化工进展 ›› 2024, Vol. 43 ›› Issue (9): 5049-5062.DOI: 10.16085/j.issn.1000-6613.2023-1478
• 材料科学与技术 • 上一篇
梁宏成1,2(), 赵冬妮1,2(), 权银1,2, 李敬妮1,2, 胡欣怡1,2
收稿日期:
2023-08-23
修回日期:
2023-12-09
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
赵冬妮
作者简介:
梁宏成(1999—),男,硕士研究生,研究方向为电化学储能技术与工程。E-mail: LiangHC_Z@163.com。
基金资助:
LIANG Hongcheng1,2(), ZHAO Dongni1,2(), QUAN Yin1,2, LI Jingni1,2, HU Xinyi1,2
Received:
2023-08-23
Revised:
2023-12-09
Online:
2024-09-15
Published:
2024-09-30
Contact:
ZHAO Dongni
摘要:
固态电解质界面膜(SEI)是电解液与电极在固/液相界面上发生电化学反应后,覆盖在电极表面的钝化层,其通常形成于电池的化成阶段,具有传导离子、隔绝电子的特征。优良的SEI膜对于提高锂离子电池(LIBs)的循环寿命、安全性等具有重要意义。不同电解液体系形成的SEI膜形貌和结构各不相同,对LIBs性能具有不同程度的影响。因此,深入分析SEI膜形貌和结构与电池性能之间的构效关系很重要。本文首先综述了影响SEI膜结构和性质的因素;然后阐述了原位/非原位表征SEI膜形貌和结构的主要方法,并介绍了一种新型的电化学阻抗表征技术;最后总结了SEI膜结构对LIBs离子传输、锂沉积和界面脱溶剂化等方面的影响。通过总结SEI膜的结构与LIBs性能之间的关系,以期靶向调控SEI膜结构提升锂离子电池性能。
中图分类号:
梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062.
LIANG Hongcheng, ZHAO Dongni, QUAN Yin, LI Jingni, HU Xinyi. Influence of SEI film morphology and structure on the performance of lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5049-5062.
1 | XU Kang. Electrolytes, interfaces and interphases fundamentals and applications in batteries[M]. United Kingdom: The Royal Society of Chemistry, 2023. |
2 | ZHAO Qing, STALIN Sanjuna, ARCHER Lynden A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. |
3 | YAN Chong, YAO Yuxing, CAI Wenlong, et al. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338. |
4 | ZHANG Zhenyu, SMITH Keenan, JERVIS Rhodri, et al. Operando electrochemical atomic force microscopy of solid-electrolyte interphase formation on graphite anodes: The evolution of SEI morphology and mechanical properties[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35132-35141. |
5 | KITZ Paul G, LACEY Matthew J, Petr NOVÁK, et al. Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate[J]. Journal of Power Sources, 2020, 477: 228567. |
6 | LIU Wei, LIU Pengcheng, MITLIN David. Solid electrolyte interphases: Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Advanced Energy Materials, 2020, 10(43): 2002297-2002321. |
7 | SONG Ge, YI Zonglin, SU Fangyuan, et al. New insights into the mechanism of LiDFBOP for improving the low-temperature performance via the rational design of an interphase on a graphite anode[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40042-40052. |
8 | HUANG Yingshan, WANG Chaonan, Haifeng LYU, et al. Bifunctional interphase promotes Li+ de-solvation and transportation enabling fast-charging graphite anode at low temperature[J]. Advanced Materials, 2023, 36(13): 2308675. |
9 | CHANG Zhi, QIAO Yu, DENG Han, et al. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery[J]. Joule, 2020, 4(8): 1776-1789. |
10 | MENG Y Shirley, SRINIVASAN Venkat, XU Kang. Designing better electrolytes[J]. Science, 2022, 378(6624): eabq3750. |
11 | LI Fang, HE Jian, LIU Jiandong, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(12): 6600-6608. |
12 | ZHANG Weidong, SHEN Zeyu, LI Siyuan, et al. Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: Toward practical Li-metal full batteries[J]. Advanced Functional Materials, 2020, 30(39): 2003800-2003808. |
13 | GEHRLEIN Lydia, LEIBING Christian, PFEIFER Kristina, et al. Glyoxylic acetals as electrolytes for Si/graphite anodes in lithium-ion batteries[J]. Electrochimica Acta, 2022, 424: 140642. |
14 | GHAUR Adjmal, PESCHEL Christoph, DIENWIEBEL Iris, et al. Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(26): 2203503-2203517. |
15 | ZHAO Dongni, WANG Jie, WANG Peng, et al. Regulating the composition distribution of layered SEI film on Li-ion battery anode by LiDFBOP[J]. Electrochimica Acta, 2020, 337: 135745. |
16 | WANG Ruo, LI Jiawei, HAN Bing, et al. Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries[J]. Journal of Energy Chemistry, 2024, 88: 532-542. |
17 | SUN Qujiang, CAO Zhen, MA Zheng, et al. Discerning roles of interfacial model and solid electrolyte interphase layer for stabilizing antimony anode in lithium-ion batteries[J]. ACS Materials Letters, 2022, 4(11): 2233-2243. |
18 | SONG Youzhi, WANG Li, SHENG Li, et al. The significance of mitigating crosstalk in lithium-ion batteries: A review[J]. Energy & Environmental Science, 2023, 16(5): 1943-1963. |
19 | TAN Sha, KIM Ju-Myung, CORRAO Adam, et al. Unravelling the convoluted and dynamic interphasial mechanisms on Li metal anodes[J]. Nature Nanotechnology, 2023, 18(3): 243-249. |
20 | KIM Minkyu, HARVEY Steven P, HUEY Zoey, et al. A new mechanism of stabilizing SEI of Si anode driven by crosstalk behavior and its potential for developing high performance Si-based batteries[J]. Energy Storage Materials, 2023, 55: 436-444. |
21 | LI Zhaojuan, XU Fei, LI Chunlei, et al. Influences and mechanisms of water on a solid electrolyte interphase film for lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(2): 1199-1207. |
22 | FENG Guangxia, JIA Hao, SHI Yaping, et al. Imaging solid-electrolyte interphase dynamics using operando reflection interference microscopy[J]. Nature Nanotechnology, 2023, 18(7): 780-789. |
23 | SUN Shuyu, YAO Nao, JIN Chengbin, et al. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase[J]. Angewandte Chemie International Edition, 2022, 61(42): 8743-8751. |
24 | 周丹, 梁风, 姚耀春. 锂离子电池电解液负极成膜添加剂的研究进展[J]. 化工进展, 2016, 35(5): 1477-1483. |
ZHOU Dan, LIANG Feng, YAO Yaochun. Research progress of negative film-forming additives in electrolyte for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1477-1483. | |
25 | WANG Yamin, LIU Yingchun, TU Yaoquan, et al. Reductive decomposition of solvents and additives toward solid-electrolyte interphase formation in lithium-ion battery[J]. The Journal of Physical Chemistry C, 2020, 124(17): 9099-9108. |
26 | HEISKANEN Satu Kristiina, KIM Jongjung, LUCHT Brett L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333. |
27 | Janika WAGNER-HENKE, KUAI Dacheng, GERASIMOV Michail, et al. Knowledge-driven design of solid-electrolyte interphases on lithium metal via multiscale modelling[J]. Nature Communications, 2023, 14(1): 6823. |
28 | 罗倩, 巢亚军, 渠冰, 等. 锂离子电池中SEI膜的研究方法[J]. 电源技术, 2015, 39(5): 1086-1090. |
LUO Qian, CHAO Yajun, QU Bing, et al. Research technologies of solid electrolyte interphase in Li-ion batteries[J]. Chinese Journal of Power Sources, 2015, 39(5): 1086-1090. | |
29 | XU Kang. Interfaces and interphases in batteries[J]. Journal of Power Sources, 2023, 559: 232652. |
30 | VON KOLZENBERG Lars, WERRES Martin, TETZLOFF Jonas, et al. Transition between growth of dense and porous films: Theory of dual-layer SEI[J]. Physical Chemistry Chemical Physics, 2022, 24(31): 18469-18476. |
31 | YANG Poyu, Chunwei PAO. Molecular simulations of the microstructure evolution of solid electrolyte interphase during cyclic charging/discharging[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5017-5027. |
32 | ZHANG Zewen, LI Yuzhang, XU Rong, et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70. |
33 | ZHANG Qiankui, ZHANG Xueqiang, WAN Jing, et al. Homogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries[J]. Nature Energy, 2023, 8(7): 725-735. |
34 | WAN Jing, HAO Yang, SHI Yang, et al. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries[J]. Nature Communications, 2019, 10: 3265. |
35 | HUANG William, WANG Hansen, BOYLE David T, et al. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy[J]. ACS Energy Letters, 2020, 5(4): 1128-1135. |
36 | HE Junwu, GU Yu, WANG Weiwei, et al. Structures of solid-electrolyte interphases and impacts on initial-stage lithium deposition in pyrrolidinium-based ionic liquids[J]. ChemElectroChem, 2021, 8: 62-69. |
37 | LI Yunyong, Changzhi OU, ZHU Junlu, et al. Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene-encapsulated nitrogen-doped carbon@Sn compact monolith[J]. Nano Letters, 2020, 20(3): 2034-2046. |
38 | ZHU Chenbo, FAN Chenghao, EMILIANO Cortés, et al. In situ surface-enhanced Raman spectroelectrochemistry reveals the molecular conformation of electrolyte additives in Li-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(35): 20024-20031. |
39 | WANG Peng, YAN De, WANG Caiyun, et al. Study of the formation and evolution of solid electrolyte interface via in situ electrochemical impedance spectroscopy[J]. Applied Surface Science, 2022, 596: 153572. |
40 | AHMAD Zeeshan, VENTURI Victor, HAFIZ Hasnain, et al. Interfaces in solid electrolyte interphase: Implications for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2021, 125(21): 11301-11309. |
41 | Stefany ANGARITA-GOMEZ, BALBUENA Perla B. Ion motion and charge transfer through a solid-electrolyte interphase: An atomistic view[J]. Journal of Solid State Electrochemistry, 2022, 26(9): 1931-1939. |
42 | HAO Feng, VISHNUGOPI Bairav S, WANG Hua, et al. Chemomechanical interactions dictate lithium surface diffusion kinetics in the solid electrolyte interphase[J]. Langmuir, 2022, 38(18): 5472-5480. |
43 | HU Taiping, TIAN Jianxin, DAI Fuzhi, et al. Impact of the local environment on Li ion transport in inorganic components of solid electrolyte interphases[J]. Journal of the American Chemical Society, 2023, 145(2): 1327-1333. |
44 | YILDIRIM Handan, KINACI Alper, CHAN Maria K Y, et al. First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 18985-18996. |
45 | LI Chilin, MAIER Joachim. Ionic space charge effects in lithium fluoride thin films[J]. Solid State Ionics, 2012, 225: 408-411. |
46 | ZHANG Qinglin, PAN Jie, LU Peng, et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries[J]. Nano Letters, 2016, 16(3): 2011-2016. |
47 | TAN Jian, MATZ John, DONG Pei, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046-2100071. |
48 | DING Junfan, XU Rui, YAN Chong, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry, 2021, 59: 306-319. |
49 | SHI Siqi, LU Peng, LIU Zhongyi, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. |
50 | RAMASUBRAMANIAN Ajaykrishna, YURKIV Vitaliy, FOROOZAN Tara, et al. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245. |
51 | YU Yikang, Hyeongjun KOH, ZHANG Zisheng, et al. Kinetic pathways of fast lithium transport in solid electrolyte interphases with discrete inorganic components[J]. Energy & Environmental Science, 2023, 16(12): 5904-5915. |
52 | DING Jieying, WEN Yucheng, LAN Xuexia, et al. Roles of trimethyl borate in constructing an interphase on Li anode: Angel or demon?[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 6768-6776. |
[1] | 高玉李, 王红秋, 黄格省, 鲜楠莹, 师晓玉. 全固态锂电池的产业化和技术研究进展[J]. 化工进展, 2024, 43(9): 4767-4778. |
[2] | 张巍, 宋权斌, 周运河, 董梦瑶, 李婕, 伍乔, 付业昊, 梁垚城, 尹艳山, 成珊, 宋健. 全钒液流电池离子导电膜的选择性[J]. 化工进展, 2024, 43(9): 4859-4870. |
[3] | 王正峰, 谢雨杭, 李伟科, 范永春, 康钟尹, 付乾. 多孔炭修饰的吸附催化一体化电极高效电解碳酸氢盐[J]. 化工进展, 2024, 43(9): 4892-4899. |
[4] | 耿秀梅, 张逢, 张翔, 单美霞, 张亚涛. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012. |
[5] | 宋家恺, 孔令真, 陈家庆, 孙欢, 李奇, 李长河, 王思诚, 孔标. 脱液型管式气液分离器旋流分离段内液膜流动和分离特性[J]. 化工进展, 2024, 43(8): 4297-4306. |
[6] | 潘涵婷, 徐洪涛, 许多, 罗祝清. 低温条件下基于相变材料的锂离子电池保温特性分析[J]. 化工进展, 2024, 43(8): 4333-4341. |
[7] | 孙燕, 冯倩颖, 谢晓阳, 何皎洁, 杨利伟, 白波. 基于环糊精构筑薄膜复合膜的研究进展[J]. 化工进展, 2024, 43(8): 4464-4476. |
[8] | 李莉, 蔡鑫宇, 陈寅杰, 张文启, 李光辉, 饶品华. 超疏水-高疏油SiC膜的制备及性能[J]. 化工进展, 2024, 43(8): 4516-4522. |
[9] | 徐冰, 杨晓蓉, 刘月华, 何峰, 周兴, 王志, 公旭中. 天然鳞片石墨球形尾料制备柔性电热膜[J]. 化工进展, 2024, 43(8): 4534-4541. |
[10] | 张锐, 江静, 徐鸿飞, 杨盛凯, 李亚红, 周靖原, 曾坚贤, 黄小平, 刘鹏飞, 张明明, 李志强. 陶瓷膜分离技术及其在生物制造领域的应用进展[J]. 化工进展, 2024, 43(8): 4550-4561. |
[11] | 黎伟杰, 路蕾蕾, 李得科, 王春航, 张祖铭, 谭强. 锂离子电池拆解回收技术及进展[J]. 化工进展, 2024, 43(8): 4601-4613. |
[12] | 杨光, 姜瑞婷, 张玥, 符子剑, 刘伟. 五氧化二钒/碳纳米复合材料在超级电容器中的应用[J]. 化工进展, 2024, 43(7): 3857-3871. |
[13] | 唐安琪, 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群. 聚酰亚胺气体分离膜的物理老化现象浅析[J]. 化工进展, 2024, 43(7): 3923-3933. |
[14] | 罗臻, 王庆吉, 王占生, 杨雪莹, 谢加才, 王浩. 炼化污染场地抽出水强氧化短程处理工艺[J]. 化工进展, 2024, 43(7): 4155-4163. |
[15] | 李妍, 吴芹, 陈康成, 张耀远, 史大昕, 黎汉生. 聚酰亚胺渗透汽化膜用于有机溶剂脱水的改性研究进展[J]. 化工进展, 2024, 43(6): 2915-2927. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |