化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3709-3728.DOI: 10.16085/j.issn.1000-6613.2024-0047

• 专栏:热化学反应工程技术 • 上一篇    

微藻超临界水气化制取富氢合成气的研究进展

龚德成1,2(), 沈倩1,2, 朱贤青1,2(), 黄云1,2, 夏奡1,2, 张敬苗1,2, 朱恂1,2, 廖强1,2()   

  1. 1.重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400044
    2.重庆大学能源与动力工程学院,工程热物理研究所,重庆 400044
  • 收稿日期:2024-01-08 修回日期:2024-06-05 出版日期:2024-07-10 发布日期:2024-08-14
  • 通讯作者: 朱贤青,廖强
  • 作者简介:龚德成(1999—),男,硕士研究生,研究方向为微藻超临界水气化制氢。E-mail:dechenggong@cqu.edu.cn
  • 基金资助:
    国家自然科学基金创新研究群体项目(52021004);国家自然科学基金重点项目(52236009);重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX1025)

Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae

GONG Decheng1,2(), SHEN Qian1,2, ZHU Xianqing1,2(), HUANG Yun1,2, XIA Ao1,2, ZHANG Jingmiao1,2, ZHU Xun1,2, LIAO Qiang1,2()   

  1. 1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
    2.Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
  • Received:2024-01-08 Revised:2024-06-05 Online:2024-07-10 Published:2024-08-14
  • Contact: ZHU Xianqing, LIAO Qiang

摘要:

微藻具有生长周期短、光合固碳效率高等优势,并且含有丰富的糖类、蛋白质和油脂等含碳化合物,是极具能源化和资源化利用潜力的可再生生物质资源。超临界水气化技术能够在不需要干燥微藻的条件下直接将高含水微藻转化为富氢合成气,可节约大量微藻脱水能耗,并且具有反应速率高、转化效率高等优势,近年来受到了国内外研究者的广泛关注。基于此,本文综述了近年来微藻超临界水气化制氢的研究进展,重点讨论了微藻超临界水气化反应的主要影响因素,包括反应温度、压力、停留时间、物料浓度和反应器类型,阐释了不同催化剂对微藻超临界水气化过程的影响和作用机理。并探讨了微藻主要三组分模型化合物在超临界水气化过程的反应机理,总结了微藻超临界水气化过程的动力学和热力学特性。最后展望了微藻超临界水气化制取富氢合成气技术的未来研究方向,为微藻超临界水气化制氢技术的研究与应用提供理论指导。

关键词: 微藻, 超临界水气化, 制氢, 影响因素, 催化剂, 反应机理

Abstract:

Microalgae has the advantages of short growth cycle and high photosynthetic carbon fixation efficiency, which is mainly comprised of three carbon-containing compounds (namely carbohydrates, proteins and lipids). Microalgae is a renewable biomass resource with great potential for energy production. Supercritical water gasification technology can directly convert wet microalgae (with high moisture content) into hydrogen-rich syngas without the drying of microalgae. It can avoid massive energy consumption in microalgae dehydration and has the advantages of high reaction rate and high conversion efficiency. In recent years, supercritical water gasification of microalgae has received extensive attention from domestic and foreign researchers. This study aims to provide a comprehensive review of the recent advances in hydrogen production from microalgae supercritical water gasification. The main influence factors during microalgae supercritical water gasification process are discussed in detail, including reaction temperature, pressure, residence time, microalgae/water blending ratio and reactors. The influence mechanism of different catalysts on the supercritical water gasification process of microalgae is elucidated, and the reaction mechanism of the main model compounds of microalgae in the supercritical water gasification process is also discussed. The kinetic and thermodynamic characteristics of the microalgae supercritical water gasification process are summarized. Finally, the future research direction of microalgae supercritical water gasification for hydrogen-rich syngas production is proposed, which is expected to provide theoretical guidance for the fundamental research and practical application of microalgae supercritical water gasification technology.

Key words: microalgae, supercritical water gasification, hydrogen production, influence factor, catalyst, reaction mechanism

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn