1 |
李春年. 渣油加工工艺[M]. 北京:中国石化出版社, 2002.
|
|
LI Chunnian. Residue processing technology[M]. Beijing: China Petrochemical Press, 2002.
|
2 |
张春光, 谭青峰, 张天琪, 等. 水滑石法制备渣油加氢催化剂[J]. 化工进展, 2018, 37(11): 4303-4307.
|
|
ZHANG Chunguang, TAN Qingfeng, ZHANG Tianqi, et al. Synthesis of residue-hydrotreating catalysts by hydrotalcite method[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4303-4307.
|
3 |
韩坤鹏, 戴立顺, 聂红. 固定床渣油加氢催化剂运转初期失活规律研究进展[J]. 化工进展, 2017, 36(S1): 211-220.
|
|
HAN Kunpeng, DAI Lishun, NIE Hong. Research progress on deactivation of fixed bed residue hydrogenating catalysts at the initial stage of operation[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 211-220.
|
4 |
DIK P P, DANILOVA I G, GOLUBEV I S, et al. Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties[J]. Fuel, 2019, 237: 178-190.
|
5 |
CUI Qingyan, MA Xiaoliang, NAKANO Koji, et al. Hydrotreating reactivities of atmospheric residues and correlation with their composition and properties[J]. Energy & Fuels, 2018, 32(6): 6726-6736.
|
6 |
赵日峰. 加氢裂化及渣油加氢技术进展与应用[M]. 北京:中国石化出版社, 2022.
|
|
ZHAO Rifeng. Progress and application of hydrocracking and residue hydrogenation technology[M]. Beijing: China Petrochemical Press, 2022.
|
7 |
彭冲, 曾榕辉, 吴子明, 等. 高效加氢裂化催化剂级配技术开发及应用[J]. 炼油技术与工程, 2016, 46(3): 49-51.
|
|
PENG Chong, ZENG Ronghui, WU Ziming, et al. Development and application of high-efficiency hydrocracking catalyst stacking technology[J]. Petroleum Refinery Engineering, 2016, 46(3): 49-51.
|
8 |
邵志才, 盛健安, 邓中活, 等. 高硫渣油加氢生产低硫重质船用燃料油组分技术开发与应用[J]. 石油炼制与化工, 2023, 54(4): 24-28.
|
|
SHAO Zhicai, SHENG Jian’an, DENG Zhonghuo, et al. Development and application of high sulfur residue hydrotreating technology for producing low sulfur heavy marine fuel components[J]. Petroleum Processing and Petrochemicals, 2023, 54(4): 24-28.
|
9 |
ZHU Huihong, MAO Zhiwei, LIU Bin, et al. Regulating catalyst morphology to boost the stability of Ni-Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating[J]. Green Energy & Environment, 2021, 6(2): 283-290.
|
10 |
CHEN W, NIE H, LONG X, et al. Role of pore structure on the activity and stability of sulfide catalyst[J]. Catalysis Today, 2021, 377: 69-81.
|
11 |
KOHLI K, PRAJAPATI R, MAITY Samir K, et al. Accelerated pre-coking of NiMo/γ-Al2O3 catalyst: Effect on the hydroprocessing activity of vacuum residue[J]. Fuel, 2019, 235: 437-447.
|
12 |
ZHANG Di, LIU Xin mei, LIU Yu xiang, et al. Impact of γ-alumina pore structure on structure and performance of Ni-Mo/γ-Al2O3 catalyst for 4,6-dimethyldibenzothiophene desulfurization[J]. Microporous and Mesoporous Materials, 2021, 310: 110637.
|
13 |
CHEN Xiao di, LI Xue gang, LI Hu, et al. Interaction between binder and high silica HZSM-5 zeolite for methanol to olefins reactions[J]. Chemical Engineering Science, 2018, 192: 1081-1090.
|
14 |
WHITING Gareth T, CHUNG Sang-Ho, STOSIC Dusan, et al. Multiscale mechanistic insights of shaped catalyst body formulations and their impact on catalytic properties[J]. ACS Catalysis, 2019, 9(6): 4792-4803.
|
15 |
WHITING Gareth T, NIKOLOPOULOS Nikolaos, NIKOLOPOULOS Ioannis, et al. Visualizing pore architecture and molecular transport boundaries in catalyst bodies with fluorescent nanoprobes[J]. Nature Chemistry, 2019, 11(1): 23-31.
|
16 |
YU Ke, KONG Weimin, ZHAO Zhen, et al. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo supported on yolk-shell silica catalysts with adjustable shell thickness and yolk size[J]. Journal of Catalysis, 2022, 410: 128-143.
|
17 |
LIU Bin, CHAI Yongming, LIU Yukang, et al. A simple method for preparation of presulfided eggshell CoMoS/γ-Al2O3 catalysts for hydrodesulfurization of dibenzothiophene[J]. Fuel, 2012, 95: 457-463.
|
18 |
JAMALEDIN Howeizi, SAEED Taghvaei-Ganjali, MERCEDEH Malekzadeh, et al. Effect of preparation parameters on properties and performance of Pd/Al2O3 catalyst in saturation of olefins[J]. Research on Chemical Intermediates, 2019, 45(5): 3165-3181.
|
19 |
MARYAM Takht Ravanchi, SHOKOUFEH Mehrazma, SAEED Sahebdelfar. An experimental investigation on effective parameters of batch impregnation systems: A case study on Pt-Sn/Al2O3 catalyst[J]. Applied Petrochemical Research, 2018, 8(1): 21-27.
|
20 |
LI Jingwei, DING Yunjie, LI Xianming, et al. New method for the preparation of nonuniform distributed Co/SiO2 catalysts[J]. Chemical Communications, 2008:(45): 5954-5956.
|
21 |
LIU Xue, KHINAST Johannes G, GLASSER Benjamin J. Drying of Ni/alumina catalysts: Control of the metal distribution using surfactants and the melt infiltration method[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 5792-5800.
|
22 |
JANG Min-Su, CHO Eui Hyun, Kee Young KOO, et al. Facile preparation of egg-shell-type pellet catalysts using immiscibility between hydrophobic solvent and hydrophilic solution: Enhancement of catalytic activity due to position control of metallic nickel inside alumina pellet[J]. Applied Catalysis A: General, 2017, 530: 211-216.
|
23 |
CHOWDARI Ramesh Kumar, DÍAZ DE LEÓN J Noé, Sergio FUENTES-MOYADO. Single step and template-free synthesis of Dandelion flower-like core-shell architectures of metal oxide microspheres: Influence of sulfidation on particle morphology & hydrodesulfurization performance[J]. Applied Catalysis B: Environmental, 2020, 277: 119213.
|
24 |
LIANG Jilei, WU Mengmeng, WEI Pinghe, et al. Efficient hydrodesulfurization catalysts derived from strandberg PMoNi polyoxometalates[J]. Journal of Catalysis, 2018, 358: 155-167.
|
25 |
CAO Jing, XIA Jing, ZHANG Yicen, et al. Influence of the alumina crystal phase on the performance of CoMo/Al2O3 catalysts for the selective hydrodesulfurization of fluid catalytic cracking naphtha[J]. Fuel, 2021, 289: 119843.
|
26 |
ZHANG Cen, BRORSON Michael, LI Ping, et al. CoMo/Al2O3 catalysts prepared by tailoring the surface properties of alumina for highly selective hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2019, 570: 84-95.
|
27 |
VATUTINA Yu V, KLIMOV O V, NADEINA K A, et al. Influence of boron addition to alumina support by kneading on morphology and activity of HDS catalysts[J]. Applied Catalysis B: Environmental, 2016, 199: 23-32.
|
28 |
LI Huifeng, LI Mingfeng, CHU Yang, et al. Effect of different preparation methods of MoO3/Al2O3 catalysts on the existing states of Mo species and hydrodesulfurization activity[J]. Fuel, 2014, 116: 168-174.
|
29 |
LI Huifeng, LI Mingfeng, NIE Hong. Tailoring the surface characteristic of alumina for preparation of highly active NiMo/Al2O3 hydrodesulfurization catalyst[J]. Microporous and Mesoporous Materials, 2014, 188: 30-36.
|
30 |
CATITA L, JOLIMAITRE E, A-A QUOINEAUD, et al. Mathematical modeling and magnetic resonance imaging experimental study of the impregnation step: A new tool to optimize the preparation of heterogeneous catalysts[J]. Microporous and Mesoporous Materials, 2021, 312: 110756.
|
31 |
LIU Xue, KHINAST Johannes G, GLASSER Benjamin J. A parametric investigation of impregnation and drying of supported catalysts[J]. Chemical Engineering Science, 2008, 63(18): 4517-4530.
|
32 |
张继光. 催化剂制备过程技术[M]. 3版. 北京:中国石化出版社, 2019.
|
|
ZHANG Jiguang. Catalyst preparation process technology[M]. 3rd ed. Beijing: China Petrochemical Press, 2019.
|
33 |
VAKROS John, LYCOURGHIOTIS Alexis, VOYIATZIS G A, et al. CoMo/Al2O3-SiO2 catalysts prepared by co-equilibrium deposition filtration: Characterization and catalytic behavior for the hydrodesulphurization of thiophene[J]. Applied Catalysis B: Environmental, 2010, 96(3/4): 496-507.
|
34 |
YUAN Hui, QIHERIMA, XU Guang tong, et al. Study of oxidic and sulfided selective hydrodesulfurization catalysts for gasoline using Raman spectroscopy[J]. Chinese Chemical Letters, 2013, 24(12): 1041-1044.
|
35 |
LIU Zhiwei, HAN Wei, HU Dawei, et al. Effects of Ni-Al2O3 interaction on NiMo/Al2O3 hydrodesulfurization catalysts[J]. Journal of Catalysis, 2020, 387: 62-72.
|
36 |
WANG Xilong, ZHAO Zhen, ZHENG Peng, et al. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2016, 344: 680-691.
|
37 |
NADEINA K A, KAZAKOV M O, DANILOVA I G, et al. The influence of B and P in the impregnating solution on the properties of NiMo/γ-δ-Al2O3 catalysts for VGO hydrotreating[J]. Catalysis Today, 2019, 329: 2-12.
|
38 |
HUANG Tingting, XU Jundong, FAN Yu. Effects of concentration and microstructure of active phases on the selective hydrodesulfurization performance of sulfided CoMo/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2018, 220: 42-56.
|