化工进展 ›› 2024, Vol. 43 ›› Issue (9): 5168-5176.DOI: 10.16085/j.issn.1000-6613.2023-1408
• 精细化工 • 上一篇
收稿日期:
2023-08-13
修回日期:
2023-09-15
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
唐盛伟
作者简介:
李浩然(1998—),男,硕士研究生,研究方向为微乳液相平衡。E-mail: 1047861486@qq.com。
基金资助:
LI Haoran(), WANG Yan, ZHANG Tao, LYU Li, TANG Wenxiang, TANG Shengwei()
Received:
2023-08-13
Revised:
2023-09-15
Online:
2024-09-15
Published:
2024-09-30
Contact:
TANG Shengwei
摘要:
微乳液常被用来制备纳米材料,而对微液滴尺寸的有效调控对于纳米材料制备至关重要。本文研究了在Triton X-100微乳液体系中,以Cu(Ac)2-Zn(Ac)2电解质水溶液为水相时,微液滴尺度的变化情况。实验结果表明:在4~12nm的范围内,可以通过改变微乳液中水含量和电解质溶液种类来调节液滴的大小。在一定范围内,无论是水体系还是电解质溶液体系中,微液滴的平均粒径都随着水含量的增加而增大。电解质溶液中金属离子与水分子之间的作用力不同,导致微液滴的粒径分布呈现出不同的变化。需要注意的是,电解质的加入对于微乳液的外观和稳定性没有影响。在以链状烷烃作为油相形成的Cu(Ac)2-Zn(Ac)2电解质微乳液体系中,微液滴的粒径分布更加均匀。最后,本文采用所述的微乳液方法成功制备了CuO-ZnO纳米颗粒。本研究结果对于实现微乳液液滴尺度的可控调节和纳米材料的制备具有重要意义。
中图分类号:
李浩然, 王岩, 张涛, 吕莉, 唐文翔, 唐盛伟. 以Cu(Ac)2-Zn(Ac)2溶液为水相的W/O微液滴尺度的有效调控[J]. 化工进展, 2024, 43(9): 5168-5176.
LI Haoran, WANG Yan, ZHANG Tao, LYU Li, TANG Wenxiang, TANG Shengwei. Controllable regulation of microdroplets size in W/O microemulsion with Cu(Ac)2-Zn(Ac)2 solution as aqueous phase[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5168-5176.
醇 | 体系 | 平均粒径/nm | D10/nm | D50/nm | D90/nm |
---|---|---|---|---|---|
正丙醇 | 水 | 5.03 | 2.26 | 3.77 | 6.30 |
盐 | 6.91 | 2.56 | 4.64 | 8.39 | |
正丁醇 | 水 | 6.18 | 2.76 | 4.62 | 7.75 |
盐 | 7.86 | 2.66 | 5.09 | 9.76 | |
正戊醇 | 水 | 8.02 | 2.62 | 4.73 | 8.54 |
盐 | 10.50 | 3.65 | 6.90 | 13.07 | |
正己醇 | 水 | 9.06 | 4.57 | 7.17 | 11.25 |
盐 | 11.97 | 5.93 | 9.4 | 14.86 |
表1 不同助表面活性剂条件下,水体系与电解质溶液体系中微液滴粒径
醇 | 体系 | 平均粒径/nm | D10/nm | D50/nm | D90/nm |
---|---|---|---|---|---|
正丙醇 | 水 | 5.03 | 2.26 | 3.77 | 6.30 |
盐 | 6.91 | 2.56 | 4.64 | 8.39 | |
正丁醇 | 水 | 6.18 | 2.76 | 4.62 | 7.75 |
盐 | 7.86 | 2.66 | 5.09 | 9.76 | |
正戊醇 | 水 | 8.02 | 2.62 | 4.73 | 8.54 |
盐 | 10.50 | 3.65 | 6.90 | 13.07 | |
正己醇 | 水 | 9.06 | 4.57 | 7.17 | 11.25 |
盐 | 11.97 | 5.93 | 9.4 | 14.86 |
烷烃 | 体系 | 平均粒径/nm | D10/nm | D50/nm | D90/nm |
---|---|---|---|---|---|
环己烷 | 水 | 9.06 | 4.57 | 7.17 | 11.25 |
盐 | 11.97 | 5.93 | 9.40 | 14.86 | |
正己烷 | 水 | 5.94 | 2.40 | 4.23 | 7.42 |
盐 | 6.81 | 3.37 | 5.34 | 8.50 | |
正庚烷 | 水 | 9.63 | 3.52 | 6.52 | 13.01 |
盐 | 11.31 | 4.95 | 7.68 | 11.93 | |
正辛烷 | 水 | 10.85 | 3.85 | 7.22 | 13.48 |
盐 | 12.82 | 5.60 | 8.70 | 13.47 |
表2 不同烷烃条件下,水体系与电解质溶液体系中微液滴粒径
烷烃 | 体系 | 平均粒径/nm | D10/nm | D50/nm | D90/nm |
---|---|---|---|---|---|
环己烷 | 水 | 9.06 | 4.57 | 7.17 | 11.25 |
盐 | 11.97 | 5.93 | 9.40 | 14.86 | |
正己烷 | 水 | 5.94 | 2.40 | 4.23 | 7.42 |
盐 | 6.81 | 3.37 | 5.34 | 8.50 | |
正庚烷 | 水 | 9.63 | 3.52 | 6.52 | 13.01 |
盐 | 11.31 | 4.95 | 7.68 | 11.93 | |
正辛烷 | 水 | 10.85 | 3.85 | 7.22 | 13.48 |
盐 | 12.82 | 5.60 | 8.70 | 13.47 |
Km | 体系 | 平均粒径/nm | D10/nm | D50/nm | D90/nm |
---|---|---|---|---|---|
1∶1 | 水 | 9.06 | 4.57 | 7.17 | 11.25 |
盐 | 11.97 | 5.93 | 9.40 | 14.86 | |
1∶2 | 水 | 6.48 | 1.72 | 3.60 | 7.79 |
盐 | 10.58 | 3.06 | 6.28 | 12.92 | |
2∶1 | 水 | 6.07 | 2.49 | 4.35 | 7.61 |
盐 | 8.98 | 3.74 | 6.49 | 11.25 |
表3 不同Km条件下水体系与电解质溶液体系中微液滴粒径
Km | 体系 | 平均粒径/nm | D10/nm | D50/nm | D90/nm |
---|---|---|---|---|---|
1∶1 | 水 | 9.06 | 4.57 | 7.17 | 11.25 |
盐 | 11.97 | 5.93 | 9.40 | 14.86 | |
1∶2 | 水 | 6.48 | 1.72 | 3.60 | 7.79 |
盐 | 10.58 | 3.06 | 6.28 | 12.92 | |
2∶1 | 水 | 6.07 | 2.49 | 4.35 | 7.61 |
盐 | 8.98 | 3.74 | 6.49 | 11.25 |
1 | 崔正刚, 殷福珊. 微乳化技术及应用[M]. 北京: 中国轻工业出版社, 1999. |
CUI Zhenggang, YIN Fushan. Microemulsification technology and its application[M]. Beijing: China Light Industry Press, 1999. | |
2 | BOURREL Maurice, SCHECHTER Robert S. Microemulsions and related systems: Formulation, solvency, and physical properties[M]. New York: M. Dekker, 1988. |
3 | 王仲妮, 李干佐, 张高勇. 表面活性剂缔合结构作为药物载体的研究进展——微乳液、囊泡体系[J]. 自然科学进展, 2004, 14(11): 1209-1214. |
WANG Zhongni, LI Ganzuo, ZHANG Gaoyong. Research progress of surfactant association structure as drug carrier-microemulsion and vesicle system[J]. Progress in Natural Science, 2004, 14(11): 1209-1214. | |
4 | 邢光建, 李钰梅, 李占略. 不同形貌的CaWO4材料的微乳液法制备及其发光性能[J]. 化工进展, 2010, 29(11): 2114-2118. |
XING Guangjian, LI Yumei, LI Zhanlüe. Preparation and photoluminescent properties of CaWO4 with different morphologies via microemulsion method[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2114-2118. | |
5 | 马勇. 微乳液影响因素的研究[D]. 北京: 清华大学, 2000. |
Ma Yong. Research on the influencing factors of microemulsion[D]. Beijing: Tsinghua University, 2000. | |
6 | 邹江文, 杨欣运, 张永明, 等. 均匀设计在微乳液法制备纳米氧化铝中的应用[J]. 化工进展, 2018, 37(7): 2748-2752. |
ZOU Jiangwen, YANG Xinyun, ZHANG Yongming, et al. Application of uniform design in the preparation of nano-alumina by microemulsion method[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2748-2752. | |
7 | 沈钟, 王果庭. 胶体与表面化学[M]. 2版. 北京: 化学工业出版社, 1997. |
SHEN Zhong, WANG Guoting. Colloids and surface chemistry[M]. 2nd ed. Beijing: Chemical Industry Press, 1997. | |
8 | 李干佐, 郭荣. 微乳液理论及其应用[M]. 北京: 石油工业出版社, 1995. |
LI Ganzuo, GUO Rong. Microemulsion theory and its application[M]. Beijing: Petroleum Industry Press, 1995. | |
9 | 胡曰博. 有序介孔TiO2材料的合成、表征及应用[D]. 成都: 四川大学, 2005. |
HU Yuebo. Synthesis, characterization and application of ordered mesoporous TiO2 materials[D].Chengdu: Sichuan University, 2005. | |
10 | 白玮, 沈青. 结构化乳液的理论、 制备与应用Ⅰ. 连续相结构化乳液[J]. 高分子通报, 2009(11): 49-56. |
BAI Wei, SHEN Qing. The theory, preparation and application of structured emulsion[J]. Polymer Bulletin, 2009(11): 49-56. | |
11 | 朱文庆, 许磊, 马瑾, 等. 粒径可控纳米CeO2的微乳液法合成[J]. 物理化学学报, 2010, 26(5): 1284-1290. |
ZHU Wenqing, XU Lei, MA Jin, et al. Size controlled synthesis of CeO2 nanoparticles by a microemulsion method[J]. Acta Physico-Chimica Sinica, 2010, 26(5): 1284-1290. | |
12 | YANG Guiqin, HAN Bing, WANG Xuesong, et al. Synthesis of nanometer cobalt blue pigment by microemulsion method and control of diameter of particle[J]. Transactions of Tianjin University, 2002, 8(4): 291-294. |
13 | 华丽, 肖林久, 李文泽, 等. 溶胶-反相微乳液体系制备粒径可控的纳米CeO2 [J]. 化学工业与工程, 2019, 36(5): 58-63. |
HUA Li, XIAO Linjiu, LI Wenze, et al. Preparation of size controllable CeO2 nanoparticle by sol-reverse microemulsion system[J]. Chemical Industry and Engineering, 2019, 36(5): 58-63. | |
14 | 李朝晖, 戴伟, 傅吉全. 微乳液法制备纳米催化剂的应用研究进展[J]. 化工进展, 2008, 27(4): 499-502. |
LI Zhaohui, DAI Wei, FU Jiquan. Advances in preparation of nano-catalyst by micro-emulsification[J]. Chemical Industry and Engineering Progress, 2008, 27(4): 499-502. | |
15 | 周德, 孙庆元. 反相微乳液法制备糊精纳米微球[J]. 化工进展, 2008, 27(6): 908-912. |
ZHOU De, SUN Qingyuan. Preparation of dextrin nanosphere with inverse microemulsion[J]. Chemical Industry and Engineering Progress, 2008, 27(6): 908-912. | |
16 | 覃兴华, 卢迪芬. 反胶团微乳液法制备超微细颗粒的研究进展[J]. 化工新型材料, 1998, 26(2): 27-28, 6. |
QIN Xinghua, LU Difen. Development of preparing ultrafine particles by the W/O microemulsion method[J]. New Chemical Materials, 1998, 26(2): 27-28, 6. | |
17 | 董翠华, 龙柱, 庞志强. 微胶囊技术及其在功能纸中的应用[J]. 中国造纸, 2008, 27(4): 53-56. |
DONG Cuihua, LONG Zhu, PANG Zhiqiang. Microcapsulation and its application in functional paper[J]. China Pulp & Paper, 2008, 27(4): 53-56. | |
18 | 朱明露. 一种高强度微胶囊制备与表征[D]. 南京: 东南大学, 2015. |
ZHU Minglu. Preparation and characterization of a high-strength microcapsule[D].Nanjing: Southeast University, 2015. | |
19 | 丁海云. 可用于化学修饰电极的金属及其化合物的纳米材料合成研究进展[J]. 湿法冶金, 2018, 37(3): 173-178. |
DING Haiyun. Advance on preparation of nanometer metal and its compound using for chemically modified electrode[J]. Hydrometallurgy of China, 2018, 37(3): 173-178. | |
20 | 祁进宇. 纳米氧化锌的制备、表面改性及其在橡胶中的应用[D]. 北京: 中国科学院大学, 2014. |
QI Jinyu. Preparation, surface modification and application of nano-zinc oxide in rubber[D].Beijing: University of Chinese Academy of Sciences, 2014. | |
21 | WANG Zhixia, SONG Hang. Phase behaviors, properties and potential application of temperature-responsive microemulsions based on tropine ionic liquids[J]. Journal of Molecular Liquids, 2022, 368: 120624. |
22 | WANG Xue, CHEN Zhiyun, SHEN Weiguo. The volumetric properties of water/AOT/isooctane microemulsions with small-size droplets[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529: 893-900. |
23 | POULSEN Allan K, ARLETH Lise, ALMDAL Kristoffer, et al. Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions[J]. Journal of Colloid and Interface Science, 2007, 306(1): 143-153. |
24 | ZYLYFTARI Genti, LEE Jae W, MORRIS Jeffrey F. Salt effects on thermodynamic and rheological properties of hydrate forming emulsions[J]. Chemical Engineering Science, 2013, 95: 148-160. |
25 | HOLTZSCHERER Christine, CANDAU Francoise. Salt effect on solutions of nonionic surfactants and its influence on the stability of polymerized microemulsions[J]. Journal of Colloid and Interface Science, 1988, 125(1): 97-110. |
26 | Margarita SANCHEZ-DOMINGUEZ, PEMARTIN Kelly, BOUTONNET Magali. Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach[J]. Current Opinion in Colloid & Interface Science, 2012, 17(5): 297-305. |
27 | YUAN Xiaoqing, LI Zhiyong, FENG Ying, et al. Phase behavior and microstructure of azobenzene ionic liquids based photo-responsive microemulsions[J]. Journal of Molecular Liquids, 2019, 277: 805-811. |
28 | 宋芳, 王险, 张宗军, 等. 不同影响因素对二嗪磷微乳剂物理稳定性的影响[J]. 农药学学报, 2004, 6(2): 93-96. |
SONG Fang, WANG Xian, ZHANG Zongjun, et al. Effect of different factors on the physical stability of the micro-emulsion of diazinon[J]. Chinese Journal of Pesticide Science, 2004, 6(2): 93-96. | |
29 | LI Jian, HITCHCOCK Adam P, STÖVER Harald D H. Pickering emulsion templated interfacial atom transfer radical polymerization for microencapsulation[J]. Langmuir, 2010, 26(23): 17926-17935. |
30 | 孙炳军, 张玉海. 纳米技术与纳米材料在纤维中的应用[J]. 中国纤检, 2013(23): 74-76. |
SUN Bingjun, ZHANG Yuhai. Application of nanotechnology and nanomaterials in the fiber[J]. China Fiber Inspection, 2013(23): 74-76. | |
31 | DJEKIC Ljiljana, PRIMORAC Marija, FILIPIC Slavica, et al. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions[J]. International Journal of Pharmaceutics, 2012, 433(1/2): 25-33. |
32 | GOLWALA Pooja, RATHOD Sachin, PATIL Rahul, et al. Effect of cosurfactant addition on phase behavior and microstructure of a water dilutable microemulsion[J]. Colloids and Surfaces B: Biointerfaces, 2020, 186: 110736. |
33 | BAUDUIN Pierre, TOURAUD Didier, KUNZ Werner, et al. The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities[J]. Journal of Colloid and Interface Science, 2005, 292(1): 244-254. |
34 | ALVES Larissa Pereira, SILVA OLIVEIRA Kevin DA, ALMEIDA DA PAIXÃO SANTOS Jayne, et al.A review on developments and prospects of anti-inflammatory in microemulsions[J]. Journal of Drug Delivery Science and Technology, 2020, 60: 102008-1220021. |
35 | KONEVA A S, SAFONOVA E A, KONDRAKHINA P S, et al. Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants SPAN 80/TWEEN 80[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518: 273-282. |
36 | GARAVAND Farhad, Mehdi JALAI-JIVAN, ASSADPOUR Elham, et al. Encapsulation of phenolic compounds within nano/microemulsion systems: A review[J]. Food Chemistry, 2021, 364: 130376. |
37 | RAHMAN Hafiz Muhammad Abd Ur, AFZAL Saira, NAZAR Muhammad Faizan, et al. Phase behavior of a TX-100/oleic acid/water based ternary system: A microstructure study[J]. Journal of Molecular Liquids, 2017, 230: 15-19. |
[1] | 高玉李, 王红秋, 黄格省, 鲜楠莹, 师晓玉. 全固态锂电池的产业化和技术研究进展[J]. 化工进展, 2024, 43(9): 4767-4778. |
[2] | 梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062. |
[3] | 苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759. |
[4] | 黄梦, 孙志高, 徐文超, 张焕然, 杨扬. 内酯型槐糖脂促进HCFC-141b水合物生成[J]. 化工进展, 2024, 43(3): 1199-1205. |
[5] | 顾海林, 陈斌康, 郭佳琪, 冯洁, 简青山, 王进卿, 张光学. 含表面活性剂溶液的雾化特性及对细颗粒物的强化去除效果[J]. 化工进展, 2024, 43(2): 865-871. |
[6] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[7] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[8] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[9] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
[10] | 张艺璇, 胡伟, 刘梦瑶, 鞠敬鸽, 赵义侠, 康卫民. 聚合物电解质在锌离子电池中的研究进展[J]. 化工进展, 2023, 42(3): 1397-1410. |
[11] | 姚稳, 张雨晨, 滕文馨, 黎江玲. 表面活性剂对制备Ca掺杂β-In2S3微观结构的影响及其光催化降解甲基橙性能[J]. 化工进展, 2023, 42(2): 774-782. |
[12] | 李鑫彤, 刘天霞, 刘二瑞, 张亚萍. 阳离子表面活性剂喷涂对ZnMg棒状双金属氢氧化物电催化还原CO2产CO性能影响[J]. 化工进展, 2023, 42(11): 5738-5746. |
[13] | 田晓录, 易义坤, 海峰, 吴振迪, 郑申拓, 郭靖宇, 李明涛. 剪切增稠流体在锂离子电池电解质方面的研究进展[J]. 化工进展, 2023, 42(11): 5786-5800. |
[14] | 崔腾达, 文华, 赵颖. 改性液滴撞击荷叶表面沉积特性对比[J]. 化工进展, 2023, 42(11): 5882-5890. |
[15] | 毕强, 梅毅, 夏举佩. 磷Ⅱ型无水石膏制备及活性联合激发基础研究[J]. 化工进展, 2023, 42(10): 5427-5435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |