化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3709-3728.DOI: 10.16085/j.issn.1000-6613.2024-0047
• 专栏:热化学反应工程技术 • 上一篇
龚德成1,2(), 沈倩1,2, 朱贤青1,2(), 黄云1,2, 夏奡1,2, 张敬苗1,2, 朱恂1,2, 廖强1,2()
收稿日期:
2024-01-08
修回日期:
2024-06-05
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
朱贤青,廖强
作者简介:
龚德成(1999—),男,硕士研究生,研究方向为微藻超临界水气化制氢。E-mail:dechenggong@cqu.edu.cn。
基金资助:
GONG Decheng1,2(), SHEN Qian1,2, ZHU Xianqing1,2(), HUANG Yun1,2, XIA Ao1,2, ZHANG Jingmiao1,2, ZHU Xun1,2, LIAO Qiang1,2()
Received:
2024-01-08
Revised:
2024-06-05
Online:
2024-07-10
Published:
2024-08-14
Contact:
ZHU Xianqing, LIAO Qiang
摘要:
微藻具有生长周期短、光合固碳效率高等优势,并且含有丰富的糖类、蛋白质和油脂等含碳化合物,是极具能源化和资源化利用潜力的可再生生物质资源。超临界水气化技术能够在不需要干燥微藻的条件下直接将高含水微藻转化为富氢合成气,可节约大量微藻脱水能耗,并且具有反应速率高、转化效率高等优势,近年来受到了国内外研究者的广泛关注。基于此,本文综述了近年来微藻超临界水气化制氢的研究进展,重点讨论了微藻超临界水气化反应的主要影响因素,包括反应温度、压力、停留时间、物料浓度和反应器类型,阐释了不同催化剂对微藻超临界水气化过程的影响和作用机理。并探讨了微藻主要三组分模型化合物在超临界水气化过程的反应机理,总结了微藻超临界水气化过程的动力学和热力学特性。最后展望了微藻超临界水气化制取富氢合成气技术的未来研究方向,为微藻超临界水气化制氢技术的研究与应用提供理论指导。
中图分类号:
龚德成, 沈倩, 朱贤青, 黄云, 夏奡, 张敬苗, 朱恂, 廖强. 微藻超临界水气化制取富氢合成气的研究进展[J]. 化工进展, 2024, 43(7): 3709-3728.
GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728.
微藻 | 反应器类型 | 温度/℃ | 压力/MPa | 停留时间/min | 原料质量分数/% | H2产量/mol·kg-1 | 参考文献 |
---|---|---|---|---|---|---|---|
Cladophora glomerata | 间歇式反应釜 | 380~460 | 23.2~26.8 | 20 | 1 | 3.2~5.25 | [ |
Enteromorpha intestinalis | 间歇式反应釜 | 400~440 | 25 | 5~30 | 1 | 1.84~5.25 | [ |
Ulva rotundata和armoricana | 金刚石砧座 | 550 | 23.7 | 7 | 7, 16.4 | 2.65,1.80 | [ |
Chlorella | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | 4.05 | [ |
Chlorella sp. | 间歇式反应釜 | 380 | 28 | 30 | 1.4 | 10.40 | [ |
Chlorella pyrenoidosa | 间歇式反应釜 | 430 | 22~55 | 60 | 100 | 1.61 | [ |
Chlorella pyrenoidosa | 间歇式反应釜 | 380~600 | 22~55 | 60 | 10 | 0.2~3.08 | [ |
Spirulina | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | 4.87 | [ |
Saccharina | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | 5.17 | [ |
C. vulgaris | 间歇式反应釜 | 385 | 26 | 15 | 5.0 | 4.13 | [ |
S. quadricauda | 间歇式反应釜 | 385 | 26 | 15 | 5.0 | 2.87 | [ |
Nannochloropsis sp. | 间歇式反应釜 | 450 | — | 40 | 4.8 | 2.40 | [ |
Nannochloropsis sp. | 间歇式反应釜 | 500 | 24 | 2~77 | 4.7 | 1.12~8.27 | [ |
Botryococcus braunii, Nannochloropsis oculate, Tetraselmis chuii | 间歇式反应釜 | 400 | 25 | 10 | 4.3 | 0.6,0.02,1.28 | [ |
Nannochloropsis oculata | 间歇式反应釜 | 440 | 28 | 15 | - | 4.3① | [ |
Chlorella Vulgaris | 连续式反应器 | 400~700 | 24 | 2 | 7.3 | 1.9%~18.7% (摩尔分数)② | [ |
Nannochloropsis gaditana | 连续式反应器 | 600 | 24~33 | 2 | 1 | 10.45 | [ |
表1 反应条件对微藻非催化超临界水气化氢气产量的影响
微藻 | 反应器类型 | 温度/℃ | 压力/MPa | 停留时间/min | 原料质量分数/% | H2产量/mol·kg-1 | 参考文献 |
---|---|---|---|---|---|---|---|
Cladophora glomerata | 间歇式反应釜 | 380~460 | 23.2~26.8 | 20 | 1 | 3.2~5.25 | [ |
Enteromorpha intestinalis | 间歇式反应釜 | 400~440 | 25 | 5~30 | 1 | 1.84~5.25 | [ |
Ulva rotundata和armoricana | 金刚石砧座 | 550 | 23.7 | 7 | 7, 16.4 | 2.65,1.80 | [ |
Chlorella | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | 4.05 | [ |
Chlorella sp. | 间歇式反应釜 | 380 | 28 | 30 | 1.4 | 10.40 | [ |
Chlorella pyrenoidosa | 间歇式反应釜 | 430 | 22~55 | 60 | 100 | 1.61 | [ |
Chlorella pyrenoidosa | 间歇式反应釜 | 380~600 | 22~55 | 60 | 10 | 0.2~3.08 | [ |
Spirulina | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | 4.87 | [ |
Saccharina | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | 5.17 | [ |
C. vulgaris | 间歇式反应釜 | 385 | 26 | 15 | 5.0 | 4.13 | [ |
S. quadricauda | 间歇式反应釜 | 385 | 26 | 15 | 5.0 | 2.87 | [ |
Nannochloropsis sp. | 间歇式反应釜 | 450 | — | 40 | 4.8 | 2.40 | [ |
Nannochloropsis sp. | 间歇式反应釜 | 500 | 24 | 2~77 | 4.7 | 1.12~8.27 | [ |
Botryococcus braunii, Nannochloropsis oculate, Tetraselmis chuii | 间歇式反应釜 | 400 | 25 | 10 | 4.3 | 0.6,0.02,1.28 | [ |
Nannochloropsis oculata | 间歇式反应釜 | 440 | 28 | 15 | - | 4.3① | [ |
Chlorella Vulgaris | 连续式反应器 | 400~700 | 24 | 2 | 7.3 | 1.9%~18.7% (摩尔分数)② | [ |
Nannochloropsis gaditana | 连续式反应器 | 600 | 24~33 | 2 | 1 | 10.45 | [ |
反应器类型 | 优势 | 不足 |
---|---|---|
间歇式反应器[ | 适合小批量实验; 成本低,且温度和时间易控制; 物料均匀混合,传热和传质效率高; 釜内浓度、温度分布均匀,返混程度大,适合多相反应的体系 | 换热面积小; 需要多次装料和卸料; 产品质量不稳定 |
连续式反应器[ | 产品质量稳定; 适用于热效应较大的反应; 连续进料,生产效率高; 管内流体接近理想置流 | 管道和仪器容易被腐蚀; 离子物质易沉积于反应器壁面 |
流化床反应器[ | 实现物料的连续输入和输出; 传热性能较好; 易于控制 | 产品分布不适当; 催化剂容易磨损流失; 能量损失较大 |
表2 常见的微藻超临界水气化反应器及特点
反应器类型 | 优势 | 不足 |
---|---|---|
间歇式反应器[ | 适合小批量实验; 成本低,且温度和时间易控制; 物料均匀混合,传热和传质效率高; 釜内浓度、温度分布均匀,返混程度大,适合多相反应的体系 | 换热面积小; 需要多次装料和卸料; 产品质量不稳定 |
连续式反应器[ | 产品质量稳定; 适用于热效应较大的反应; 连续进料,生产效率高; 管内流体接近理想置流 | 管道和仪器容易被腐蚀; 离子物质易沉积于反应器壁面 |
流化床反应器[ | 实现物料的连续输入和输出; 传热性能较好; 易于控制 | 产品分布不适当; 催化剂容易磨损流失; 能量损失较大 |
微藻 | 反应器类型 | 温度 /℃ | 压力 /MPa | 反应时间 /min | 原料浓度 (质量分数)/% | 催化剂 | H2产量/mol·kg-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Cladophora glomerata | 间歇式反应釜 | 460 | 26.9 | 15 | 0.05g | 衍生生物炭 | 5.78~9.1 | [ |
Enteromorpha intestinalis | 间歇式反应釜 | 440 | 25 | 10 | 1 | Ru-Ni-Fe/γ-Al2O3 | 5.05~12.02 | [ |
Chlorella pyrenoidosa | 间歇式反应釜 | 380~600 | 22~55 | 60 | 10 | Ru/C, Rh/C | 1.77~4.30 | [ |
Nannochloropsis sp. | 间歇式反应釜 | 410 | — | 40 | 1.8, 4.3, 9, 13.5 | Ru/C | 11.48, 6.71, 3.87, 2.79 | [ |
Spirulina platensis | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | NaOH, Ni/Al2O3 | 4.66~11.31 | [ |
Saccharina latissima | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | NaOH, Ni/Al2O3 | 4.44~15.1 | [ |
Chlorella vulgaris | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | NaOH、Ni/Al2O3 | 4.6~11.83 | [ |
Chlorella sp. | 间歇式反应釜 | 380 | 28 | 30 | 1.4 | Ni/rGO, Cu/rGO, Co/rGO, Mn/rGO, Cr/rGO | 0.29~0.69 | [ |
Chlorella pyrenoidosa | 间歇式反应釜 | 430 | 22~55 | 60 | 1 | Ru/C, Pd/C, Pd/C, Rh/C, Ir/C | 3.80~5.97 | [ |
C. vulgaris | 间歇式反应釜 | 385 | 26 | 15-90 | 5.0 | Ni/Al2O3 | 1.70~2.93 | [ |
Nannochloropsis sp. | 间歇式反应釜 | 450 | — | 40 | 4.8 | Ru/C、NaOH、KOH | 5.47~16.3 | [ |
Botryococcus braunii, | 间歇式反应釜 | 400 | 25 | 10 | 4.3 | Ni、NaCl | 0.16, 0.03, 0.05 | [ |
Nannochloropsis oculate | 间歇式反应釜 | 400 | 25 | 10 | 4.3 | Ni、NaCl | 0.73, 0.49 | [ |
Tetraselmis chuii | 间歇式反应釜 | 400 | 25 | 10 | 4.3 | Ni、NaCl | 0.29, 0.45, 1.99 | [ |
Nannochloropsis oculata | 间歇式反应釜 | 400~500 | 28 | 15 | — | La-Ni/γ-Al2O3 | 13.8, 14.9 | [ |
Scenedesmus sp. | 间歇式反应釜 | 320~480 | — | 60 | — | ZnO | 21.2%~38.27% (质量分数) | [ |
Chlorella vulgaris | 连续式反应器 | 650 | 30 | — | — | 衍生生物炭 | 19.13~46.95 | [ |
C. glomerata | 间歇式反应釜 | 460 | 26.9 | 10 | — | 衍生生物炭 | 7.85~11.63 | [ |
表3 不同种类催化剂对微藻超临界水气化氢气产量的影响
微藻 | 反应器类型 | 温度 /℃ | 压力 /MPa | 反应时间 /min | 原料浓度 (质量分数)/% | 催化剂 | H2产量/mol·kg-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Cladophora glomerata | 间歇式反应釜 | 460 | 26.9 | 15 | 0.05g | 衍生生物炭 | 5.78~9.1 | [ |
Enteromorpha intestinalis | 间歇式反应釜 | 440 | 25 | 10 | 1 | Ru-Ni-Fe/γ-Al2O3 | 5.05~12.02 | [ |
Chlorella pyrenoidosa | 间歇式反应釜 | 380~600 | 22~55 | 60 | 10 | Ru/C, Rh/C | 1.77~4.30 | [ |
Nannochloropsis sp. | 间歇式反应釜 | 410 | — | 40 | 1.8, 4.3, 9, 13.5 | Ru/C | 11.48, 6.71, 3.87, 2.79 | [ |
Spirulina platensis | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | NaOH, Ni/Al2O3 | 4.66~11.31 | [ |
Saccharina latissima | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | NaOH, Ni/Al2O3 | 4.44~15.1 | [ |
Chlorella vulgaris | 间歇式反应釜 | 500 | 36 | 30 | 6.7 | NaOH、Ni/Al2O3 | 4.6~11.83 | [ |
Chlorella sp. | 间歇式反应釜 | 380 | 28 | 30 | 1.4 | Ni/rGO, Cu/rGO, Co/rGO, Mn/rGO, Cr/rGO | 0.29~0.69 | [ |
Chlorella pyrenoidosa | 间歇式反应釜 | 430 | 22~55 | 60 | 1 | Ru/C, Pd/C, Pd/C, Rh/C, Ir/C | 3.80~5.97 | [ |
C. vulgaris | 间歇式反应釜 | 385 | 26 | 15-90 | 5.0 | Ni/Al2O3 | 1.70~2.93 | [ |
Nannochloropsis sp. | 间歇式反应釜 | 450 | — | 40 | 4.8 | Ru/C、NaOH、KOH | 5.47~16.3 | [ |
Botryococcus braunii, | 间歇式反应釜 | 400 | 25 | 10 | 4.3 | Ni、NaCl | 0.16, 0.03, 0.05 | [ |
Nannochloropsis oculate | 间歇式反应釜 | 400 | 25 | 10 | 4.3 | Ni、NaCl | 0.73, 0.49 | [ |
Tetraselmis chuii | 间歇式反应釜 | 400 | 25 | 10 | 4.3 | Ni、NaCl | 0.29, 0.45, 1.99 | [ |
Nannochloropsis oculata | 间歇式反应釜 | 400~500 | 28 | 15 | — | La-Ni/γ-Al2O3 | 13.8, 14.9 | [ |
Scenedesmus sp. | 间歇式反应釜 | 320~480 | — | 60 | — | ZnO | 21.2%~38.27% (质量分数) | [ |
Chlorella vulgaris | 连续式反应器 | 650 | 30 | — | — | 衍生生物炭 | 19.13~46.95 | [ |
C. glomerata | 间歇式反应釜 | 460 | 26.9 | 10 | — | 衍生生物炭 | 7.85~11.63 | [ |
物性参数 | 热力学状态 | ||
---|---|---|---|
常态水 | 亚临界水 | 超临界水 | |
温度/℃ | 0~100 | 100~374 | >374 |
压力/MPa | 0.025 | 0.1~22.1(100~374℃) | >22.1 |
聚合形态 | 液相 | 液相 | 无相分离 |
密度ρ/g·cm-3 | 0.997(25℃) | 0.80(250℃) | 0.166(400℃, 25MPa) |
介电常数ε | 78.4(25℃) | 27.1(250℃) | 5.9(400℃, 25MPa) |
比热容cp /kJ·kg-1·K-1 | 4.18(25℃) | 4.86(250℃) | 13(400℃, 25MPa) |
黏度μ/mPa·s | 0.89(25℃) | 0.11(250℃) | 0.03(400℃, 25MPa) |
热导率λ/W·m2 ·K-1 | 607(25℃) | 620(250℃) | 160(400℃, 25MPa) |
水的离子积Kw/mol2·L-2 | 10-14~10-12(0~100℃) | 10-12~10-11(100~300℃) | 10-20~10-23(400~550℃) |
表4 超临界水与常态水/亚临界水的理化性质对比[69, 80-81]
物性参数 | 热力学状态 | ||
---|---|---|---|
常态水 | 亚临界水 | 超临界水 | |
温度/℃ | 0~100 | 100~374 | >374 |
压力/MPa | 0.025 | 0.1~22.1(100~374℃) | >22.1 |
聚合形态 | 液相 | 液相 | 无相分离 |
密度ρ/g·cm-3 | 0.997(25℃) | 0.80(250℃) | 0.166(400℃, 25MPa) |
介电常数ε | 78.4(25℃) | 27.1(250℃) | 5.9(400℃, 25MPa) |
比热容cp /kJ·kg-1·K-1 | 4.18(25℃) | 4.86(250℃) | 13(400℃, 25MPa) |
黏度μ/mPa·s | 0.89(25℃) | 0.11(250℃) | 0.03(400℃, 25MPa) |
热导率λ/W·m2 ·K-1 | 607(25℃) | 620(250℃) | 160(400℃, 25MPa) |
水的离子积Kw/mol2·L-2 | 10-14~10-12(0~100℃) | 10-12~10-11(100~300℃) | 10-20~10-23(400~550℃) |
微藻 | 成分分析 | 元素分析 | 热值② /MJ·kg-1 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
蛋白质 | 脂质 | 碳水化合物 | 灰分 | C | H | O① | N | S | |||
chlorella sp. PTCC 6010 | 15.20 | 8.20 | 53.80 | 23.20 | 45.40 | 5.40 | 23.60 | 2.40 | 0 | 18.91 | [ |
Spirulina platensis | 68.88 | 0.62 | 7.65 | 22.85 | 47.68 | 6.49 | 25.54 | 11.02 | 0.64 | 19.68 | [ |
Spirulina | 65.00 | 5.00 | 20.00 | 7.60 | 55.70 | 6.80 | 26.40 | 11.20 | 0.80 | 22.65 | [ |
Chlorella pyrenoidosa | 55.00 | 6.80 | 33.58 | 4.62 | 53.12 | 7.38 | 27.31 | 8.80 | 0.62 | 22.82 | [ |
Chlorella vulgaris | 64.40 | 12.40 | 10.00 | 12.08 | 47.13 | 6.71 | 23.08 | 9.88 | 0 | 20.35 | [ |
Chlorella vulgaris | 50.00 | 13.00 | 15.00 | 7.00 | 45.80 | 7.90 | 38.70 | 7.50 | 0 | 19.54 | [ |
Chlorella vulgaris(lipid-extracted) | 51.51 | <1 | 23.45 | 6.74 | 42.32 | 6.75 | 42.2 | 7.51 | 1.22 | 16.19 | [ |
S. quadricauda | 26.80 | 19.50 | 42.70 | 14.29 | 47.71 | 7.17 | 28.30 | 5.78 | 0 | 20.99 | [ |
Nannochloropsis sp. | 52.00 | 28.00 | 12.00 | 18.70 | 43.30 | 6.00 | 25.10 | 6.40 | 0.50 | 18.25 | [ |
Nannochloropsis oceanica | 41.19 | 21.30 | 27.65 | 9.86 | 51.01 | 7.36 | 21.70 | 6.59 | 0.67 | 23.26 | [ |
Nannochloropsis salina | — | — | — | 6.70 | 54.20 | 7.80 | 27.50 | 4.20 | 0.60 | 22.06 | [ |
N. chlorella | 68.34 | 3.19 | 28.47 | 0 | 52.31 | 6.99 | 29.70 | 10.14 | 0.86 | 21.43 | [ |
Arthrospira platensis | 71.49 | 9.45 | 9.71 | 9.35 | 48.91 | 6.83 | 23.15 | 11.11 | 0.58 | 22.21 | [ |
Auxenochlorella pyrenoidosa | 55.06 | 20.70 | 19.08 | 5.16 | 53.52 | 7.45 | 22.61 | 8.81 | 0.67 | 23.77 | [ |
Schizochytrium limacinum | 15.13 | 41.60 | 33.75 | 9.52 | 61.31 | 8.65 | 16.96 | 2.42 | 0.74 | 29.89 | [ |
Phaeodactylum tricornutum | — | — | — | 12.45 | 57.03 | 7.46 | 24.97 | 8.00 | 1.28 | 24.72 | [ |
Tetraselmis chuui | — | — | — | — | 45.05 | 7.02 | 44.95 | 2.15 | 0.83 | 17.85 | [ |
wild mix w/Spirulina | — | — | — | 60.10 | 27.10 | 3.70 | 15.20 | 6.00 | 0.90 | 11.13 | [ |
表5 不同类型微藻的组成(空气干燥基,质量分数/%)
微藻 | 成分分析 | 元素分析 | 热值② /MJ·kg-1 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
蛋白质 | 脂质 | 碳水化合物 | 灰分 | C | H | O① | N | S | |||
chlorella sp. PTCC 6010 | 15.20 | 8.20 | 53.80 | 23.20 | 45.40 | 5.40 | 23.60 | 2.40 | 0 | 18.91 | [ |
Spirulina platensis | 68.88 | 0.62 | 7.65 | 22.85 | 47.68 | 6.49 | 25.54 | 11.02 | 0.64 | 19.68 | [ |
Spirulina | 65.00 | 5.00 | 20.00 | 7.60 | 55.70 | 6.80 | 26.40 | 11.20 | 0.80 | 22.65 | [ |
Chlorella pyrenoidosa | 55.00 | 6.80 | 33.58 | 4.62 | 53.12 | 7.38 | 27.31 | 8.80 | 0.62 | 22.82 | [ |
Chlorella vulgaris | 64.40 | 12.40 | 10.00 | 12.08 | 47.13 | 6.71 | 23.08 | 9.88 | 0 | 20.35 | [ |
Chlorella vulgaris | 50.00 | 13.00 | 15.00 | 7.00 | 45.80 | 7.90 | 38.70 | 7.50 | 0 | 19.54 | [ |
Chlorella vulgaris(lipid-extracted) | 51.51 | <1 | 23.45 | 6.74 | 42.32 | 6.75 | 42.2 | 7.51 | 1.22 | 16.19 | [ |
S. quadricauda | 26.80 | 19.50 | 42.70 | 14.29 | 47.71 | 7.17 | 28.30 | 5.78 | 0 | 20.99 | [ |
Nannochloropsis sp. | 52.00 | 28.00 | 12.00 | 18.70 | 43.30 | 6.00 | 25.10 | 6.40 | 0.50 | 18.25 | [ |
Nannochloropsis oceanica | 41.19 | 21.30 | 27.65 | 9.86 | 51.01 | 7.36 | 21.70 | 6.59 | 0.67 | 23.26 | [ |
Nannochloropsis salina | — | — | — | 6.70 | 54.20 | 7.80 | 27.50 | 4.20 | 0.60 | 22.06 | [ |
N. chlorella | 68.34 | 3.19 | 28.47 | 0 | 52.31 | 6.99 | 29.70 | 10.14 | 0.86 | 21.43 | [ |
Arthrospira platensis | 71.49 | 9.45 | 9.71 | 9.35 | 48.91 | 6.83 | 23.15 | 11.11 | 0.58 | 22.21 | [ |
Auxenochlorella pyrenoidosa | 55.06 | 20.70 | 19.08 | 5.16 | 53.52 | 7.45 | 22.61 | 8.81 | 0.67 | 23.77 | [ |
Schizochytrium limacinum | 15.13 | 41.60 | 33.75 | 9.52 | 61.31 | 8.65 | 16.96 | 2.42 | 0.74 | 29.89 | [ |
Phaeodactylum tricornutum | — | — | — | 12.45 | 57.03 | 7.46 | 24.97 | 8.00 | 1.28 | 24.72 | [ |
Tetraselmis chuui | — | — | — | — | 45.05 | 7.02 | 44.95 | 2.15 | 0.83 | 17.85 | [ |
wild mix w/Spirulina | — | — | — | 60.10 | 27.10 | 3.70 | 15.20 | 6.00 | 0.90 | 11.13 | [ |
1 | KUMAR Gopalakrishnan, KIM Sang-Hyoun, Chyi-How LAY, et al. Recent developments on alternative fuels, energy and environment for sustainability[J]. Bioresource Technology, 2020, 317: 124010. |
2 | OLABI A G, ABDELKAREEM Mohammad ALI. Renewable energy and climate change[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112111. |
3 | LI Feng, XIA Ao, GUO Xiaobo, et al. Photo-driven enzymatic decarboxylation of fatty acids for bio-aviation fuels production in a continuous microfluidic reactor[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113507. |
4 | 夏奡, 叶文帆, 富经纬, 等. 燃煤烟气微藻固碳减排技术现状与展望[J]. 煤炭科学技术, 2020, 48(1): 108-119. |
XIA Ao, YE Wenfan, FU Jingwei, et al. Current status and prospect of carbon fixation and emission reduction technology for coal-fired flue gas by microalgae[J]. Coal Science and Technology, 2020, 48(1): 108-119. | |
5 | 黄云, 彭虹艳, 富经纬, 等. 微藻光合减排燃煤电厂烟气CO2及资源化利用研究进展[J]. 洁净煤技术, 2022, 28(9): 55-68. |
HUANG Yun, PENG Hongyan, FU Jingwei, et al. Progress on the reduction and utilization of CO2 in flue gas from coal-fired power plant by microalgae photosynthesis[J]. Clean Coal Technology, 2022, 28(9): 55-68. | |
6 | 马国杰, 常春, 孙绍辉. 能源微藻规模化培养影响因素的研究进展[J]. 化工进展, 2019, 38(12): 5323-5329. |
MA Guojie, CHANG Chun, SUN Shaohui. Research progress on influencing factors of large scale cultivation of microalgae for energy production[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5323-5329. | |
7 | XIONG Wei, PENG Yiyan, MA Weimin, et al. Microalgae-material hybrid for enhanced photosynthetic energy conversion: A promising path towards carbon neutrality[J]. National Science Review, 2023, 10(10): nwad200. |
8 | XU Xianzhen, GU Xiaoguang, WANG Zhongyang, et al. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 65-82. |
9 | PRAGYA Namita, PANDEY Krishan K, SAHOO P K. A review on harvesting, oil extraction and biofuels production technologies from microalgae[J]. Renewable and Sustainable Energy Reviews, 2013, 24: 159-171. |
10 | Brandon Han Hoe GOH, Hwai Chyuan ONG, CHEAH Mei Yee, et al. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 59-74. |
11 | XIA Ao, CHENG Jun, MURPHY Jerry D. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel[J]. Biotechnology Advances, 2016, 34(5): 451-472. |
12 | LEE Andrew, LEWIS David, KALAITZIDIS Theo, et al. Technical issues in the large-scale hydrothermal liquefaction of microalgal biomass to biocrude[J]. Current Opinion in Biotechnology, 2016, 38: 85-89. |
13 | 曲磊, 崔翔, 杨海平, 等. 微藻水热液化制取生物油的研究进展[J]. 化工进展, 2018, 37(8): 2962-2969. |
QU Lei, CUI Xiang, YANG Haiping, et al. Review on the preparation of bio-oil by microalgae hydrothermal liquefaction[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2962-2969. | |
14 | MODELL Michael. Gasification and liquefaction of forest products in supercritical water[M]//OVEREND R P, MILNE T A, MUDGE L K. Fundamentals of thermochemical biomass conversion. Dordrecht: Springer, 1985: 95-119. |
15 | HE Chao, CHEN Chia-Lung, GIANNIS Apostolos, et al. Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 1127-1142. |
16 | BASU Prabir, METTANANT Vichuda. Biomass gasification in supercritical water —A review[J]. International Journal of Chemical Reactor Engineering, 2009, 7(1): doi.org/10.2202/1542-6580.1919. |
17 | KRUSE Andrea. Hydrothermal biomass gasification[J]. The Journal of Supercritical Fluids, 2009, 47(3): 391-399. |
18 | GUO Liejin, JIN Hui, LU Youjun. Supercritical water gasification research and development in China[J]. The Journal of Supercritical Fluids, 2015, 96: 144-150. |
19 | KRUSE Andrea. Supercritical water gasification[J]. Biofuels, Bioproducts and Biorefining, 2008, 2(5): 415-437. |
20 | LENG Lijian, ZHANG Weijin, LENG Songqi, et al. Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities[J]. Science of the Total Environment, 2020, 748: 142383. |
21 | CAPUTO Giuseppe, DISPENZA Martina, RUBIO Patricia, et al. Supercritical water gasification of microalgae and their constituents in a continuous reactor[J]. The Journal of Supercritical Fluids, 2016, 118: 163-170. |
22 | NURDIAWATI Anissa, ZAINI Ilman Nuran, IRHAMNA Adrian Rizqi, et al. Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 369-381. |
23 | CHAKINALA Anand G, BRILMAN Derk W F Wim, VAN SWAAIJ Wim P M, et al. Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1113-1122. |
24 | TIONG Laura, KOMIYAMA Masaharu, UEMURA Yoshimitsu, et al. Catalytic supercritical water gasification of microalgae: Comparison of Chlorella vulgaris and Scenedesmus quadricauda[J]. The Journal of Supercritical Fluids, 2016, 107: 408-413. |
25 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9): nwac217. |
26 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
27 | HAN Zhennan, JIA Xin, SONG Xingfei, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
28 | HE Mingyuan, ZHANG Kun, GUAN Yejun, et al. Green carbon science: Fundamental aspects[J]. National Science Review, 2023, 10(9): nwad046. |
29 | SALIMI Mohammad, SAFARI Farid, TAVASOLI Ahmad, et al. Hydrothermal gasification of different agricultural wastes in supercritical water media for hydrogen production: A comparative study[J]. International Journal of Industrial Chemistry, 2016, 7(3): 277-285. |
30 | SAFARI Farid, NOROUZI Omid, TAVASOLI Ahmad. Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production[J]. Bioresource Technology, 2016, 222: 232-241. |
31 | NOROUZI Omid, SAFARI Farid, JAFARIAN Sajedeh, et al. Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe-Ni/γ-Al2O3 nanocatalysts[J]. Energy Conversion and Management, 2017, 141: 63-71. |
32 | REDDY Sivamohan N, NANDA Sonil, DALAI Ajay K, et al. Supercritical water gasification of biomass for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(13): 6912-6926. |
33 | GRAZ Y, BOSTYN S, RICHARD T, et al. Hydrothermal conversion of Ulva macro algae in supercritical water[J]. The Journal of Supercritical Fluids, 2016, 107: 182-188. |
34 | GUO Liejin, LU Youjing, ZHANG Ximin, et al. Hydrogen production by biomass gasification in supercritical water: A systematic experimental and analytical study[J]. Catalysis Today, 2007, 129(3/4): 275-286. |
35 | LU Youjun, GUO Liejin, ZHANG Ximin, et al. Hydrogen production by supercritical water gasification of biomass: Explore the way to maximum hydrogen yield and high carbon gasification efficiency[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3177-3185. |
36 | KERSTEN Sascha R A, POTIC Biljana, PRINS Wolter, et al. Gasification of model compounds and wood in hot compressed water[J]. Industrial & Engineering Chemistry Research, 2006, 45(12): 4169-4177. |
37 | DUAN Peigao, LI Shichang, JIAO Jiali, et al. Supercritical water gasification of microalgae over a two-component catalyst mixture[J]. Science of the Total Environment, 2018, 630: 243-253. |
38 | GUAN Qingqing, WEI Chaohai, SAVAGE Phillip E. Hydrothermal gasification of nannochloropsis sp. with Ru/C[J]. Energy & Fuels, 2012, 26(7): 4575-4582. |
39 | NURCAHYANI Puji Rahmawati, HASHIMOTO Soshi, MATSUMURA Yukihiko. Supercritical water gasification of microalgae with and without oil extraction[J]. The Journal of Supercritical Fluids, 2020, 165: 104936. |
40 | ELLIOTT Douglas C. Catalytic hydrothermal gasification of biomass[J]. Biofuels, Bioproducts and Biorefining, 2008, 2(3): 254-265. |
41 | XIE Longfei, DUAN Peigao, JIAO Jiali, et al. Hydrothermal gasification of microalgae over nickel catalysts for production of hydrogen-rich fuel gas: Effect of zeolite supports[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5114-5124. |
42 | CAO Changqing, GUO Liejin, JIN Hui, et al. The influence of alkali precipitation on supercritical water gasification of glucose and the alkali recovery in fluidized-bed reactor[J]. International Journal of Hydrogen Energy, 2013, 38(30): 13293-13299. |
43 | Roudabeh SAMIEE-ZAFARGHANDI, HADI Alireza, Javad KARIMI-SABET. Graphene-supported metal nanoparticles as novel catalysts for syngas production using supercritical water gasification of microalgae[J]. Biomass and Bioenergy, 2019, 121: 13-21. |
44 | YANG Chuang, WANG Shuzhong, YANG Jianqiao, et al. Hydrothermal liquefaction and gasification of biomass and model compounds: A review[J]. Green Chemistry, 2020, 22(23): 8210-8232. |
45 | LU Youjun, JIN Hui, GUO Liejin, et al. Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6066-6075. |
46 | KIM Sung Won, Bon Seok KOO, LEE Dong Hyun. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed[J]. Bioresource Technology, 2014, 162: 96-102. |
47 | SMITH Richard L, FANG Zhen. Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems[J]. The Journal of Supercritical Fluids, 2009, 47(3): 431-446. |
48 | CHEN Guanyi, ANDRIES Jans, LUO Zhongyang, et al. Biomass pyrolysis/gasification for product gas production: The overall investigation of parametric effects[J]. Energy Conversion and Management, 2003, 44(11): 1875-1884. |
49 | RODRIGUEZ CORREA Catalina, KRUSE Andrea. Supercritical water gasification of biomass for hydrogen production—Review[J]. The Journal of Supercritical Fluids, 2018, 133: 573-590. |
50 | ONWUDILI Jude A, LEA-LANGTON Amanda R, ROSS Andrew B, et al. Catalytic hydrothermal gasification of algae for hydrogen production: Composition of reaction products and potential for nutrient recycling[J]. Bioresource Technology, 2013, 127: 72-80. |
51 | JIAO Jiali, WANG Fang, DUAN Peigao, et al. Catalytic hydrothermal gasification of microalgae for producing hydrogen and methane-rich gas[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(9): 851-860. |
52 | GUAN Qingqing, WEI Chaohai, NING Ping, et al. Catalytic gasification of algae nannochloropsis sp. in sub/supercritical water[J]. Procedia Environmental Sciences, 2013, 18: 844-848. |
53 | GUAN Qingqing, SAVAGE Phillip E, WEI Chaohai. Gasification of alga Nannochloropsis sp. in supercritical water[J]. The Journal of Supercritical Fluids, 2012, 61: 139-145. |
54 | KRISHNAN Vijendren, THACHANAN Samanmulya, MATSUMURA Yukihiko, et al. Supercritical water gasification on three types of microalgae in the presence and absence of catalyst and salt[J]. Procedia Engineering, 2016, 148: 594-599. |
55 | HOSSAIN Mohammad M. Production of H2 from microalgae biomass in supercritical water using a Ni/La-γAl2O3 catalyst[J]. Energy Procedia, 2017, 110: 384-389. |
56 | ALBARELLI Juliana Q, SANTOS Diego T, ENSINAS Adriano V, et al. Comparison of extraction techniques for product diversification in a supercritical water gasification-based sugarcane-wet microalgae biorefinery: Thermoeconomic and environmental analysis[J]. Journal of Cleaner Production, 2018, 201: 697-705. |
57 | YU Junqin, GUO Qinghua, GONG Yan, et al. A review of the effects of alkali and alkaline earth metal species on biomass gasification[J]. Fuel Processing Technology, 2021, 214: 106723. |
58 | AKIZUKI Makoto, FUJII Tatsuya, HAYASHI Rumiko, et al. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water[J]. Journal of Bioscience and Bioengineering, 2014, 117(1): 10-18. |
59 | ELLIOTT Douglas C, SEALOCK L John BAKER Eddie,. Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification[J]. Industrial & Engineering Chemistry Research, 1993, 32(8): 1542-1548. |
60 | SU Hongcai, YAN Mi, WANG Shurong. Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111831. |
61 | ARUN Jayaseelan, GOPINATH Kannappan Panchamoorthy, Dai-Viet N VO, et al. Co-hydrothermal gasification of Scenedesmus sp. with sewage sludge for bio-hydrogen production using novel solid catalyst derived from carbon-zinc battery waste[J]. Bioresource Technology Reports, 2020, 11: 100459. |
62 | SZTANCS Greta, JUHASZ Lilla, NAGY Balazs Jozsef, et al. Co-hydrothermal gasification of Chlorella vulgaris and hydrochar: The effects of waste-to-solid biofuel production and blending concentration on biogas generation[J]. Bioresource Technology, 2020, 302: 122793. |
63 | SAFARI Farid, JAVANI Nader, YUMURTACI Zehra. Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(2): 1071-1080. |
64 | CHERAD Ramzi, ONWUDILI J A, EKPO U, et al. Macroalgae supercritical water gasification combined with nutrient recycling for microalgae cultivation[J]. Environmental Progress & Sustainable Energy, 2013, 32(4): 902-909. |
65 | TIONG Laura, KOMIYAMA Masaharu. Supercritical water gasification of microalga Chlorella vulgaris over supported Ru[J]. The Journal of Supercritical Fluids, 2019, 144: 1-7. |
66 | PENG Gaël, LUDWIG Christian, VOGEL Frédéric. Catalytic supercritical water gasification: Interaction of sulfur with ZnO and the ruthenium catalyst[J]. Applied Catalysis B: Environmental, 2017, 202: 262-268. |
67 | PENG Gaël, VOGEL Frédéric, REFARDT Dominik, et al. Catalytic supercritical water gasification: Continuous methanization of Chlorella vulgaris [J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6256-6265. |
68 | 陈晋阳, 郑海飞, 曾贻善. 超临界水理论研究的进展[J]. 化学进展, 2002, 14(6): 409-414. |
CHEN Jinyang, ZHENG Haifei, ZENG Yishan. Recent progress in supercritical water theoretical research[J]. Progress In Chemistry, 2002, 14(6): 409-414. | |
69 | Maria MÖLLER, NILGES Peter, HARNISCH Falk, et al. Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation[J]. ChemSusChem, 2011, 4(5): 566-579. |
70 | GUO Yang, WANG Shuzhong, XU Donghai, et al. Review of catalytic supercritical water gasification for hydrogen production from biomass[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 334-343. |
71 | PARK Ki Chul, TOMIYASU Hiroshi. Gasification reaction of organic compounds catalyzed by RuO2 in supercritical water[J]. Chemical Communications, 2003(6): 694-695. |
72 | KRUSE A, HENNINGSEN T, SıNA A, et al. Biomass gasification in supercritical water: Influence of the dry matter content and the formation of phenols[J]. Industrial & Engineering Chemistry Research, 2003, 42(16): 3711-3717. |
73 | WEI Ning, XU Donghai, HAO Botian, et al. Chemical reactions of organic compounds in supercritical water gasification and oxidation[J]. Water Research, 2021, 190: 116634. |
74 | OKOLIE Jude A, EPELLE Emmanuel I, NANDA Sonil, et al. Modeling and process optimization of hydrothermal gasification for hydrogen production: A comprehensive review[J]. The Journal of Supercritical Fluids, 2021, 173: 105199. |
75 | AL-DURI B, PINTO L, ASHRAF-BALL N H, et al. Thermal abatement of nitrogen-containing hydrocarbons by non-catalytic supercritical water oxidation (SCWO)[J]. Journal of Materials Science, 2008, 43(4): 1421-1428. |
76 | AKIZUKI Makoto, OSHIMA Yoshito. Solid acid/base catalysis in sub- and supercritical water[J]. Industrial & Engineering Chemistry Research, 2018, 57(16): 5495-5506. |
77 | IKUSHIMA Yutaka, HATAKEDA Kiyotaka, SATO Osamu, et al. Acceleration of synthetic organic reactions using supercritical water: noncatalytic beckmann and pinacol rearrangements[J]. Journal of the American Chemical Society, 2000, 122(9): 1908-1918. |
78 | IKUSHIMA Yutaka, HATAKEDA Kiyotaka, SATO Osamu, et al. Structure and base catalysis of supercritical water in the noncatalytic benzaldehyde disproportionation using water at high temperatures and pressures[J]. Angewandte Chemie, 2001, 113(1): 216-219. |
79 | INABA Satoshi. Acid-base catalytic effects on reduction of methanol in hot water[J]. Catalysts, 2019, 9(4): 373. |
80 | KESTIN J, SENGERS J V, KAMGAR-PARSI B, et al. Thermophysical properties of fluid H2O[J]. Journal of Physical and Chemical Reference Data, 1984, 13(1): 175-183. |
81 | HUBER M. NIST thermophysical properties of hydrocarbon mixtures database (supertrapp), version 3.2[M]//Boulder, ColoradoPhysical and Chemical Properties Division, 2007: 1-36. |
82 | RAHEEM Abdul, CUI Xiaomin, MANGI Fareed Hussain, et al. Hydrogen-rich energy recovery from microalgae (lipid-extracted) via steam catalytic gasification[J]. Algal Research, 2020, 52: 102102. |
83 | BROWN Tylisha M, DUAN Peigao, SAVAGE Phillip E. Hydrothermal liquefaction and gasification of Nannochloropsis s p . [ J ] . Energy & Fuels, 2010, 24(6): 3639-3646. |
84 | DUAN Peigao, YANG Shikun, XU Yuping, et al. Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass[J]. Energy, 2018, 155: 734-745. |
85 | ELLIOTT Douglas C, HART Todd R, NEUENSCHWANDER Gary G, et al. Chemical processing in high-pressure aqueous environments. 9. Process development for catalytic gasification of algae feedstocks[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10768-10777. |
86 | XU Donghai, LIU Liang, WEI Ning, et al. Catalytic supercritical water gasification of aqueous phase directly derived from microalgae hydrothermal liquefaction[J]. International Journal of Hydrogen Energy, 2019, 44(48): 26181-26192. |
87 | SHAN Yaqi, YIN Linxin, DJANDJA Oraléou Sangué, et al. Supercritical water gasification of waste water produced from hydrothermal liquefaction of microalgae over Ru catalyst for production of H2 rich gas fuel[J]. Fuel, 2021, 292: 120288. |
88 | HAIDUC Anca G, BRANDENBERGER Martin, SUQUET Sébastien, et al. SunCHem: An integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation[J]. Journal of Applied Phycology, 2009, 21(5): 529-541. |
89 | DING Ning, AZARGOHAR Ramin, DALAI Ajay K, et al. Catalytic gasification of cellulose and pinewood to H2 in supercritical water[J]. Fuel, 2014, 118: 416-425. |
90 | FANG Zhen, MINOWA Tomoaki, FANG Chun, et al. Catalytic hydrothermal gasification of cellulose and glucose[J]. International Journal of Hydrogen Energy, 2008, 33(3): 981-990. |
91 | LEE In-Gu, KIM Mi-Sun, Son-Ki IHM. Gasification of glucose in supercritical water[J]. Industrial & Engineering Chemistry Research, 2002, 41(5): 1182-1188. |
92 | ZHU Chao, GUO Liejin, JIN Hui, et al. Effects of reaction time and catalyst on gasification of glucose in supercritical water: Detailed reaction pathway and mechanisms[J]. International Journal of Hydrogen Energy, 2016, 41(16): 6630-6639. |
93 | JIN Hui, WU Yue, ZHU Chao, et al. Molecular dynamic investigation on hydrogen production by furfural gasification in supercritical water[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16064-16069. |
94 | D’ALESSANDRO Emmanuel B, ANTONIOSI FILHO Nelson R. Concepts and studies on lipid and pigments of microalgae: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 832-841. |
95 | WATANABE Masaru, IIDA Toru, INOMATA Hiroshi. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water[J]. Energy Conversion and Management, 2006, 47(18/19): 3344-3350. |
96 | GUO Simao, GUO Liejin, YIN Jiarong, et al. Supercritical water gasification of glycerol: Intermediates and kinetics[J]. The Journal of Supercritical Fluids, 2013, 78: 95-102. |
97 | Elena MARKOČIČ, KRAMBERGER Boris, VAN BENNEKOM Joost G, et al. Glycerol reforming in supercritical water; a short review[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 40-48. |
98 | SAMANMULYA Thachanan, FAROBIE Obie, MATSUMURA Yukihiko. Gasification characteristics of aminobutyric acid and serine as model compounds of proteins under supercritical water conditions[J]. Journal of the Japan Petroleum Institute, 2017, 60(1): 34-40. |
99 | SU Ying, ZHU Wei, GONG Miao, et al. Interaction between sewage sludge components lignin (phenol) and proteins (alanine) in supercritical water gasification[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9125-9136. |
100 | CHANGI Shujauddin, ZHU Minghan, SAVAGE Phillip E. Hydrothermal reaction kinetics and pathways of phenylalanine alone and in binary mixtures[J]. ChemSusChem, 2012, 5(9): 1743-1757. |
101 | KRUSE Andrea, MANIAM Palanikumar, SPIELER Franziska. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds[J]. Industrial & Engineering Chemistry Research, 2007, 46(1): 87-96. |
102 | Roudabeh SAMIEE-ZAFARGHANDI, Javad KARIMI-SABET, ABDOLI Mohammad ALI, et al. Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2 [J]. Renewable Energy, 2018, 126: 189-201. |
103 | MUANGRAT Rattana, ONWUDILI Jude A, WILLIAMS Paul T. Alkaline subcritical water gasification of dairy industry waste (Whey)[J]. Bioresource Technology, 2011, 102(10): 6331-6335. |
104 | SAMANMULYA Thachanan, FAROBIE Obie, MATSUMURA Yukihiko. Gasification characteristics of histidine and 4-methylimidazole under supercritical water conditions[J]. Biomass Conversion and Biorefinery, 2017, 7(4): 487-494. |
105 | SAMANMULYA Thachanan, INOUE Shuhei, INOUE Takahito, et al. Gasification characteristics of amino acids in supercritical water[J]. Journal of the Japan Institute of Energy, 2014, 93(9): 936-943. |
106 | SAMANMULYA Thachanan, INOUE Shuhei, INOUE Takahito, et al. Gasification characteristics of alanine in supercritical water[J]. Journal of the Japan Petroleum Institute, 2014, 57(5): 225-229. |
107 | SATO Nobuaki, QUITAIN Armando T, KANG Kilyoon, et al. Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water[J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3217-3222. |
108 | GUAN Qingqing, WEI Chaohai, SAVAGE Phillip E. Kinetic model for supercritical water gasification of algae[J]. Physical Chemistry Chemical Physics: PCCP, 2012, 14(9): 3140-3147. |
109 | TUSHAR Mohammad S H K, DUTTA Animesh, XU Chunbao Charles). Simulation and kinetic modeling of supercritical water gasification of biomass[J]. International Journal of Hydrogen Energy, 2015, 40(13): 4481-4493. |
110 | YAKABOYLU Onursal, Güçhan YAPAR, RECALDE Mayra, et al. Supercritical water gasification of biomass: An integrated kinetic model for the prediction of product compounds[J]. Industrial & Engineering Chemistry Research, 2015, 54(33): 8100-8112. |
111 | YAN Qiuhui, GUO Liejin, LU Youjun. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water[J]. Energy Conversion and Management, 2006, 47(11/12): 1515-1528. |
112 | FREITAS A C, GUIRARDELLO R. Thermodynamic analysis of supercritical water gasification of microalgae biomass for hydrogen and syngas production[J]. Chemical Engineering Transactions (CET Journal), 2013, 32: 553-558. |
113 | YANG Chuang, WANG Shuzhong, LI Yanhui, et al. Thermodynamic analysis of hydrogen production via supercritical water gasification of coal, sewage sludge, microalga, and sawdust[J]. International Journal of Hydrogen Energy, 2021, 46(34): 18042-18050. |
114 | KUMAR Mayank, OYEDUN Adetoyese O, KUMAR Amit. A parametric study through the modelling of hydrothermal gasification for hydrogen production from algal biomass[J]. The Canadian Journal of Chemical Engineering, 2021, 99(S1): S39-S54. |
115 | MUSTAPHA Sherif Ishola, MOHAMMED Usman Aliyu, Faizal BUX, et al. Hydrothermal gasification of Scenedesmus obliquus and its derivatives: A thermodynamic study using Aspen Plus[J]. Biofuels, Bioproducts and Biorefining, 2021, 15(5): 1421-1430. |
116 | MIAN Alberto, ENSINAS Adriano V, MARECHAL François. Multi-objective optimization of SNG production from microalgae through hydrothermal gasification[J]. Computers & Chemical Engineering, 2015, 76: 170-183. |
117 | FIORI Luca, VALBUSA Michele, CASTELLO Daniele. Supercritical water gasification of biomass for H2 production: Process design[J]. Bioresource Technology, 2012, 121: 139-147. |
[1] | 曹景沛, 姚乃瑜, 庞新博, 赵小燕, 赵静平, 蔡士杰, 徐敏, 冯晓博, 伊凤娇. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
[2] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
[3] | 蓝瑞嵩, 刘丽华, 张倩, 陈博彦, 洪俊明. 硫掺杂石墨烯作为MFC阴极性能和生物毒性检测[J]. 化工进展, 2024, 43(6): 3430-3439. |
[4] | 何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050. |
[5] | 陈富强, 仲兆平, 戚仁志. 铜基催化剂电还原二氧化碳为甲酸研究进展[J]. 化工进展, 2024, 43(6): 3051-3060. |
[6] | 曾壮, 李柯志, 苑志伟, 杜金涛, 李卓师, 王悦. CO/CO2 加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
[7] | 冯占雄, 张创, 刘德政, 汪云, 马强, 王诚. 不同气氛热处理对连续管道微波技术制备Pt/C催化剂氧还原性能的影响[J]. 化工进展, 2024, 43(6): 3080-3092. |
[8] | 周皞, 王旭瑞, 赵辉爽, 温妮妮, 苏亚欣. CuCe-SAPO-34选择性催化丙烯还原柴油车尾气氮氧化物[J]. 化工进展, 2024, 43(6): 3093-3099. |
[9] | 万成凤, 李志达, 张春月, 路璐. MXene负载CoP纳米棒高效电催化分解水制氢[J]. 化工进展, 2024, 43(6): 3232-3239. |
[10] | 肖自胜, 李金玲, 陈伊睿, 兰支利, 尹笃林. g-C3N4锚定Cu(Ⅰ)高选择性催化CCl4合成2,4,4,4-四氯丁腈[J]. 化工进展, 2024, 43(6): 3293-3300. |
[11] | 李斯文, 雷敏, 刘玉霜, 董兆琪, 薛丽丽, 赵建社. 离子液体多酸在燃油氧化脱硫中的研究进展[J]. 化工进展, 2024, 43(6): 3322-3335. |
[12] | 冯勇强, 王洁茹, 王超娴, 李芳, 苏婉婷, 孙宇, 赵彬然. γ-Al2O3 负载的Ni、Fe、Cu对介质阻挡放电等离子体转化CO2/CH4的影响[J]. 化工进展, 2024, 43(5): 2705-2713. |
[13] | 周运桃, 王洪星, 李新刚, 崔丽凤. CeO2载体在CO2加氢制甲醇中的应用和研究进展[J]. 化工进展, 2024, 43(5): 2723-2738. |
[14] | 黄澎, 邹颖, 王宝焕, 王逍妍, 赵勇, 梁鑫, 胡迪. 二氧化碳电催化还原反应制合成气催化剂研究进展[J]. 化工进展, 2024, 43(5): 2760-2775. |
[15] | 卢欣欣, 蔡东仁, 詹国武. 基于固体前体构建集成催化剂及CO2加氢研究进展[J]. 化工进展, 2024, 43(5): 2786-2802. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |