化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6233-6245.DOI: 10.16085/j.issn.1000-6613.2023-1813
• 材料科学与技术 • 上一篇
甘雨欣(), 赵美, 赵绍磊, 谢就任, 杨令, 王亭杰()
收稿日期:
2023-10-16
修回日期:
2023-12-11
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
王亭杰
作者简介:
甘雨欣(1999—),女,博士研究生,研究方向为纳米颗粒表面修饰。E-mail:ganyx21@mails.tsinghua.edu.cn。
GAN Yuxin(), ZHAO Mei, ZHAO Shaolei, XIE Jiuren, YANG Ling, WANG Tingjie()
Received:
2023-10-16
Revised:
2023-12-11
Online:
2024-11-15
Published:
2024-12-07
Contact:
WANG Tingjie
摘要:
氧化物纳米颗粒粒径小、比表面积大、性能优异、应用广泛,但纳米颗粒表面富含羟基,易于团聚,直接应用效果差,需要在其表面接枝不同的有机基团,调控颗粒的吸附性、润湿性、分散性和功能性。本文聚焦于常用修饰剂与颗粒表面的反应特性,综述了硅烷偶联剂、醇和酚、羧酸和膦酸、硅油和异氰酸酯对氧化物纳米颗粒表面有机修饰的研究进展。阐述了氧化物纳米颗粒的表面羟基性质;分析了不同修饰剂与氧化物颗粒表面的反应机制、修饰稳定性等特性;总结了不同修饰剂和纳米颗粒的修饰工艺。尽管在有机溶剂中的颗粒表面有机修饰文献报道较多,但对规模化生产产品质量提高和指导作用有限,且修饰效果评价多样,可比性不够,要实现纳米颗粒表面的可控、高效、绿色有机修饰,需要针对不同氧化物颗粒合理选择修饰剂和设计修饰工艺。
中图分类号:
甘雨欣, 赵美, 赵绍磊, 谢就任, 杨令, 王亭杰. 氧化物纳米颗粒表面有机修饰反应特性[J]. 化工进展, 2024, 43(11): 6233-6245.
GAN Yuxin, ZHAO Mei, ZHAO Shaolei, XIE Jiuren, YANG Ling, WANG Tingjie. Reaction characteristics of organic modifications on the surface of oxide nanoparticles[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6233-6245.
溶剂体系 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
有机相 | MPTMS | SiO2 | 溶剂为甲苯 室温,24h | 巯基功能化 | [ |
DETAS | SiO2 | 溶剂为乙醇 室温,12h | 氨基功能化 | [ | |
APTES | AlOOH | 溶剂为乙醇 75℃,12h | 氨基功能化 | [ | |
VTES | ZnO | 溶剂为甲苯 80℃,3h | 提高分散性 | [ | |
KH570 | TiO2 | 溶剂为乙醇 40℃,1h | 提高相容性 | [ | |
KH570 | ZrO2 | 溶剂为乙醇 50℃,2h | 提高分散性 | [ | |
醇水溶液 | MPTMS | SiO2 | 60℃,1.5h | 巯基功能化 | [ |
VTES | SiO2 | 室温,19h | 双键功能化 | [ | |
APTMS | SiO2 | 60,3h | 氨基功能化 | [ | |
GPTMS | SiO2 | 乙醇∶水=95∶5 70℃,2h | 提高分散性 | [ | |
MTMS | SiO2 | 室温,24h | 提高分散性 | [ | |
DMDCS | SiO2 | 50℃,16h | 表面润湿性调节 | [ | |
APTES | TiO2 | 乙醇∶水=95∶5 pH=5,氮气气氛、室温,24h | 氨基功能化 | [ | |
水相 | APTMS IPTMS | TiO2 | 20~80℃,2~16h | 氨基功能化 交联网络 | [ |
表1 硅烷偶联剂修饰纳米氧化物颗粒研究实例
溶剂体系 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
有机相 | MPTMS | SiO2 | 溶剂为甲苯 室温,24h | 巯基功能化 | [ |
DETAS | SiO2 | 溶剂为乙醇 室温,12h | 氨基功能化 | [ | |
APTES | AlOOH | 溶剂为乙醇 75℃,12h | 氨基功能化 | [ | |
VTES | ZnO | 溶剂为甲苯 80℃,3h | 提高分散性 | [ | |
KH570 | TiO2 | 溶剂为乙醇 40℃,1h | 提高相容性 | [ | |
KH570 | ZrO2 | 溶剂为乙醇 50℃,2h | 提高分散性 | [ | |
醇水溶液 | MPTMS | SiO2 | 60℃,1.5h | 巯基功能化 | [ |
VTES | SiO2 | 室温,19h | 双键功能化 | [ | |
APTMS | SiO2 | 60,3h | 氨基功能化 | [ | |
GPTMS | SiO2 | 乙醇∶水=95∶5 70℃,2h | 提高分散性 | [ | |
MTMS | SiO2 | 室温,24h | 提高分散性 | [ | |
DMDCS | SiO2 | 50℃,16h | 表面润湿性调节 | [ | |
APTES | TiO2 | 乙醇∶水=95∶5 pH=5,氮气气氛、室温,24h | 氨基功能化 | [ | |
水相 | APTMS IPTMS | TiO2 | 20~80℃,2~16h | 氨基功能化 交联网络 | [ |
颗粒 | 修饰机制 |
---|---|
SiO2 | 氢键[ |
TiO2 | 双齿接枝[ |
γ-Al2O3 | 单核单(双)齿接枝[ |
Al2O3-无定型 | 双齿接枝[ |
表2 水相中邻苯二酚修饰剂与不同氧化物颗粒表面的作用机制
颗粒 | 修饰机制 |
---|---|
SiO2 | 氢键[ |
TiO2 | 双齿接枝[ |
γ-Al2O3 | 单核单(双)齿接枝[ |
Al2O3-无定型 | 双齿接枝[ |
修饰工艺 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
高温高压 | (光学活性的)仲醇、正辛醇、环己基甲醇、环己醇等 | SiO2 | 240℃,30atm | 机理研究 | [ |
不同碳链长度的正构烷醇 | SiO2 | 235℃,30atm,1h | 调节表面润湿性 | [ | |
正丁醇、叔丁醇 | SiO2 | 260℃,30bar,1h | 调节表面润湿性 | [ | |
有机溶剂加热回流 | 正辛醇、2-乙基-1己醇; 1-十八醇,甲醇 | SiO2 | 溶剂为二甲苯 加热回流18h | 用于吸附剂、催化剂、传感器等 | [ |
8-巯基-1-辛醇 | SiO2 | 溶剂为二甲苯 加热回流18h | 色谱柱、填料 | [ | |
干粉加热 | 十六烷醇 | SiO2 | pH=8~9 醇水溶液吸附过滤 气相120℃,12h | 调节表面润湿性 | [ |
三羟甲基氨基甲烷 | SiO2 | 水相混合 喷雾干燥 气相200℃,2h | 氨基功能化 | [ | |
2-氨基-1-丁醇 | SiO2 | 水相混合 喷雾干燥 气相160℃,2h | 氨基功能化 | [ | |
含羟基的联吡啶基分子 | SiO2、TiO2 | 气相160℃,2d | 功能化 | [ |
表3 醇修饰纳米氧化物颗粒研究实例
修饰工艺 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
高温高压 | (光学活性的)仲醇、正辛醇、环己基甲醇、环己醇等 | SiO2 | 240℃,30atm | 机理研究 | [ |
不同碳链长度的正构烷醇 | SiO2 | 235℃,30atm,1h | 调节表面润湿性 | [ | |
正丁醇、叔丁醇 | SiO2 | 260℃,30bar,1h | 调节表面润湿性 | [ | |
有机溶剂加热回流 | 正辛醇、2-乙基-1己醇; 1-十八醇,甲醇 | SiO2 | 溶剂为二甲苯 加热回流18h | 用于吸附剂、催化剂、传感器等 | [ |
8-巯基-1-辛醇 | SiO2 | 溶剂为二甲苯 加热回流18h | 色谱柱、填料 | [ | |
干粉加热 | 十六烷醇 | SiO2 | pH=8~9 醇水溶液吸附过滤 气相120℃,12h | 调节表面润湿性 | [ |
三羟甲基氨基甲烷 | SiO2 | 水相混合 喷雾干燥 气相200℃,2h | 氨基功能化 | [ | |
2-氨基-1-丁醇 | SiO2 | 水相混合 喷雾干燥 气相160℃,2h | 氨基功能化 | [ | |
含羟基的联吡啶基分子 | SiO2、TiO2 | 气相160℃,2d | 功能化 | [ |
溶剂体系 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
干法 | SiO2 | 球磨8~16h | 提高分散性 | [ | |
有机相 | 对氨基苯酚 | SiO2 | 溶剂为乙醇 80℃,8h | 提高分散性 | [ |
水相 | SiO2 | 溶剂为tris缓冲溶液 pH=8.5,室温,12h | 提高分散性、生物相容性 | [ | |
邻苯二酚 | Al2O3 | 溶剂为0.1mol/L KCl溶液 pH=7,室温,6h | 机理研究 | [ |
表4 酚修饰纳米氧化物颗粒研究实例
溶剂体系 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
干法 | SiO2 | 球磨8~16h | 提高分散性 | [ | |
有机相 | 对氨基苯酚 | SiO2 | 溶剂为乙醇 80℃,8h | 提高分散性 | [ |
水相 | SiO2 | 溶剂为tris缓冲溶液 pH=8.5,室温,12h | 提高分散性、生物相容性 | [ | |
邻苯二酚 | Al2O3 | 溶剂为0.1mol/L KCl溶液 pH=7,室温,6h | 机理研究 | [ |
氧化物颗粒 | 羧酸 | 膦酸 |
---|---|---|
SiO2 | 氢键[ | 氢键[ |
TiO2 | 氢键、单齿[ | 单齿、双齿、 三齿配位[ |
Al2O3 | 单齿、双齿配位[ | 双齿配位[ |
Fe2O3, Fe3O4 | 双齿配位[ | 双齿、三齿配位[ |
表5 羧酸和膦酸在不同氧化物颗粒表面的接枝方式
氧化物颗粒 | 羧酸 | 膦酸 |
---|---|---|
SiO2 | 氢键[ | 氢键[ |
TiO2 | 氢键、单齿[ | 单齿、双齿、 三齿配位[ |
Al2O3 | 单齿、双齿配位[ | 双齿配位[ |
Fe2O3, Fe3O4 | 双齿配位[ | 双齿、三齿配位[ |
溶剂体系 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
水相 | 醋酸、、 、 | 拟薄水铝石 AlOOH·nH2O | 水溶液回流72h | 提高分散性 | [ |
、 | Al2O3 | pH=7,水溶液回流 | 功能化 重金属离子吸附 | [ | |
甘氨酸、丙二酸 | Fe3O4@SiO2 | 90℃,20min | 功能化 废水处理 | [ | |
、 | Fe3O4 | 70℃,1h | 氨基功能化 | [ | |
有机相 | 甲酸、乙酸、丙酸、 HOOC(CH2) n COOH n=0, 1, 2, 3, 4, 5 | Al2O3 | 溶剂为四氢呋喃 70℃,24~48h | 功能化 表面电荷调节 | [ |
TiO2 | 溶剂为甲醇 室温,24h 超声30min | 提高分散性 | [ | ||
硬脂酸 | TiO2 | 溶剂为正己烷 60℃,4h | 提高分散性 | [ | |
油酸 | TiO2、Al2O3 | 溶剂为乙醇 75℃,2h | 提高稳定性 | [ | |
油酸 | SiO2 | 溶剂为正己烷 60℃,4h | 提高分散性 | [ | |
二巯基丁二酸(DMSA) | Fe3O4@SiO2 | 溶剂为甲苯、 二甲基亚砜 室温,12h | 提高分散性和生物相容性 | [ |
表6 羧酸修饰氧化物颗粒研究实例
溶剂体系 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
水相 | 醋酸、、 、 | 拟薄水铝石 AlOOH·nH2O | 水溶液回流72h | 提高分散性 | [ |
、 | Al2O3 | pH=7,水溶液回流 | 功能化 重金属离子吸附 | [ | |
甘氨酸、丙二酸 | Fe3O4@SiO2 | 90℃,20min | 功能化 废水处理 | [ | |
、 | Fe3O4 | 70℃,1h | 氨基功能化 | [ | |
有机相 | 甲酸、乙酸、丙酸、 HOOC(CH2) n COOH n=0, 1, 2, 3, 4, 5 | Al2O3 | 溶剂为四氢呋喃 70℃,24~48h | 功能化 表面电荷调节 | [ |
TiO2 | 溶剂为甲醇 室温,24h 超声30min | 提高分散性 | [ | ||
硬脂酸 | TiO2 | 溶剂为正己烷 60℃,4h | 提高分散性 | [ | |
油酸 | TiO2、Al2O3 | 溶剂为乙醇 75℃,2h | 提高稳定性 | [ | |
油酸 | SiO2 | 溶剂为正己烷 60℃,4h | 提高分散性 | [ | |
二巯基丁二酸(DMSA) | Fe3O4@SiO2 | 溶剂为甲苯、 二甲基亚砜 室温,12h | 提高分散性和生物相容性 | [ |
溶剂体系 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
水相 | 正辛基、正戊基、正丙基膦酸 | SiO2@Al2O3 | pH=5,室温,24h | 提高分散性 | [ |
苯膦酸、乙烯基膦酸 | SnO2 | 室温,32~35h | 机理研究 | [ | |
多种有机膦络合物 | Fe3O4 | pH=2~3,50~60℃,2~6h | 功能化 重金属离子吸附 | [ | |
4-氨基苯基膦酸、4-羧基苯基膦酸、磷酰基乙酸、2-羧基乙基膦酸 | Fe3O4 | pH=5~5.5,27℃,超声20min | 表面功能化 | [ | |
醇水 | 苯膦酸 | Al2O3 | 溶剂为甲醇-水溶液 pH=4或6,室温,3d | 机理研究 | [ |
正十二烷基膦酸 | TiO2、SiO2 | 溶剂为甲醇水溶液 pH=4,室温,15h | 表面功能化 选择性修饰 | [ | |
有机相 | 正丁基膦酸 | Al2O3、SiO2 | 溶剂为甲苯 回流2d | 机理研究 | [ |
表7 膦酸修饰氧化物颗粒的研究实例
溶剂体系 | 修饰剂 | 氧化物颗粒 | 主要反应条件 | 研究目标 | 参考文献 |
---|---|---|---|---|---|
水相 | 正辛基、正戊基、正丙基膦酸 | SiO2@Al2O3 | pH=5,室温,24h | 提高分散性 | [ |
苯膦酸、乙烯基膦酸 | SnO2 | 室温,32~35h | 机理研究 | [ | |
多种有机膦络合物 | Fe3O4 | pH=2~3,50~60℃,2~6h | 功能化 重金属离子吸附 | [ | |
4-氨基苯基膦酸、4-羧基苯基膦酸、磷酰基乙酸、2-羧基乙基膦酸 | Fe3O4 | pH=5~5.5,27℃,超声20min | 表面功能化 | [ | |
醇水 | 苯膦酸 | Al2O3 | 溶剂为甲醇-水溶液 pH=4或6,室温,3d | 机理研究 | [ |
正十二烷基膦酸 | TiO2、SiO2 | 溶剂为甲醇水溶液 pH=4,室温,15h | 表面功能化 选择性修饰 | [ | |
有机相 | 正丁基膦酸 | Al2O3、SiO2 | 溶剂为甲苯 回流2d | 机理研究 | [ |
1 | A Yu OLENIN, LISICHKIN G V. Surface-modified oxide nanoparticles: Synthesis and application[J]. Russian Journal of General Chemistry, 2019, 89(7): 1451-1476. |
2 | KIM Taeyoon, KWON Soo-Hyun, KIM Hye Jin, et al. Effect of the surface modification of silica nanoparticles on the viscosity and mechanical properties of silica/epoxy nanocomposites[J]. Composite Interfaces, 2022, 29(13): 1573-1590. |
3 | Adriana MARTINEZ-OVIEDO, KSHETRI Yuwaraj K, JOSHI Bhupendra, et al. Surface modification of blue TiO2 with silane coupling agent for NO x abatement[J]. Progress in Natural Science: Materials International, 2021, 31(2): 230-238. |
4 | CHINH Nguyen Thuy, Tran Thi MAI, HUNG Dao Phi, et al. Characteristics of organic titanate modified titanium dioxide nanoparticles and its dispersibility in acrylic emulsion coating[J]. Vietnam Journal of Chemistry, 2022, 60(S1): 116-124. |
5 | LIU Zhao, YAO Lehan, PAN Xun, et al. A green and facile approach to the efficient surface modification of alumina nanoparticles with fatty acids[J]. Applied Surface Science, 2018, 447: 664-672. |
6 | KROPACHEVA T N, ANTONOVA A S, A Yu ZHURAVLEVA. Modification of the surface of magnetic iron oxides with phosphonic complexones[J]. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56(3): 473-479. |
7 | HOSAIN Asmaa N A, NEMR Ahmed EL, SIKAILY Amany EL, et al. Surface modifications of nanochitosan coated magnetic nanoparticles and their applications in Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) removal[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104316. |
8 | WANG Changyuan, WANG Yang, XIAO Wangchuan, et al. Carboxylated superparamagnetic Fe3O4 nanoparticles modified with 3-amino propanol and their application in magnetic resonance tumor imaging[J]. BMC Cancer, 2023, 23(1): 54. |
9 | HOOSHMAND Sara, HAYAT Seyed Mohammad Gheibi, GHORBANI Ahmad, et al. Preparation and applications of superparamagnetic iron oxide nanoparticles in novel drug delivery systems: An overview[J]. Current Medicinal Chemistry, 2021, 28(4): 777-799. |
10 | ALTERARY Seham S, ALKHAMEES Anfal. Synthesis, surface modification, and characterization of Fe3O4@SiO2 core@shell nanostructure[J]. Green Processing and Synthesis, 2021, 10(1): 384-391. |
11 | AHANGARAN Fatemeh, NAVARCHIAN Amir H. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review[J]. Advances in Colloid and Interface Science, 2020, 286: 102298. |
12 | YILMAZ Betul, OZAY Ozgur. Synthesis of antibiotic-modified silica nanoparticles and their use as a controlled drug release system with antibacterial properties[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2022, 197(9): 964-972. |
13 | WANG Jingyuan, XING Shiyong, XIE Jiuren, et al. Amination of silica nanoparticles using aminobutanol to increase surface reactivity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129958. |
14 | VOLOV Alexander, SHKODENKO Liubov, KOSHEL Elena, et al. Bio-inspired surface modification of magnetite nanoparticles with dopamine conjugates[J]. Nanomaterials, 2022, 12(13): 2230. |
15 | FAHAD Mustafa Raad, ABDULMAJEED Basma Abbas. Surface modification of TiO2-Al2O3 nanoparticles for the enhancement of the rheological properties of base lubricating oil[J]. Journal of Applied Research and Technology, 2022, 20(1): 37-47. |
16 | KITAYAMA Yukiya, KATAYAMA Aoi, SHAO Zhicheng, et al. Biocompatible polymer-grafted TiO2 nanoparticle sonosensitizers prepared using phosphonic acid-functionalized RAFT agent[J]. Polymers, 2023, 15(11): 2426. |
17 | YANG Lei, QIU Shouji, ZHANG Ya, et al. Preparation of PDMS/SiO2 nanocomposites via ultrasonical modification and miniemulsion polymerization[J]. Journal of Polymer Research, 2012, 20(1): 68. |
18 | LIN Jinbin, CHEN Hongling, YAO Licheng. Surface tailoring of SiO2 nanoparticles by mechanochemical method based on simple milling[J]. Applied Surface Science, 2010, 256(20): 5978-5984. |
19 | 乔冰. 纳米二氧化硅颗粒高效有机修饰工艺和过程研究[D]. 北京: 清华大学, 2016. |
QIAO Bing. A novel and effective green process for surface modification of nano-silica particles[D]. Beijing: Tsinghua University, 2016. | |
20 | ZHURAVLEV L T. The surface chemistry of amorphous silica. Zhuravlev model[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173(1/2/3): 1-38. |
21 | KHABIBULLIN Amir, BHANGAONKAR Karan, MAHONEY Clare, et al. Grafting PMMA brushes from α-alumina nanoparticles via SI-ATRP[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5458-5465. |
22 | AN Dongmin, WANG Zichen, ZHAO Xu, et al. A new route to synthesis of surface hydrophobic silica with long-chain alcohols in water phase[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369(1/2/3): 218-222. |
23 | YANG Dan, NI Yufeng, KONG Xinxin, et al. Enhanced electromechanical properties of natural rubber using highly efficient and cost-effective mussel-inspired modification of TiO2 nanoparticles[J]. Applied Surface Science, 2019, 495: 143638. |
24 | SAHID Mehmood, NISAR Ali, FARMAN Ali, et al. The influence of surface modified silica nanoparticles: Properties of epoxy nanocomposites[J]. Zeitschrift Für Physikalische Chemie, 2020, 235(5): 649-661. |
25 | NEOUZE Marie-Alexandra, SCHUBERT Ulrich. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands[J]. Monatshefte Für Chemie-Chemical Monthly, 2008, 139(3): 183-195. |
26 | KAMIYA Hidehiro, IIJIMA Motoyuki. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media[J]. Science and Technology of Advanced Materials, 2010, 11(4): 044304. |
27 | NGOUANGNA Eugene N, ZAIDI JAAFAR Mohd, NORDDIN MNAM, et al. Surface modification of nanoparticles to improve oil recovery mechanisms: A critical review of the methods, influencing Parameters, advances and prospects[J]. Journal of Molecular Liquids, 2022, 360: 119502. |
28 | NASIR Nur Amirah, KAMARUZZAMAN Wan Mohamad Ikhmal Wan Mohamad, BADRUDDIN Malia Athirah, et al. Surface modification effects of CaCO3 and TiO2 nanoparticles in nonpolar solvents[J]. Journal of Dispersion Science and Technology, 2024,45(5): 870-879. |
29 | LI Da, SUN Guoli, OUYANG Xueqiong, et al. Surface modification of alumina nanoparticles and its application in tape casting of micro-nano green tape[J]. Applied Surface Science, 2023, 622: 156963. |
30 | ZHANG Hao, QING Shan, XU Jiarui, et al. Stability and thermal conductivity of TiO2/water nanofluids: A comparison of the effects of surfactants and surface modification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128492. |
31 | ZARINWALL Ajmal, WANIEK Tassilo, SAADAT Reza, et al. Comprehensive characterization of APTES surface modifications of hydrous boehmite nanoparticles[J]. Langmuir, 2021, 37(1): 171-179. |
32 | ZHANG Wenyu, LAI Edward P C. Chemical functionalities of 3-aminopropyltriethoxy-silane for surface modification of metal oxide nanoparticles[J]. Silicon, 2022, 14(12): 6535-6545. |
33 | HE Wentao, WU Danhua, LI Juan, et al. Surface modification of colloidal silica nanoparticles: Controlling the size and grafting process[J]. Bulletin of the Korean Chemical Society, 2013, 34(9): 2747-2752. |
34 | HAN Chunli, DENG Jian, LUO Guangsheng. Hydrolysis and condensation kinetic studies of mercaptopropyl trimethoxysilane using in-situ Raman spectroscopy[J]. Chemical Engineering Journal, 2023, 469: 143887. |
35 | Ramzi BEL-HASSEN, BOUFI Sami, SALON Marie-Christine Brochier, et al. Adsorption of silane onto cellulose fibers. Ⅱ. The effect of pH on silane hydrolysis, condensation, and adsorption behavior[J]. Journal of Applied Polymer Science, 2008, 108(3): 1958-1968. |
36 | KHURANA Nikhita, ARORA Pinklesh, PENTE Avinash S, et al. Surface modification of zinc oxide nanoparticles by vinyltriethoxy silane (VTES)[J]. Inorganic Chemistry Communications, 2021, 124: 108347. |
37 | ZHAO Hongran, ZHANG Tong, QI Rongrong, et al. Humidity sensor based on solution processible microporous silica nanoparticles[J]. Sensors and Actuators B: Chemical, 2018, 266: 131-138. |
38 | Hubert MUTIN P, GUERRERO Gilles, VIOUX André. Organic-inorganic hybrid materials based on organophosphorus coupling molecules: From metal phosphonates to surface modification of oxides[J]. Comptes Rendus Chimie, 2003, 6(8/9/10): 1153-1164. |
39 | YAN Yongli, CAI Yuxiu, LIU Xiaochun, et al. Hydrophobic modification on the surface of SiO2 nanoparticle: Wettability control[J]. Langmuir, 2020, 36(49): 14924-14932. |
40 | MARCINKO Stephen, FADEEV Alexander Y. Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2 [J]. Langmuir, 2004, 20(6): 2270-2273. |
41 | SOSNOV Evgeni A, MALKOV A A, MALYGIN A A. Hydrolytic stability of the Si—O—Ti bonds in the chemical assembly of titania nanostructures on silica surfaces[J]. Russian Chemical Reviews, 2010, 79(10): 907-920. |
42 | NAVIROJ Somsak, KOENIG Jack L, ISHIDA Hatsuo. Diffuse reflectance Fourier transform infrared spectroscopic study of chemical bonding and hydrothermal stability of an aminosilane on metal oxide surfaces[J]. The Journal of Adhesion, 1985, 18(2): 93-110. |
43 | SCHINDLER F, SCHMIDBAUR H. Siloxane compounds of the transition metals[J]. Angewandte Chemie International Edition in English, 1967, 6(8): 683-694. |
44 | ROZYYEV Vepa, MURPHY Julia G, BARRY Edward, et al. Vapor-phase grafting of a model aminosilane compound to Al2O3, ZnO, and TiO2 surfaces prepared by atomic layer deposition[J]. Applied Surface Science, 2021, 562: 149996. |
45 | MAHTABANI Amirhossein, LA ZARA Damiano, ANYSZKA Rafał, et al. Gas phase modification of silica nanoparticles in a fluidized bed: Tailored deposition of aminopropylsiloxane[J]. Langmuir, 2021, 37(15): 4481-4492. |
46 | HWANG Ha Soo, Jae Hyun BAE, KIM Hyun Gyu, et al. Synthesis of silica-polystyrene core-shell nanoparticles via surface thiol-lactam initiated radical polymerization[J]. European Polymer Journal, 2010, 46(8): 1654-1659. |
47 | KIM Young-Jae, KIM Jong-Heon, Shin-Woo HA, et al. Polyimide nanocomposites with functionalized SiO2 nanoparticles: Enhanced processability, thermal and mechanical properties[J]. RSC Advances, 2014, 4(82): 43371-43377. |
48 | NI Weishuang, WU Songping, REN Qun. Preparation and characterization of silanized TiO2 nanoparticles and their application in toner[J]. Industrial & Engineering Chemistry Research, 2012, 51(40): 13157-13163. |
49 | Phi Hung DAO, NGUYEN Thuy Chinh, PHUNG Thi Lan, et al. Assessment of some characteristics and properties of zirconium dioxide nanoparticles modified with 3-(trimethoxysilyl) propyl methacrylate silane coupling agent[J]. Journal of Chemistry, 2021, 2021: 9925355. |
50 | SHIN Youngchan, LEE Deokkyu, LEE Kangtaek, et al. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(4): 515-519. |
51 | IDRIS Alamin, MAN Zakaria, MAULUD Abdulhalim S, et al. Investigation on particle properties and extent of functionalization of silica nanoparticles[J]. Applied Surface Science, 2020, 506: 144978. |
52 | KARNATI Sidharth Reddy, OLDHAM Daniel, FINI Elham H, et al. Application of surface-modified silica nanoparticles with dual silane coupling agents in bitumen for performance enhancement[J]. Construction and Building Materials, 2020, 244: 118324. |
53 | HODOROABA Vasile-Dan, RADES Steffi, BORGHETTI Patrizia, et al. Organic surface modification and analysis of titania nanoparticles for self-assembly in multiple layers[J]. Surface and Interface Analysis, 2020, 52(12): 829-834. |
54 | ZHAO Jie, MILANOVA Maria, WARMOESKERKEN Marijn M C G, et al. Surface modification of TiO2 nanoparticles with silane coupling agents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413: 273-279. |
55 | MERTENS G, FRIPIAT J J. The methanol-silica gel system. Ⅲ. Kinetics of the methoxylation process[J]. Journal of Colloid and Interface Science, 1973, 42(1): 169-180. |
56 | LUO Ting, ZHANG Ruidan, ZENG Weiwang, et al. Alkoxylation reaction of alcohol on silica surfaces studied by sum frequency vibrational spectroscopy[J]. The Journal of Physical Chemistry C, 2021, 125(16): 8638-8646. |
57 | LUO Ting, ZENG Weiwang, ZHANG Ruidan, et al. Hydrophobic modification of silica surfaces via grafting alkoxy groups[J]. ACS Applied Electronic Materials, 2021, 3(4): 1691-1698. |
58 | UTSUGI Hiroshi, HORIKOSHI Hideo, MATSUZAWA Toshiharu. Mechanism of esterification of alcohols with surface silanols and hydrolysis of surface esters on silica gels[J]. Journal of Colloid and Interface Science, 1975, 50(1): 154-161. |
59 | PAOPRASERT Peerasak, KANDALA Srikanth, SWEAT Daniel P, et al. Versatile grafting chemistry for creation of stable molecular layers on oxides[J]. Journal of Materials Chemistry, 2012, 22(3): 1046-1053. |
60 | DILEEP P, NARAYANANKUTTY Sunil K. A novel method for preparation of nanosilica from bamboo leaves and its green modification as a multi-functional additive in styrene butadiene rubber[J]. Materials Today Communications, 2020, 24: 100957. |
61 | ABADIKHAH Hamidreza, KALALI Ehsan Naderi, BEHZADI Shabnam, et al. Amino functionalized silica nanoparticles incorporated thin film nanocomposite membrane with suppressed aggregation and high desalination performance[J]. Polymer, 2018, 154: 200-209. |
62 | TIAN Jianwen, ZHANG Haoxuan, LIU Meiying, et al. A bioinspired strategy for surface modification of silica nanoparticles[J]. Applied Surface Science, 2015, 357: 1996-2003. |
63 | LE-MASURIER Solomon Pradhan, DUONG Hien Thi Thu, BOYER Cyrille, et al. Surface modification of polydopamine coated particles via glycopolymer brush synthesis for protein binding and FLIM testing[J]. Polymer Chemistry, 2015, 6(13): 2504-2511. |
64 | MO Min, DU Shuo, GAO Yujie, et al. Bioinspired Janus particles for hydrophobic modification of hydrogels with photothermal antibacterial capability[J]. Journal of Colloid and Interface Science, 2022, 616: 93-100. |
65 | ANDERSON Travers H, YU Jing, ESTRADA Abril, et al. The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films[J]. Advanced Functional Materials, 2010, 20(23): 4196-4205. |
66 | DALSIN Jeffrey L, LIN Lijun, TOSATTI Samuele, et al. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA[J]. Langmuir, 2005, 21(2): 640-646. |
67 | MARTIN Scot T, KESSELMAN Janet M, PARK David S, et al. Surface structures of 4-chlorocatechol adsorbed on titanium dioxide[J]. Environmental Science & Technology, 1996, 30(8): 2535-2542. |
68 | MCBRIDE Murray B, WESSELINK Lambert G. Chemisorption of catechol on gibbsite, boehmite, and noncrystalline alumina surfaces[J]. Environmental Science & Technology, 1988, 22(6): 703-708. |
69 | OSSENKAMP Gabriel C, KEMMITT Tim, JOHNSTON Jim H. New approaches to surface-alkoxylated silica with increased hydrolytic stability[J]. Chemistry of Materials, 2001, 13(11): 3975-3980. |
70 | OSSENKAMP Gabriel C, KEMMITT Tim, JOHNSTON Jim H. Toward functionalized surfaces through surface esterification of silica[J]. Langmuir, 2002, 18(15): 5749-5754. |
71 | FUJI M, UENO S, TAKEI T, et al. Surface structural analysis of fine silica powder modified with butyl alcohol[J]. Colloid and Polymer Science, 2000, 278(1): 30-36. |
72 | FUJI Masayoshi, MACHIDA Kotoe, TAKEI Takashi, et al. Surface geometric structure of chemically modified silica studied by direct atomic force microscopy (AFM) imaging and adsorption method[J]. Langmuir, 2000, 16(7): 3281-3287. |
73 | FUJI Masayoshi, TAKEI Takashi, WATANABE Tohoru, et al. Wettability of fine silica powder surfaces modified with several normal alcohols[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 154(1/2): 13-24. |
74 | KAWAMURA Aki, UENO Shoichi, TAKAI Chika, et al. Effect of steric hindrance on surface wettability of fine silica powder modified by n- or t-butyl alcohol[J]. Advanced Powder Technology, 2017, 28(10): 2488-2495. |
75 | WANG Jingyuan, YANG Ling, XIE Jiuren, et al. Surface amination of silica nanoparticles using tris(hydroxymethyl)aminomethane[J]. Industrial & Engineering Chemistry Research, 2020, 59(49): 21383-21392. |
76 | PUJARI Sidharam P, SCHERES Luc, MARCELIS Antonius T M, et al. Covalent surface modification of oxide surfaces[J]. Angewandte Chemie International Edition, 2014, 53(25): 6322-6356. |
77 | HOTCHKISS Peter J, JONES Simon C, PANIAGUA Sergio A, et al. The modification of indium tin oxide with phosphonic acids: Mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications[J]. Accounts of Chemical Research, 2012, 45(3): 337-346. |
78 | Florence BRODARD-SEVERAC, GUERRERO Gilles, MAQUET Jocelyne, et al. High-field 17O MAS NMR investigation of phosphonic acid monolayers on titania[J]. Chemistry of Materials, 2008, 20(16): 5191-5196. |
79 | DING Xuefeng, ZHAO Jingzhe, LIU Yanhua, et al. Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization[J]. Materials Letters, 2004, 58(25): 3126-3130. |
80 | LI Zongwei, ZHU Yongfa. Surface-modification of SiO2 nanoparticles with oleic acid[J]. Applied Surface Science, 2003, 211(1/2/3/4): 315-320. |
81 | Hubert MUTIN P, LAFOND Vincent, POPA Aurelian F, et al. Selective surface modification of SiO2-TiO2 supports with phosphonic acids[J]. Chemistry of Materials, 2004, 16(26): 5670-5675. |
82 | MALLAKPOUR Shadpour, NIKKHOO Elham. Surface modification of nano-TiO2 with trimellitylimido-amino acid-based diacids for preventing aggregation of nanoparticles[J]. Advanced Powder Technology, 2014, 25(1): 348-353. |
83 | BAEK Naerin, KIM Young T, MARCY Joe E, et al. Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide[J]. Food Packaging and Shelf Life, 2018, 17: 30-38. |
84 | MOHAPATRA Sasmita, PRAMANIK Panchanan. Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339(1/2/3): 35-42. |
85 | BERTAZZO Sergio, REZWAN Kurosch. Control of α-alumina surface charge with carboxylic acids[J]. Langmuir, 2010, 26(5): 3364-3371. |
86 | GUERRERO Gilles, Hubert MUTIN P, VIOUX André. Organically modified aluminas by grafting and sol-gel processes involving phosphonate derivatives[J]. Journal of Materials Chemistry, 2001, 11(12): 3161-3165. |
87 | PAULY Céline Schmitt, GENIX Anne-Caroline, ALAUZUN Johan G, et al. Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions[J]. Physical Chemistry Chemical Physics, 2015, 17(29): 19173-19182. |
88 | PAVÓN-HERNÁNDEZ Arturo I, Eustolia RODRÍGUEZ-VELÁZQUEZ, Manuel ALATORRE-MEDA, et al. Magnetic nanocomposite with fluorescence enhancement effect based on amino acid coated-Fe3O4 functionalized with quantum dots[J]. Materials Chemistry and Physics, 2020, 251: 123082. |
89 | HOSSAIN Khohinur, FLOREAN Luca, DEL TEDESCO Anna, et al. Modification of amorphous mesoporous zirconia nanoparticles with bisphosphonic acids: A straightforward approach for tailoring the surface properties of the nanoparticles[J]. Chemistry-A European Journal, 2021, 27(71): 17941-17951. |
90 | MINGALYOV P G, BUCHNEV M V, LISICHKIN G V. Chemical modification of alumina and silica with alkylphosphonic acids and their esters[J]. Russian Chemical Bulletin, 2001, 50(9): 1693-1695. |
91 | YE Lu, ZHOU Lin, LU Yangcheng. Direct continuous synthesis of oleic acid-modified Fe3O4 nanoparticles in a microflow system[J]. Industrial & Engineering Chemistry Research, 2022, 61(12): 4320-4328. |
92 | AGUSTIN Anggi Regiana, TAMURA Kazuhiro. Surface modification of TiO2 nanoparticles with terephthalic acid in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2021, 174: 105245. |
93 | CALLENDER Rhonda L, Jeff HARLAN C, SHAPIRO Noah M, et al. Aqueous synthesis of water-soluble alumoxanes: Environmentally benign precursors to alumina and aluminum-based ceramics[J]. Chemistry of Materials, 1997, 9(11): 2418-2433. |
94 | GOWENLOCK Cathren E, MCGETTRICK James D, MCNAUGHTER Paul D, et al. Copper-complexed isonicotinic acid functionalized aluminum oxide nanoparticles[J]. Main Group Chemistry, 2015, 15(1): 1-15. |
95 | GUO Xueyi, MAO Fangfang, WANG Weijia, et al. Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: Synthesis and toxicity assessment in vitro[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14983-14991. |
96 | GHEONEA Ramona, Carmen MAK, CRASMAREANU Eleonora Cornelia, et al. Surface modification of SnO2 with phosphonic acids[J]. Journal of Chemistry, 2017, 2017: 2105938. |
97 | 乔梁, 付丽, 郑精武, 等. 一种氧化铝粉末的表面疏水改性方法: CN108410215A[P]. 2018-08-17. |
QIAO Liang, FU Li, ZHENG Jingwu, et al. Surface hydrophobic modification method of alumina powder: CN108410215A[P]. 2018-08-17. | |
98 | 马志领, 郝学辉, 何佳音, 等. 羟基硅油原位改性制备疏水性沉淀二氧化硅[J]. 无机盐工业, 2011, 43(3): 36-38. |
MA Zhiling, HAO Xuehui, HE Jiayin, et al. Preparation of hydrophobic precipitated SiO2 by insitu modification of hydroxyl silicone oil[J]. Inorganic Chemicals Industry, 2011, 43(3): 36-38. | |
99 | 李亚, 陈洪龄. 用含氢硅油机械化学法改性SiO2粉体[J]. 机械工程材料, 2008, 32(1): 76-78, 83. |
LI Ya, CHEN Hongling. Modification of silica by mechanochemical treatment with polymethylhydrogensiloxane[J]. Materials for Mechanical Engineering, 2008, 32(1): 76-78, 83. | |
100 | 卜军, 陈洪龄, 沈斌, 等. 机械力化学法疏水改性高岭土[J]. 化学研究与应用, 2009, 21(5): 760-763. |
BU Jun, CHEN Hongling, SHEN Bin, et al. Hydrophobic modification of Kaolin by mechanochemical method[J]. Chemical Research and Application, 2009, 21(5): 760-763. | |
101 | 施利毅, 孙小英, 沈骁遥, 等. 一种改性纳米二氧化钛及其制备方法: CN110835119A[P]. 2020-02-25. |
SHI Liyi, SUN Xiaoying, SHEN Xiaoyao, et al. Modified nanometermeter titanium dioxide and preparation method thereof: CN110835119A[P]. 2020-02-25. | |
102 | MEKURIA Tadele Daniel, ZHANG Chunhong, LIU Yingnan, et al. Surface modification of nano-silica by diisocyanates and their application in polyimide matrix for enhanced mechanical, thermal and water proof properties[J]. Materials Chemistry and Physics, 2019, 225: 358-364. |
103 | Baoli OU, LI Duxin. Preparation of polystyrene/silica nanocomposites by radical copolymerization of styrene with silica macromonomer[J]. Science in China Series B: Chemistry, 2007, 50(3): 385-391. |
[1] | 谢钰麟, 饶瑞晔, 黄建, 蒿佳怡, 王友益, 黄琦. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418. |
[2] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[3] | 孙诗婉, 李欣, 周涵. 辐射冷却涂料及其在能源环境领域的应用[J]. 化工进展, 2024, 43(9): 4961-4969. |
[4] | 李颖, 王其召, 白波, 张茜, 孙文静, 张琳璇. 表面Janus图案结构的单向导水集雾性能[J]. 化工进展, 2024, 43(9): 5133-5141. |
[5] | 李浩然, 王岩, 张涛, 吕莉, 唐文翔, 唐盛伟. 以Cu(Ac)2-Zn(Ac)2溶液为水相的W/O微液滴尺度的有效调控[J]. 化工进展, 2024, 43(9): 5168-5176. |
[6] | 孙燕, 谢晓阳, 冯倩颖, 郑璐, 何皎洁, 杨利伟, 白波. 基于单宁酸-铁(Ⅲ)改性正渗透膜制备及抗污染性能[J]. 化工进展, 2024, 43(9): 5309-5319. |
[7] | 宋家恺, 孔令真, 陈家庆, 孙欢, 李奇, 李长河, 王思诚, 孔标. 脱液型管式气液分离器旋流分离段内液膜流动和分离特性[J]. 化工进展, 2024, 43(8): 4297-4306. |
[8] | 王嘉, 李文翠, 吴凡, 高新芊, 陆安慧. NiMo/Al2O3催化剂活性组分分布调控及其加氢脱硫应用[J]. 化工进展, 2024, 43(8): 4393-4402. |
[9] | 李莉, 蔡鑫宇, 陈寅杰, 张文启, 李光辉, 饶品华. 超疏水-高疏油SiC膜的制备及性能[J]. 化工进展, 2024, 43(8): 4516-4522. |
[10] | 李文哲, 申淼, 王建强. 熔盐法制备新型二维层状金属碳/氮化物(MXene)的研究进展[J]. 化工进展, 2024, 43(7): 3660-3671. |
[11] | 吕青檐, 高汉文, 谢昆谕, 范冬青, 黄龙, 陈志强. 废弃有机物用于混合菌群合成PHA的利用现状与挑战[J]. 化工进展, 2024, 43(6): 3374-3385. |
[12] | 苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759. |
[13] | 黄坤, 许明, 吴秀娟, 裴思佳, 刘大伟, 马晓迅, 徐龙. 生物质活性炭的制备与微结构特性调控研究进展[J]. 化工进展, 2024, 43(5): 2475-2493. |
[14] | 李伟杰, 康金灿, 张传明, 林丽娜, 李昌鑫, 朱红平. 锆改性Cu/SiO2催化剂催化3-羟基丙酸甲酯选择性加氢[J]. 化工进展, 2024, 43(3): 1328-1341. |
[15] | 李开瑞, 高照华, 刘甜甜, 李静, 魏海生. 还原温度调变Rh/FePO4催化剂喹啉选择加氢性能[J]. 化工进展, 2024, 43(3): 1342-1349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |