化工进展 ›› 2024, Vol. 43 ›› Issue (9): 4909-4924.DOI: 10.16085/j.issn.1000-6613.2023-1440
• 工业催化 • 上一篇
刘振涛(), 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙()
收稿日期:
2023-08-18
修回日期:
2023-10-31
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
王喜龙
作者简介:
刘振涛(2000—),男,博士研究生,研究方向为清洁油品催化剂制备。E-mail:liuzhentao1222@163.com。
基金资助:
LIU Zhentao(), MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong()
Received:
2023-08-18
Revised:
2023-10-31
Online:
2024-09-15
Published:
2024-09-30
Contact:
WANG Xilong
摘要:
与两步法制航煤相比,一步法生产过程具有成本低、反应步骤简单、能源消耗低等优点。一步法高效制航空煤油的关键是催化剂的选择,催化剂需要同时具有加氢脱氧、异构和选择性裂化等性能。本文阐述了近年来植物油一步加氢制航煤双功能催化剂的选择与制备,并介绍了双功能催化剂中酸中心与金属中心对反应的贡献。具有十元环孔道的微孔分子筛具有独特的异构烃选择性,但与介孔分子筛相比,反应物与产物分子扩散阻力较大,因此合成分级孔分子筛或介微孔复合分子筛是未来催化剂载体的较优选择。同时探讨了活性金属对催化反应活性的影响,与贵金属催化剂相比,双金属、过渡金属、过渡金属硫化物与过渡金属磷化物表现出优异性能的同时可以降低成本。最后探讨了催化剂的制备方法对活性物种分散度的影响,高分散的过渡金属催化剂在反应过程中显示出更高的反应活性。
中图分类号:
刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924.
LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924.
编号 | 催化剂 | 拓扑结构 | 反应物 | 产物收率/% | 异正比 | 参考文献 |
---|---|---|---|---|---|---|
1 | Ni/ZSM-5 | MFI | 油酸 | 1.7 | [ | |
2 | Pt/SAPO-11 | AEL | 麻风树油 | 0.75 | [ | |
3 | NiMo/USY@Al-SBA-15 | — | 废食用油 | 2.7 | [ | |
4 | Ni/modified β | BEA | 棕榈油 | 2.61 | [ | |
5 | Ni/Meso-Y | FAU | 微藻油 | 0.87 | [ | |
6 | Ni/Meso-Y | FAU | 废食用油 | — | [ | |
7 | NiAg/SAPO-11 | AEL | 蓖麻油 | 6.8 | [ | |
8 | Ni/γ-Al2O3 | — | 油酸 | 2.7 | [ | |
9 | Pt/ZSM-22 | TON | 小桐子油脱氧产物 | 7.55 | [ | |
10 | Ni/SAPO-34 | CHA | 棕榈油 | — | [ |
表1 植物油加氢制航煤催化剂
编号 | 催化剂 | 拓扑结构 | 反应物 | 产物收率/% | 异正比 | 参考文献 |
---|---|---|---|---|---|---|
1 | Ni/ZSM-5 | MFI | 油酸 | 1.7 | [ | |
2 | Pt/SAPO-11 | AEL | 麻风树油 | 0.75 | [ | |
3 | NiMo/USY@Al-SBA-15 | — | 废食用油 | 2.7 | [ | |
4 | Ni/modified β | BEA | 棕榈油 | 2.61 | [ | |
5 | Ni/Meso-Y | FAU | 微藻油 | 0.87 | [ | |
6 | Ni/Meso-Y | FAU | 废食用油 | — | [ | |
7 | NiAg/SAPO-11 | AEL | 蓖麻油 | 6.8 | [ | |
8 | Ni/γ-Al2O3 | — | 油酸 | 2.7 | [ | |
9 | Pt/ZSM-22 | TON | 小桐子油脱氧产物 | 7.55 | [ | |
10 | Ni/SAPO-34 | CHA | 棕榈油 | — | [ |
项目 | 尺寸/nm |
---|---|
直链烷烃 | 0.45 |
单支链烷烃 | 0.58~0.6 |
双支链烷烃 | 0.61~0.63 |
三支链烷烃 | 0.65 |
八元环(菱沸石) | 0.38×0.38 |
十元环(ZSM-22) | 0.45×0.54 |
十二元环(Y) | 0.74×0.74 |
表2 烷烃分子及分子筛孔道尺寸[54]
项目 | 尺寸/nm |
---|---|
直链烷烃 | 0.45 |
单支链烷烃 | 0.58~0.6 |
双支链烷烃 | 0.61~0.63 |
三支链烷烃 | 0.65 |
八元环(菱沸石) | 0.38×0.38 |
十元环(ZSM-22) | 0.45×0.54 |
十二元环(Y) | 0.74×0.74 |
1 | ZHANG Chi, HUI Xin, LIN Yuzhen, et al. Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 120-138. |
2 | WEI Hongjian, LIU Wenzhi, CHEN Xinyu, et al. Renewable bio-jet fuel production for aviation: A review[J]. Fuel, 2019, 254: 115599. |
3 | ZHANG Yajing, BI Peiyan, WANG Jicong, et al. Production of jet and diesel biofuels from renewable lignocellulosic biomass[J]. Applied Energy, 2015, 150: 128-137. |
4 | Mathias SNÅRE, Iva KUBIČKOVÁ, Päivi MÄKI-ARVELA, et al. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel[J]. Industrial & Engineering Chemistry Research, 2006, 45(16): 5708-5715. |
5 | HSU Hsin-Wei, CHANG Yu-Hsuan, WANG Weicheng. Techno-economic analysis of used cooking oil to jet fuel production under uncertainty through three-, two-, and one-step conversion processes[J]. Journal of Cleaner Production, 2021, 289: 125778. |
6 | LIN Chenghan, WANG Weicheng. Direct conversion of glyceride-based oil into renewable jet fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110109. |
7 | Elaine Siew Kuan WHY, Hwai Chyuan ONG, LEE Hwei Voon, et al. Renewable aviation fuel by advanced hydroprocessing of biomass: Challenges and perspective[J]. Energy Conversion and Management, 2019, 199: 112015. |
8 | DÍAZ-PÉREZ Manuel Antonio, SERRANO-RUIZ Juan Carlos. Catalytic production of jet fuels from biomass[J]. Molecules, 2020, 25(4): 802. |
9 | LIU Siyang, ZHU Qingqing, GUAN Qingxin, et al. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts[J]. Bioresource Technology, 2015, 183: 93-100. |
10 | CHOI Il-Ho, HWANG Kyung-Ran, HAN Jeong-Sik, et al. The direct production of jet-fuel from non-edible oil in a single-step process[J]. Fuel, 2015, 158: 98-104. |
11 | LI Tao, CHENG Jun, HUANG Rui, et al. Hydrocracking of palm oil to jet biofuel over different zeolites[J]. International Journal of Hydrogen Energy, 2016, 41(47): 21883-21887. |
12 | LI Tao, CHENG Jun, HUANG Rui, et al. Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst[J]. Bioresource Technology, 2015, 197: 289-294. |
13 | CHINTAKANAN Pachara, VITIDSANT Tharapong, REUBROYCHAROEN Prasert, et al. Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends[J]. Fuel, 2021, 293: 120472. |
14 | CHENG Jun, ZHANG Ze, ZHANG Xi, et al. Sulfonated mesoporous Y zeolite with nickel to catalyze hydrocracking of microalgae biodiesel into jet fuel range hydrocarbons[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1650-1658. |
15 | RABAEV Moshe, LANDAU Miron V, Roxana VIDRUK-NEHEMYA, et al. Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics[J]. Fuel, 2015, 161: 287-294. |
16 | JEONG Hwiram, BATHULA Hari Babu, KIM Tae Wan, et al. Superior long-term stability of a mesoporous alumina-supported Pt catalyst in the hydrodeoxygenation of palm oil[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1193-1202. |
17 | KIM Myoung Yeob, KIM Jae-Kon, LEE Mi-Eun, et al. Maximizing biojet fuel production from triglyceride: Importance of the hydrocracking catalyst and separate deoxygenation/hydrocracking steps[J]. ACS Catalysis, 2017, 7(9): 6256-6267. |
18 | Jackson Hwa Keen LIM, GAN Yongyang, Hwai Chyuan ONG, et al. Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111396. |
19 | 任申勇, 黄志岗, 孙华阳, 等. 通过调变SAPO-11的孔道和酸性制备高选择性加氢裂化/异构化催化剂[J]. 分子催化, 2022, 36(6): 534-546. |
REN Shenyong, HUANG Zhigang, SUN Huayang, et al. Preparation of highly selective hydrocracking/hydroisomerization catalyst for n-hexadecane by tuning porosity and acidity of SAPO-11[J]. Journal of Molecular Catalysis (China), 2022, 36(6): 534-546. | |
20 | 焦凡凡, 毛以朝, 龙湘云, 等. 钾改性Beta分子筛Brönsted酸性能对十氢萘加氢异构化及加氢裂化反应的影响[J]. 石油学报(石油加工), 2022, 38(4): 760-770. |
JIAO Fanfan, MAO Yichao, LONG Xiangyun, et al. Effect of various Brönsted acidity of the beta zeolite modified by K+ on hydro-isomerization and hydrocracking of decalin[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(4): 760-770. | |
21 | FENG Fuxiang, NIU Xiaopo, WANG Li, et al. TEOS-modified Ni/ZSM-5 nanosheet catalysts for hydroconversion of oleic acid to high-performance aviation fuel: Effect of acid spatial distribution[J]. Microporous and Mesoporous Materials, 2020, 291: 109705. |
22 | LI Xingyong, CHEN Yubao, HAO Yajie, et al. Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology[J]. Renewable Energy, 2019, 139: 551-559. |
23 | ZHANG Zongwei, WANG Qingfa, CHEN Hao, et al. Hydroconversion of waste cooking oil into bio-jet fuel over a hierarchical NiMo/USY@Al-SBA-15 zeolite[J]. Chemical Engineering & Technology, 2018, 41(3): 590-597. |
24 | WARODOM Hunsiri, NICHABOON Chaihad, CHAWALIT Ngamcharussrivichai, et al. Branched-chain biofuels derived from hydroisomerization of palm olein using Ni/modified beta zeolite catalysts for biojet fuel production[J]. Fuel Processing Technology, 2023, 248: 107825. |
25 | CHENG Jun, ZHANG Ze, ZHANG Xi, et al. Continuous hydroprocessing of microalgae biodiesel to jet fuel range hydrocarbons promoted by Ni/hierarchical mesoporous Y zeolite catalyst[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11765-11773. |
26 | FENG Fuxiang, SHANG Zeyu, WANG Li, et al. Structure-sensitive hydro-conversion of oleic acid to aviation-fuel-range-alkanes over alumina-supported nickel catalyst[J]. Catalysis Communications, 2020, 134: 105842. |
27 | 韩京京, 谭涓, 刘靖, 等. 小晶粒ZSM-22的可控合成及其催化长链正构生物烷烃制航空煤油性能[J]. 化工进展, 2022, 41(4): 1916-1924. |
HAN Jingjing, TAN Juan, LIU Jing, et al. Controllable synthesis of small size ZSM-22 zeolites and their performance in the production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1916-1924. | |
28 | RESTREPO-GARCIA Jonatan R, Diana GOMORA-HERRERA, Pablo TORRES-MANCERA, et al. Hydro-co-processing of a jatropha oil and gas oil blend with a sulfided Ni-W catalyst supported on mesostructured materials Al(x)-SBA-15 type for cleaner hybrid diesel production: Effect of the Al/Si molar ratio[J]. Fuel, 2023, 351: 128890. |
29 | HAO Nanjing, TANG Fangqiong, LI Laifeng. MCM-41 mesoporous silica sheet with ordered perpendicular nanochannels for protein delivery and the assembly of Ag nanoparticles in catalytic applications[J]. Microporous and Mesoporous Materials, 2015, 218: 223-227. |
30 | DU Xiangze, LI Dan, XIN Hui, et al. The conversion of jatropha oil into jet fuel on NiMo/Al-MCM-41 catalyst: Intrinsic synergic effects between Ni and Mo[J]. Energy Technology, 2019, 7(5): 1800809. |
31 | ZOU Yutong, XIAO Chengkun, LI Dongze, et al. Dendritic micro-mesoporous composites via nano-assembly strategy towards high-efficiency catalysts for hydrodesulfurization of dibenzothiophenes[J]. Journal of Catalysis, 2023, 427: 115092. |
32 | LEI Xiaomei, DU Xiangze, XIN Hui, et al. Chemical-switching strategy for the production of green biofuel on NiCo/MCM-41 catalysts by tuning atmosphere [J]. Fuel, 2022, 315: 123118. |
33 | LAHIJANI Pooya, MOHAMMADI Maedeh, MOHAMED Abdul Rahman, et al. Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: A review of recent progress[J]. Energy Conversion and Management, 2022, 268: 115956. |
34 | WANG Tinghu, ZHANG Wenjing, LI Yuzhi, et al. Quantitative synergy between metal and acid centers over the Ni/Beta bifunctional catalyst for methyl laurate hydrodeoxygenation to bio-jet fuel[J]. Fuel Processing Technology, 2023, 241: 107602. |
35 | WANG Wuyu, ZHANG Xinghua, JIANG Zhenjing, et al. Controllably produce renewable jet fuel with high-density and low-freezing points from lignocellulose-derived cyclopentanone[J]. Fuel, 2022, 321: 124114. |
36 | ZHANG Jimei, SHI Yanchun, CAO Hongbin, et al. Conversion of palmitic acid to jet fuel components over Mo/H-ZSM-22 bi-functional catalysts with high carbon reservation[J]. Applied Catalysis A: General, 2020, 608: 117847. |
37 | SHAHINUZZAMAN M, YAAKOB Zahira, AHMED Yunus. Non-sulphide zeolite catalyst for bio-jet-fuel conversion[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 1375-1384. |
38 | GALADIMA Ahmad, MASUDI Ahmad, MURAZA Oki. Towards sustainable catalysts in hydrodeoxygenation of algae-derived oils: A critical review[J]. Molecular Catalysis, 2022, 523: 112131. |
39 | CHEN Liangguang, LI Huiwen, FU Junying, et al. Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst[J]. Catalysis Today, 2016, 259: 266-276. |
40 | SEYED MOUSAVI Seyed Amir Hossein, SADRAMELI Seyed Mojtaba, SAEEDI DEHAGHANI Amir Hossein. Catalytic pyrolysis of municipal plastic waste over nano MIL-53 (Cu) derived@zeolite Y for gasoline, jet fuel, and diesel range fuel production[J]. Process Safety and Environmental Protection, 2022, 164: 449-467. |
41 | 李涛, 张青程. 微藻油脂一步联产航空煤油范围正构烷烃和芳烃[J]. 中国油脂, 2021, 46(7): 64-68. |
LI Tao, ZHANG Qingcheng. One step co-production of jet fuel range n-alkanes and aromatic hydrocarbons from microalgal lipids[J]. China Oils and Fats, 2021, 46(7): 64-68. | |
42 | WANG Zijian, ZHANG Rongxin, WANG Jieguang, et al. Hierarchical zeolites obtained by alkaline treatment for enhanced n-pentane catalytic cracking[J]. Fuel, 2022, 313: 122669. |
43 | ZHANG Minhua, QIN Yunan, JIANG Haoxi, et al. Protective desilication of β zeolite: A mechanism study and its application in ethanol-acetaldehyde to 1,3-butadiene[J]. Microporous and Mesoporous Materials, 2021, 326: 111359. |
44 | WANG Yu, WANG Pu, LU Xuefeng, et al. Construction of mesoporous Ru@ZSM-5 catalyst for dichloromethane degradation: Synergy between acidic sites and redox centres[J]. Fuel, 2023, 346: 128337. |
45 | ZHENG Yixuan, NING Weiwei, WANG Quanhua, et al. Hierarchical ZSM-5 zeolite using amino acid as template: Avoiding phase separation and fabricating an ultra-small mesoporous structure[J]. Microporous and Mesoporous Materials, 2023, 355: 112578. |
46 | WANG Shuai, JIANG Xiaoqing, NIE Genkuo, et al. Trash into treasure: Nano ZSM-5 catalyst for cracking waste cooking oil to bio-gasoline with enhanced selectivity[J]. Fuel Processing Technology, 2023, 242: 107666. |
47 | HAGHIGHI Maryam, BAKHSHI Soodabeh, Somayeh GOONEH-FARAHANI. Enhanced catalytic cracking of tetradecane over nano-structure porous ZSM-5 and ZSM-11 catalysts[J]. Materials Science and Engineering: B, 2021, 263: 114894. |
48 | ANIS Shaheen Fatima, SINGARAVEL Gnanapragasam, HASHAIKEH Raed. NiW/nano zeolite Y catalysts for n-heptane hydrocracking[J]. Materials Chemistry and Physics, 2018, 212: 87-94. |
49 | IKUNO Takaaki, CHAIKITTISILP Watcharop, LIU Zhendong, et al. Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process[J]. Journal of the American Chemical Society, 2015, 137(45): 14533-14544. |
50 | Manal AL-EID, DING Lianhui, SALEEM Qasim, et al. A facile method to synthesize hierarchical nano-sized zeolite beta[J]. Microporous and Mesoporous Materials, 2019, 279: 99-106. |
51 | BOSNAR Sanja, Vladislav RAC, Dušan STOŠIĆ, et al. Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study[J]. Microporous and Mesoporous Materials, 2022, 329: 111534. |
52 | ZHANG Miao, CHEN Yujing, WANG Lei, et al. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6069-6078. |
53 | LI Yi, SUN Junhao, WEI Jie, et al. Cascade hydrogenation of n-C16 to produce jet fuel over tandem catalysts of modified ZSM-22[J]. Journal of Industrial and Engineering Chemistry, 2022, 111: 88-97. |
54 | Federico JIMÉNEZ-CRUZ, LAREDO Georgina C. Molecular size evaluation of linear and branched paraffins from the gasoline pool by DFT quantum chemical calculations[J]. Fuel, 2004, 83(16): 2183-2188. |
55 | LI Xingyong, FAN Qiyuan, WU Yankun, et al. Enhancing hydrodeoxygenation-isomerization of FAME over M-SAPO-11 in one-step process: Effect of in situ isomorphic substitution of transition metals and synergy of Pt x Sn y alloy[J]. Chemical Engineering Journal, 2023, 452: 139528. |
56 | LI Xingyong, WANG Qi, CHEN Jinlei, et al. One-step hydrotreatment of inedible oil for production the second-generation biofuel over Pt-Sn/SAPO-11 catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105121. |
57 | XING Guanhua, LIU Siyang, GUAN Qingxin, et al. Investigation on hydroisomerization and hydrocracking of C15—C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel[J]. Catalysis Today, 2019, 330: 109-116. |
58 | Päivi MÄKI-ARVELA, Mark MARTÍNEZ-KLIMOV, MURZIN Dmitry Yu. Hydroconversion of fatty acids and vegetable oils for production of jet fuels[J]. Fuel, 2021, 306: 121673. |
59 | CHEN Ning, REN Yuxiong, QIAN Eika W. Elucidation of the active phase in PtSn/SAPO-11 for hydrodeoxygenation of methyl palmitate[J]. Journal of Catalysis, 2016, 334: 79-88. |
60 | 刘晓龙, 王珉鑫, 马靖烨, 等. 介孔Pt/La@SAPO-11催化油酸脱羧制备C8~C17烷烃的研究[J]. 现代化工, 2022, 42(12): 154-160. |
LIU Xiaolong, WANG Minxin, MA Jingye, et al. Study on mesoporous Pt/La@SAPO-11 catalyst for decarboxylation of oleic acid to C8—C17 alkanes[J]. Modern Chemical Industry, 2022, 42(12): 154-160. | |
61 | 郝亚杰, 陈玉保, 刘强, 等. Pt/SAPO-11催化麻疯树油一步加氢制备生物航空煤油工艺条件的研究[J]. 中国油脂, 2017, 42(6): 110-114. |
HAO Yajie, CHEN Yubao, LIU Qiang, et al. Preparation of biological aviation kerosene from Jatropha curcas oil by one-step hydrogenation with Pt/SAPO-11 as catalyst[J]. China Oils and Fats, 2017, 42(6): 110-114. | |
62 | 张文杰, 陈玉保, 刘莹, 等. Pt-La/SAPO-11催化剂一步加氢制备航空煤油及其反应过程探究[J]. 林产化学与工业, 2021, 41(5): 65-71. |
ZHANG Wenjie, CHEN Yubao, LIU Ying, et al. One-step hydrogenation of castor oil catalyzed by Pt-La/SAPO-11 catalyst for preparing of aviation kerosene[J]. Chemistry and Industry of Forest Products, 2021, 41(5): 65-71. | |
63 | CHEN Ning, GONG Shaofeng, SHIRAI Hisakazu, et al. Effects of Si/Al ratio and Pt loading on Pt/SAPO-11 catalysts in hydroconversion of Jatropha oil[J]. Applied Catalysis A: General, 2013, 466: 105-115. |
64 | CHEN Yukai, HSIEH Chung-Hung, WANG Weicheng. The production of renewable aviation fuel from waste cooking oil. Part Ⅱ: Catalytic hydro-cracking/isomerization of hydro-processed alkanes into jet fuel range products[J]. Renewable Energy, 2020, 157: 731-740. |
65 | ZHAO Xianhui, WEI Lin, CHENG Shouyun, et al. Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels[J]. Catalysts, 2017, 7: 83. |
66 | BAGHERI Samira, JULKAPLI Nurhidayatullaili Muhd, HAMID Sharifah Bee Abd. Titanium dioxide as a catalyst support in heterogeneous catalysis[J]. The Scientific World Journal, 2014, 2014: 727496. |
67 | WANG Meng, HE Mingli, FANG Yunming, et al. The Ni-Mo/γ-Al2O3 catalyzed hydrodeoxygenation of FAME to aviation fuel[J]. Catalysis Communications, 2017, 100: 237-241. |
68 | ITTHIBENCHAPONG Vorranutch, SRIFA Atthapon, KAEWMEESRI Rungnapa, et al. Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts[J]. Energy Conversion and Management, 2017, 134: 188-196. |
69 | Alattin ÇAKAN, KIREN Burcu, AYAS Nezihe. Hydrodeoxygenation of safflower oil over cobalt-doped metal oxide catalysts for bio-aviation fuel production[J]. Molecular Catalysis, 2023, 546: 113219. |
70 | 胡心悦, 陈平, 刘学军, 等. 正构生物烷烃在Pt/ZSM-5催化剂上选择性加氢裂化制备液体生物燃料[J]. 化工进展, 2015, 34(4): 1007-1013. |
HU Xinyue, CHEN Ping, LIU Xuejun, et al. Production of liquid biofuels: Normal bio-alkane selective hydrocracking over Pt/ZSM-5 catalysts[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 1007-1013. | |
71 | NIU Xiaopo, ZHAO Rong, HAN Yunxi, et al. Highly dispersed platinum clusters anchored on hollow ZSM-5 zeolite for deep hydrogenation of polycyclic aromatic hydrocarbons[J]. Fuel, 2022, 326: 125021. |
72 | TIAN Yajie, GUO Longhui, QIAO Congzhen, et al. Dynamics-driven tailoring of sub-nanometric Pt-Ni bimetals confined in hierarchical zeolite for catalytic hydrodeoxygenation[J]. Applied Catalysis B: Environmental, 2023, 336: 122945. |
73 | ZHANG Chunfei, ZHANG Zongwei, CHEN Hao, et al. Tuning hierarchical ZSM-5 for green jet fuel production from soybean oil via control of Pt location and grafted TPABr content[J]. Catalysis Communications, 2021, 155: 106288. |
74 | YANG Huiru, DU Xiangze, LEI Xiaomei, et al. Unraveling enhanced activity and coke resistance of Pt-based catalyst in bio-aviation fuel refining[J]. Applied Energy, 2021, 301: 117469. |
75 | DENG Qiang, PENG Honggen, YANG Zhenzhen, et al. A one-pot synthesis of high-density biofuels through bifunctional mesoporous zeolite-encapsulated Pd catalysts[J]. Applied Catalysis B: Environmental, 2023, 337: 122982. |
76 | CHEN Yubao, LI Xingyong, LIU Shijie, et al. Effects of metal promoters on one-step Pt/SAPO-11 catalytic hydrotreatment of castor oil to C8—C16 alkanes[J]. Industrial Crops and Products, 2020, 146: 112182. |
77 | SRIFA Atthapon, FAUNGNAWAKIJ Kajornsak, ITTHIBENCHAPONG Vorranutch, et al. Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel[J]. Chemical Engineering Journal, 2015, 278: 249-258. |
78 | ZHU Yanxia, ZHANG Ze, CHENG Jun, et al. Ni-BTC metal-organic framework loaded on MCM-41 to promote hydrodeoxygenation and hydrocracking in jet biofuel production[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3898-3908. |
79 | KHAN Saima, QURESHI Khan Muhammad, Andrew Ng KAY LUP, et al. Role of Ni-Fe/ZSM-5/SAPO-11 bifunctional catalyst on hydrodeoxygenation of palm oil and triolein for alternative jet fuel production[J]. Biomass and Bioenergy, 2022, 164: 106563. |
80 | COUMANS A E, HENSEN E J M. A real support effect on the hydrodeoxygenation of methyl oleate by sulfided NiMo catalysts[J]. Catalysis Today, 2017, 298: 181-189. |
81 | VERMA Deepak, RANA Bharat Singh, KUMAR Rohit, et al. Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11[J]. Applied Catalysis A: General, 2015, 490: 108-116. |
82 | SHARMA R K, ANAND M, RANA B S, et al. Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts[J]. Catalysis Today, 2012, 198(1): 314-320. |
83 | TIWARI Rashmi, RANA Bharat S, KUMAR Rohit, et al. Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures[J]. Catalysis Communications, 2011, 12(6): 559-562. |
84 | ANAND Mohit, FAROOQUI Saleem Akthar, KUMAR Rakesh, et al. Kinetics, thermodynamics and mechanisms for hydroprocessing of renewable oils[J]. Applied Catalysis A: General, 2016, 516: 144-152. |
85 | 王安杰, 王瑶, 遇治权, 等. 生物质油提质加氢脱氧催化剂研究进展[J]. 大连理工大学学报, 2016, 56(3): 321-330. |
WANG Anjie, WANG Yao, YU Zhiquan, et al. Advances in hydrodeoxygenation catalysts for upgrading bio-oils[J]. Journal of Dalian University of Technology, 2016, 56(3): 321-330. | |
86 | GOLUBEVA M A, ZAKHARYAN E M, MAXIMOV A L. Transition metal phosphides (Ni, Co, Mo, W) for hydrodeoxygenation of biorefinery products (a review)[J]. Petroleum Chemistry, 2020, 60(10): 1109-1128. |
87 | TOPALIAN Peter J, CARRILLO Bo A, COCHRAN Paul M, et al. Synthesis and hydrodesulfurization properties of silica-supported nickel-ruthenium phosphide catalysts[J]. Journal of Catalysis, 2021, 403: 173-180. |
88 | HU Di, LI Huiping, MEI Jinlin, et al. Ultrasmall particle sizes of walnut-like mesoporous silica nanospheres with unique large pores and tunable acidity for hydrogenating reaction[J]. Small, 2020, 16(29): e2002091. |
89 | SHAMANAEV Ivan V, SUVOROVA Anna O, GERASIMOV Evgeny Yu, et al. SRGO hydrotreating over Ni-phosphide catalysts on granulated Al2O3 [J]. Catalysis Today, 2021, 378: 24-32. |
90 | SHAMANAEV Ivan V, VLASOVA Evgenia N, SCHERBAKOVA Anastasia M, et al. Hydroconversion of methyl palmitate over Ni-phosphide catalysts on SAPO-11 and ZSM-5 composite supports[J]. Microporous and Mesoporous Materials, 2023, 359: 112667. |
91 | ROMERO Douglas E, RIGUTTO Marcello, HENSEN Emiel J M. Influence of the size, order and topology of mesopores in bifunctional Pd-containing acidic SBA-15 and M41S catalysts for n-hexadecane hydrocracking[J]. Fuel Processing Technology, 2022, 232: 107259. |
92 | TAN Qihang, CAO Yang, LI Jin. Prepared multifunctional catalyst Ni2P/Zr-SBA-15 and catalyzed Jatropha Oil to produce bio-aviation fuel[J]. Renewable Energy, 2020, 150: 370-381. |
93 | ZHANG Jingjing, ZHAO Chen. Development of a bimetallic Pd-Ni/HZSM-5 catalyst for the tandem limonene dehydrogenation and fatty acid deoxygenation to alkanes and arenes for use as biojet fuel[J]. ACS Catalysis, 2016, 6(7): 4512-4525. |
94 | 陈信华. 浸渍法制备活性组份不均匀分布催化剂的参数分析[J]. 石油化工, 1992, 21(8): 557-562. |
CHEN Xinhua. Parameter analysis of catalyst with uneven distribution of active components prepared by impregnation method[J]. Petrochemical Technology, 1992, 21(8): 557-562. | |
95 | YAN Penghui, MENSAH Jim, ADESINA Adesoji, et al. Highly-dispersed Ni on BEA catalyst prepared by ion-exchange-deposition-precipitation for improved hydrodeoxygenation activity[J]. Applied Catalysis B: Environmental, 2020, 267: 118690. |
96 | SONG Wenji, LIU Yuanshuai, Eszter BARÁTH, et al. Synergistic effects of Ni and acid sites for hydrogenation and C—O bond cleavage of substituted phenols[J]. Green Chemistry, 2015, 17(2): 1204-1218. |
97 | NARES Rubén, Jorge RAMÍREZ, Aída GUTIÉRREZ-ALEJANDRE, et al. Ni/Hβ-zeolite catalysts prepared by deposition-precipitation[J]. The Journal of Physical Chemistry B, 2002, 106(51): 13287-13293. |
98 | LIU Jiaojiao, ZHANG Huifang, LU Ningyue, et al. Influence of acidity of mesoporous ZSM-5-supported Pt on naphthalene hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1056-1064. |
99 | YANG Lingmei, XING Shiyou, SUN Hongzhe, et al. Citric-acid-induced mesoporous SAPO-11 loaded with highly dispersed nickel for enhanced hydroisomerization of oleic acid to iso-alkanes[J]. Fuel Processing Technology, 2019, 187: 52-62. |
100 | ABUBAKAR Umar C, ALHOOSHANI Khalid R, SALEH Tawfik A. Effect of ultrasonication and chelating agents on the dispersion of NiMo catalysts on carbon for Hydrodesulphurization[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103811. |
101 | SUÁREZ-TORIELLO V A, SANTOLALLA-VARGAS C E, DE LOS REYES J A, et al. Influence of the solution pH in impregnation with citric acid and activity of Ni/W/Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2015, 404/405: 36-46. |
102 | YANG Lingmei, LUO Wen, LI Hui wen, et al. Catalytic oleic acid hydrotreating to bio-aviation fuel over highly dispersed Ni/SAPO-11 catalysts prepared by citric acid and ethylene glycol co-assistance impregnation[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107220. |
103 | CAO Chongjiang, YANG Guang, DUBAU Laetitia, et al. Highly dispersed Pt/C catalysts prepared by the charge enhanced dry impregnation method[J]. Applied Catalysis B: Environmental, 2014, 150/151: 101-106. |
104 | WONG A, LIU Q, GRIFFIN S, et al. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports[J]. Science, 2017, 358(6369): 1427-1430. |
105 | ZHU Xiaoru, CHO Hye-ran, PASUPONG Malini, et al. Charge-enhanced dry impregnation: A simple way to improve the preparation of supported metal catalysts[J]. ACS Catalysis, 2013, 3(4): 625-630. |
[1] | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2 促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7): 3824-3833. |
[2] | 蓝瑞嵩, 刘丽华, 张倩, 陈博彦, 洪俊明. 硫掺杂石墨烯作为MFC阴极性能和生物毒性检测[J]. 化工进展, 2024, 43(6): 3430-3439. |
[3] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
[4] | 何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050. |
[5] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[6] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[7] | 陈昊, 张传浩, 于峰, 范彬彬, 李瑞丰. Y型沸石在异丁醇齐聚反应中的催化性能[J]. 化工进展, 2023, 42(2): 794-802. |
[8] | 薛马晨, 杨伯伦, 夏春谷, 朱刚利. 乙醇缩合制高碳醇(C6+醇)多相催化剂研究进展[J]. 化工进展, 2023, 42(1): 194-203. |
[9] | 石轩, 杨东元, 胡浩斌, 王焦飞, 张壮壮, 贺建勋, 代成义, 马晓迅. 苯与合成气在ZnAlCrO x &HZSM-5双功能催化剂上一步法制甲苯/二甲苯[J]. 化工进展, 2022, 41(S1): 247-259. |
[10] | 胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766. |
[11] | 张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172. |
[12] | 潘文政, 纪志永, 汪婧, 李淑明, 黄智辉, 郭小甫, 刘杰, 赵颖颖, 袁俊生. 微生物燃料电池处理偶氮含盐废水的产电性能和降解过程[J]. 化工进展, 2022, 41(6): 3306-3313. |
[13] | 刘畅, 刘忠文. CO2加氢一步制二甲醚展望[J]. 化工进展, 2022, 41(3): 1115-1120. |
[14] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
[15] | 简雅婷, 余强, 陈小燕, 王帆, 王忠铭, 袁振宏. 木质素制备生物液体燃料进展[J]. 化工进展, 2021, 40(S2): 109-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |