobic activated sludge[J]. Water, 2017, 9(8): 563. |
37 | 万金保, 杨怡, 邓觅, 等 . 4种因子对猪场沼液产磷化氢的影响[J]. 环境工程学报, 2016, 10(9): 4902-4906. |
WAN J B , YANG Y , DENG M , et al . Effects of four factors on the production of PH3 in the treatment of pig breeding bio-slurry[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4902-4906. | |
38 | ROELS J , VERSTRAETE W . Occurrence and origin of phosphine in landfill gas[J]. Science of the Total Environment, 2004, 327(1/2/3): 185-196. |
39 | CAO H F , LIU J , ZHUANG Y H , et al . Emission sources of atmospheric phosphine and simulation of phosphine formation[J]. Science in China. Series B: Chemistry, 2000, 43(2): 162-168. |
40 | 张朝升, 张可方, 孙亮, 等 . 碳源对厌氧活性污泥产生磷化氢的影响[J]. 中国给水排水, 2013, 29(15): 103-106. |
ZHANG C S , ZHANG K F , SUN L , et al . Effect of carbon sources on phosphine production from anaerobic activated sludge[J]. China Water & Wastewater, 2013, 29(15): 103-106. | |
41 | 刘树根, 苏福家, 牛晓君, 等 . 一种添加外源药剂强化废水厌氧生物除磷的技术方法: CN201810100187.0[P]. 2018-02-01. |
LIU S G , SU F J , NIU X J , et al . Technical method for adding anaerobic biological phosphorus removal by adding external medicament: CN201810100187.0[P]. 2018-02-01. | |
42 | LIU W , NIU X J , CHEN W Y , et al . Effects of applied potential on phosphine formation in synthetic wastewater treatment by microbial electrolysis cell (MEC)[J]. Chemosphere, 2017, 173: 172-179. |
43 | 刘树根, 李婷, 刘煜, 等 . 一种生物炭耦合微电流强化废水厌氧生物除磷的方法: CN201810100234.1[P]. 2018-02-01. |
LIU S G , LI T , LIU Y , et al . Method for anaerobic biological phosphorus removal by biochar coupled micro-current enhanced wastewater: CN 201810100234.1[P]. 2018-02-01. | |
44 | GLINDEMANN D , EDWARDS M , SCHREMS O . Phosphine and methylphosphine production by simulated lightning: a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere[J]. Atmospheric Environment, 2004, 38(39): 6867-6874. |
45 | GASSMANN G , GLINDEMANN D . Phosphine (PH3) in the biosphere[J]. Angewandte Chemie International Edition, 1993, 32(5): 761-763. |
46 | HANRAHAN G , SALMASSI T M , KHACHIKIAN C S , et al . Reduced inorganic phosphorus in the natural environment: significance, speciation and determination[J]. Talanta, 2005, 66(2): 435-44. |
47 | HAN S H , ZHUANG Y H , ZHANG H X , et al . Phosphine and methane generation by the addition of organic compounds containing carbon-phosphorus bonds into incubated soil[J]. Chemosphere, 2002, 49(6): 651-657. |
48 | 李丽 . 环境中磷化氢对水稻根际土壤性质以及有效磷的影响探究 [D]. 广州: 华南理工大学, 2015. |
LI L . Effect of phosphine on rhizosphere soil properties and available phosphorus in paddy[D]. Guangzhou: South China University of Technology, 2015. | |
49 | NATH N S , BHATTACHARYA I , ANDREW G T , et al . Mechanisms of phosphine toxicity[J]. Journal of Toxicology, 2011(3): 1-9. |
50 | CHUGH S N , ARORO V , SHARMA A . Free radical scavengers and lipid peroxidation in acute aluminum phosphide poisoning[J]. Ind. J. Med. Res., 1996, 104(8): 190-193. |
51 | HOBBS S K , BOND E J . Response of Tribolium castaneum (Herbst) to sublethal treatments with phosphine[J]. J. Stored Prod., 1989(25): 137-146. |
52 | MORTON S C , EDMARDS M . Reduced phosphorus compounds in the environment[J]. Critical Reviews in Environmental Science and Technology, 2005, 35: 333-364. |
53 | PRATT S . Phosphine levels outside grainstores during Siroflo fumigation[C]//Sichuan Publishing House of Science and Technology. Proceedings of the Seventh International Working Conference on Stored-Product Protection. Beijing, 1998: 391-398. |
54 | NING P , WANG X Y , BART H J , et al . Removal of phosphorus and sulfur from yellow phosphorus off-gas by metal-modified activated carbon[J]. Journal of Cleaner Production, 2011, 19(13): 1547-1552. |
55 | NIU X J , WEI A S , LI Y D , et al . Phosphine in paddy fields and the effects of environmental factors[J]. Chemosphere, 2013, 93(9): 1942-1947. |
56 | 韦伟 . 污水处理中磷化氢的释放过程研究[D]. 广州: 广州大学, 2010. |
WEI W . Research on release of phosphine in wastewater treatment[D].Guangzhou: Guangzhou University, 2010. | |
57 | 曹海峰, 刘季昂, 庄亚辉 . 环境中磷化氢的源及厌氧条件下前体物类型的研究[J]. 中国环境科学(B), 2000, 30(1): 63-68. |
CAO H F , LIU J A , ZHUANG Y H . Sources of phosphine in the environment and types of precursors under anaerobic conditions[J]. Science in China(series B) , 2000, 30(1): 63-68. | |
58 | 游丽丽, 宗海波, 张淑芳, 等 .金普湾海域表层沉积物中基质结合态磷化氢的分布特征[J]. 环境科学, 2013, 34(10): 3804-3809. |
YOU L L , ZONG H B , ZHANG S F , et al . Distribution of matrix-bound phosphine in surface sediments of Jinpu Bay[J]. Environmental Science, 2013, 34(10): 3804-3809. | |
59 | 封颖, 王强, 姚子伟, 等 . 自然界中磷化氢的分布及影响因素研究 [J]. 高技术通讯, 2009, 19(6): 650-655. |
FENG Y , WANG Q , YAO Z W , et al . Distribution and factors that affect the nature of the phosphine[J]. High-tech Communication , 2009, 19(6): 650-655. | |
60 | FENG Z H , FANG T , LI Y , et al . Emission of phosphine in intertidal zone for aquaculture along the northern Jiangsu coast and its influencing factors[J]. Acta Ecologica Sinica, 2014, 34(15): 4167-4174. |
61 | GLINDEMANN D , EDWARDS M , LIU J A , et al . Phosphine in soils, sludges, biogases and atmospheric implications-a review[J]. Ecol. Eng., 2005, 24: 457-463. |
62 | GLINDEMANN D , EISMANN F , BERGMANN A , et al . Phosphine by bio-corrosion of phosphide-rich iron[J]. Environmental Science & Pollution Research International, 1998, 5(2): 71-74. |
63 | IVERSON W P . Anaerobic corrosion: metals and microbes in two worlds[J]. Journal of Industrial Microbiology and Biotechnology, 1999, 22: 288-297. |
64 | 魏爱书 . 稻田中磷化氢的分布及其环境影响因素研究[D]. 广州: 华南理工大学, 2014. |
WEI A S . Study on phosphine distribution in paddy field and the effects of environmental factors[D]. Guangzhou: South China University of Technology, 2014. | |
65 | 韩超 . 太湖代表性低价磷的分布特征及光氧化过程研究[D]. 南京: 南京大学, 2013. |
HAN C . Distribution and photooxidation of typical reduced phosphorus in Lake Taihu[D]. Nanjing: Nanjing University, 2013. | |
66 | 朱仁斌, 孔德明, 孙立广, 等 . 南极大气中磷化氢的首次监测[J]. 科学通报, 2006, 51(18): 2212-2215. |
ZHU R B , KONG D M , SUN L G , et al . First monitoring of phosphine in Antarctic atmosphere[J]. Chinese Sci. Bull, 2006, 51(18): 2212-2215. | |
67 | 张蕤, 吴敏, 王强, 等 . 北极新奥尔松地区大气中磷化氢浓度与排放通量的监测[J]. 科学通报, 2010, 55(8): 713. |
ZHANG R , WU M , WANG Q , et al . The determination of atmospheric phosphine in Ny-Ålesund[J]. Chinese Sci. Bull, 2010, 55(8): 713. | |
68 | 姜开友, 王安弘, 邓志平 . 磷化铝熏蒸粮仓磷化氢浓度监测[J]. 环境与职业医学, 2003, 20(4): 316-316. |
JIANG K Y , WANG A H , DENG Z P . Monitoring of phosphine concentration in aluminum phosphate fumigation granary[J]. Environmental and Occupational Medicine, 2003, 20(4): 316-316. | |
69 | 张建中, 陈发明, 叶青, 等 . 烟草熏蒸过程中仓库内外环境磷化氢浓度检测[J]. 中国预防医学杂志, 2011(6): 528-531. |
ZHANG J Z , CHEN F M , YE Q , et al . Air phosphine concentration of aluminum phosphide fumigated warehouse[J]. Chinese Preventive Medicine, 2011(6): 528-531. | |
70 | 贾晖, 高金平 . 微电子产品生产的职业危害及控制初探[J]. 职业卫生与应急救援, 2004, 22(3): 118-120. |
JIA H , GAO J P . Investigation on characteristics of occupational hazards and control measures in microelectronics products manufacturing[J]. Occupational Health and Emergency Rescue, 2004, 22(3): 118-120. | |
71 | GLINDEMANN D , BERGMANN A , STOTTMEISTER U , et al . Phosphine in the lower terrestrial troposphere[J]. Naturwissenschaften, 1996, 83: 131-133. |
72 | GLINDEMANN D , EDWARDS M , KUSCHK P . Phosphine gas in the upper troposphere[J]. Atmos. Environ., 2003, 37: 2429-2433. |
73 | 王谨丰 . 华南地区典型水稻土中磷化氢的分布与细菌群落的关系及其影响研究[D]. 广州: 华南理工大学, 2015. |
WANG J F . An investigaton of the relationship and effects between phosphine distribution and bacterial communities in typical paddy soil of South China[D]. Guangzhou: South China University of Technology, 2015. | |
74 | YU Z M , SONG X X . Matrix-bound phosphine: a new form of phosphorus found in sediment of Jiaozhou Bay[J]. Chinese Science Bull , 2003, 48(1): 31-35. |
75 | ZHU R B , KONG D M , SUN L G , et al . Tropospheric phosphine and its sources in coastal antarctica[J]. Environmental Science & Technology, 2006, 40(24): 7656-61. |
76 | 冯志华 . 海洋沉积物中磷化氢的分布、释放与转化研究 [D]. 青岛: 中国科学院研究生院(海洋研究所), 2008. |
FENG Z H . Study on the distribution characteristics, release process and transformation mechanism of MBP in marine sediments[D]. Qingdao: Graduate School of the Chinese Academy of Sciences (Ocean Institute) , 2008. | |
77 | 耿金菊, 王强, 牛晓君, 等 . 环境因子对湖泊沉积物中吸附态磷化氢生成和释放的影响[J]. 环境科学学报, 2005, 25(5): 681-685. |
GENG J J , WANG Q , NIU X J , et al . Effects of environmental factors on the production and release of matrix bound phosphine from lake sediments[J]. Journal of Environmental Science, 2005, 25(5): 681-685. | |
78 | SONG X X , MORRISON R J , FENG Z H , et al . Matrix-bound phosphine in sediments from Lake Illawarra, New South Wales, Australia[J]. Marine Pollution Bulletin, 2011, 62(8): 1744-1750. |
79 | 瞿广飞, 宁平, 李军燕, 等 . 钯离子液相催化氧化低浓度磷化氢[J]. 化工环保, 2008, 28(2): 102-105. |
QU G F , NING P , LI J Y , et al . Palladium ion liquid phase catalytic oxidation of low concentration phosphine[J]. Chemical Environmental Protection, 2008, 28(2): 102-105. | |
80 | WANG X Q , NING P , SHI Y , et al . Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 588-593. |
81 | LI S , LI K , HAO J M , et al . Acid modified mesoporous Cu/SBA-15 for simultaneous adsorption/oxidation of hydrogen sulfide and phosphine[J]. Chemical Engineering Journal, 2016, 302: 69-76. |
82 | 程建忠, 张英喆, 张宝贵 . 次磷酸钠生产过程中磷化氢尾气处理技术的研究[J]. 南开大学学报(自然科学版), 2001, 34(2): 31-34. |
CHENG J Z , ZHANG Y Z , ZHANG B G . Research on the treatment technology of hydrogen phosphate tail gas in the process of sodium hypophosphite production[J]. Journal of Central South University (Science and Technology), 2001, 34(2): 31-34. | |
83 | 周涛, 黄小凤, 刘伟文, 等 . 氧化铈改性沸石制备及在磷化氢多相催化氧化中的应用[J]. 城市环境与城市生态, 2013(5): 24-27. |
ZHOU T , HUANG X F , LIU W W , et al . Preparation and application of CeO2-modifying zeolite for heterogeneous catalytic oxidation of PH3 [J]. Urban Environment & Urban Ecology, 2013(5): 24-27. | |
84 | 余琼粉, 易红宏, 唐晓龙, 等 . 磷化氢净化技术及其展望[J]. 环境科学与技术, 2009, 32(10): 87-91. |
YU Q F , YI H H , TANG X L , et al . Progress on phosphine control technology[J]. Environmental Science & Technology, 2009, 32(10): 87-91. | |
85 | 朱尔根·茨默门, 比得·穆尔, 温弗里得·利比格 . 从气体中特别是从乙炔气体中洗除磷化氢的方法: CN85105317 A[P]. 1986. |
JÜRGEN Z , BIED M , WINFRIED L . Method for washing phosphine from a gas, in particular from an acetylene gas: CN85105317 A[P]. 1986. | |
86 | 邓菁 . 微生物法去除一氧化碳气中磷化氢的研究[D]. 昆明: 昆明理工大学, 2010. |
DENG J . The study on biological removal the PH3 in the carbon monoxide[D]. Kunming: Kunming University of Science and Technology, 2010. | |
87 | 刘树根, 肖瑢, 王群超, 等 . 一种生物法净化磷化氢尾气的技术方法: CN201610830521.9[P]. 2016-09-19. |
LIU S G , XIAO R , WANG Q C , et al . Technical method for purifying phosphine tail gas by biological method: CN201610830521.9[P]. 2016-09-19. | |
88 | MANZANO M A , PERALES J A , SALES D ,et al . Using solar and ultraviolet light to degrade PCBs in sand and transformer oils[J]. Chemosphere, 2004, 57(7): 645-654. |
89 | 马梦苹, 尹绍东, 张来林, 等 . 不同条件对臭氧紫外灯降解粮库磷化氢熏蒸尾气速率的影响[J]. 粮食与饲料工业, 2015, 12(9): 17-20. |
MA M P, YIN S D , ZHANG L L , et al . Effects of different conditions on degradation rate of exhaust gas of phosphine fumigation of grain by ozone ultraviolet light[J]. Cereal and Feed Industry, 2015, 12(9): 17-20. |
[1] | 赵瑞, 张翼, 余学海, 史晓宏, 刘毅, 王鹏, 韩涛. 中试平台SCR低温催化剂测试与氨逃逸分布特征[J]. 化工进展, 2021, 40(8): 4610-4615. |
[2] | 刘树根, 任林, 苏福家, 董占能. 磷化氢生物净化体系的微生物特性及过程强化[J]. 化工进展, 2021, 40(7): 4055-4063. |
[3] | 王彦,左宁,姜媛媛,陈芳媛. 污泥生物炭中氮硫行为及环境效应研究进展[J]. 化工进展, 2020, 39(4): 1539-1549. |
[4] | 李山, 郝吉明, 李凯, 汤立红, 刘烨. 粗乙炔中H2S、PH3同时脱除技术研究进展[J]. 化工进展, 2015, 34(02): 534-541. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |