化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4464-4476.DOI: 10.16085/j.issn.1000-6613.2023-1014
• 材料科学与技术 • 上一篇
孙燕1(), 冯倩颖1, 谢晓阳1, 何皎洁1(), 杨利伟1, 白波2
收稿日期:
2023-06-20
修回日期:
2023-07-28
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
何皎洁
作者简介:
孙燕(1991—),女,博士,讲师,研究方向为膜法水处理理论与技术。E-mail:sunyan2021@chd.edu.cn。
基金资助:
SUN Yan1(), FENG Qianying1, XIE Xiaoyang1, HE Jiaojie1(), YANG Liwei1, BAI Bo2
Received:
2023-06-20
Revised:
2023-07-28
Online:
2024-08-15
Published:
2024-09-02
Contact:
HE Jiaojie
摘要:
绿色环保型材料环糊精(CD)因其独特的空腔结构和外壁亲水、内壁疏水的两亲性,在水处理分离膜的构筑上受到广泛关注。CD膜具有优异的理化性质和结构特征,在污废水净化、染料/盐混合溶液分离和有机溶剂纳滤等水处理领域备受青睐。在水处理中,CD膜可以同时实现分子和离子的精确分离,并提高膜的渗透性。本文从CD膜的设计及制备方法(界面聚合法和相转化法)出发,围绕CD膜的不同构筑方法,综述了近年来基于环糊精构筑水处理薄膜复合膜的研究现状,探讨了CD引入对膜分离层界面结构、渗透性、污染物截留和抗污染能力等方面的影响。最后对基于环糊精构筑薄膜复合膜的发展方向,如提高CD的反应活性、优化反应条件、开发新型CD衍生物以及新型CD膜的制备工艺进行了分析和展望,以推动CD薄膜复合膜在水处理中的应用发展。
中图分类号:
孙燕, 冯倩颖, 谢晓阳, 何皎洁, 杨利伟, 白波. 基于环糊精构筑薄膜复合膜的研究进展[J]. 化工进展, 2024, 43(8): 4464-4476.
SUN Yan, FENG Qianying, XIE Xiaoyang, HE Jiaojie, YANG Liwei, BAI Bo. Research progress on the cyclodextrin-based thin film composite membranes[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4464-4476.
1 | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5): 16018. |
2 | JEONG Byeong-Heon, HOEK E M V, YAN Yushan, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes[J]. Journal of Membrane Science, 2007, 294(1/2): 1-7. |
3 | LIU Liyan, KANG Hui, WANG Wei, et al. Layer-by-layer self-assembly of polycation/GO/OCNTs nanofiltration membrane with enhanced stability and flux[J]. Journal of Materials Science, 2018, 53(15): 10879-10890. |
4 | PASETA L, LUQUE-ALLED J M, MALANKOWSKA M, et al. Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration[J]. Separation and Purification Technology, 2020, 247: 116995. |
5 | WU Chenpu, XIE Quanling, HONG Zhuan, et al. Thin-film nanocomposite nanofiltration membrane with enhanced desalination and antifouling performance via incorporating L-aspartic acid functionalized graphene quantum dots[J]. Desalination, 2021, 498: 114811. |
6 | MANSOR E S, JAMIL T S, ABDALLAH H, et al. Highly thin film nanocomposite membrane based metal organic complexes for brackish water desalination[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5459-5469. |
7 | ZHANG Wenxiang, ZHANG Liming, ZHAO Haifeng, et al. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving[J]. Journal of Materials Chemistry A, 2018, 6(27): 13331-13339. |
8 | 熊舒. 正渗透薄膜复合膜的选择层结构调控[D]. 武汉: 华中科技大学, 2019. |
XIONG Shu. Control of selective layer structure of forward osmosis membrane composite membrane[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
9 | ADAMS F V, NXUMALO E N, KRAUSE R W M, et al. Preparation and characterization of polysulfone/β-cyclodextrin polyurethane composite nanofiltration membranes[J]. Journal of Membrane Science, 2012, 405/406: 291-299. |
10 | EASTBURN S D, TAO B Y. Applications of modified cyclodextrins[J]. Biotechnology Advances, 1994, 12(2): 325-339. |
11 | SOE H M S H, MAW P D, LOFTSSON T, et al. A current overview of cyclodextrin-based nanocarriers for enhanced antifungal delivery[J]. Pharmaceuticals, 2022, 15(12): 1447. |
12 | DASS C R, JESSUP W. Apolipoprotein A-I, cyclodextrins and liposomes as potential drugs for the reversal of atherosclerosis. A review[J]. Journal of pharmacy and pharmacology, 2000, 52(7): 731-761. |
13 | 赵珍珍, 郑喜, 王雪琪, 等. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
ZHAO Zhenzhen, ZHENG Xi, WANG Xueqi, et al. Research progress on microporous supporting substrate of polyamide composite membrane[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1917-1933. | |
14 | ZHU Bo, SHAO Ruiqi, LI Nan, et al. Progress of cyclodextrin based-membranes in water treatment: Special 3D bowl-like structure to achieve excellent separation[J]. Chemical Engineering Journal, 2022, 449: 137013. |
15 | 赵艳艳. β-环糊精改性聚酰胺反渗透膜研究[D]. 杭州: 浙江工业大学, 2018. |
ZHAO Yanyan. Study on β-cyclodextrin modified polyamide reverse osmosis membrane[D]. Hangzhou: Zhejiang University of Technology, 2018. | |
16 | WANG Chongbin, WANG Hongchao, LI Yongsheng, et al. Preparation of chlorine-resistant and regenerable antifouling nanofiltration membrane through interfacial polymerization using beta cyclodextrin monomers[J]. Chemosphere, 2023, 313: 137423. |
17 | YU Zongxue, PAN Yang, HE Yi, et al. Preparation of a novel anti-fouling β-cyclodextrin-PVDF membrane[J]. RSC Advances, 2015, 5(63): 51364-51370. |
18 | LIU Jiangtao, HUA Dan, ZHANG Yu, et al. Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules[J]. Advanced Materials, 2018, 30(11): 1705933. |
19 | LIU Lixue, YU Ling, BORJIGIN B, et al. Fabrication of thin-film composite nanofiltration membranes with improved performance using β-cyclodextrin as monomer for efficient separation of dye/salt mixtures[J]. Applied Surface Science, 2021, 539: 148284. |
20 | LI Juan, GONG Jilai, ZENG Guangming, et al. Thin-film composite polyester nanofiltration membrane with high flux and efficient dye/salts separation fabricated from precise molecular sieving structure of β-cyclodextrin[J]. Separation and Purification Technology, 2021, 276: 119352. |
21 | JAYARANI M M, RAJMOHANAN P R, KULKARNI S S, et al. Synthesis of model diamide, diester and esteramide adducts and studies on their chlorine tolerance[J]. Desalination, 2000, 130(1): 1-16. |
22 | XUE Jing, JIAO Zhiwei, BI Ran, et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin[J]. Journal of Membrane Science, 2019, 584: 282-289. |
23 | TANG Yongjian, SHEN Bingjie, HUANG Benqing, et al. High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin[J]. Separation and Purification Technology, 2019, 227: 115718. |
24 | ZHANG Tonghui, ZHANG Hong, LI Peiyun, et al. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications[J]. Separation and Purification Technology, 2022, 297: 121541. |
25 | WU Huiqing, TANG Beibei, WU Peiyi. Preparation and characterization of anti-fouling β-cyclodextrin/polyester thin film nanofiltration composite membrane[J]. Journal of Membrane Science, 2013, 428: 301-308. |
26 | MATSHETSHE K, SIKHWIVHILU K, NDLOVU G, et al. Antifouling and antibacterial β-cyclodextrin decorated graphene oxide/polyamide thin-film nanocomposite reverse osmosis membranes for desalination applications[J]. Separation and Purification Technology, 2021, 278: 119594. |
27 | XU Sunjie, SHEN Qian, CHEN Guie, et al. Novel β-CD@ZIF-8 nanoparticles-doped poly(m-phenylene isophthalamide) (PMIA) thin-film nanocomposite (TFN) membrane for organic solvent nanofiltration (OSN)[J]. ACS Omega, 2018, 3(9): 11770-11787. |
28 | YU Jian, LI Zhiwen, XIA Mengjiao, et al. Green and edible cyclodextrin metal-organic frameworks modified polyamide thin film nanocomposite nanofiltration membranes for efficient desalination[J]. Journal of Membrane Science, 2023, 679: 121714. |
29 | XUE Jing, SHEN Jianliang, ZHANG Runnan, et al. High-flux nanofiltration membranes prepared with β-cyclodextrin and graphene quantum dots[J]. Journal of Membrane Science, 2020, 612: 118465. |
30 | WANG Zihui, ZHU Xuewu, CHENG Xiaoxiang, et al. Nanofiltration membranes with octopus arm-sucker surface morphology: Filtration performance and mechanism investigation[J]. Environmental Science & Technology, 2021, 55(24): 16676-16686. |
31 | WANG Zhanghui, GUO Shuang, ZHANG Bin, et al. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination[J]. Journal of Membrane Science, 2019, 592: 117375. |
32 | 聂晓娟, 李霞, 马红艳. 环糊精聚合物的合成及应用研究[J]. 精细化工, 2019, 36(12): 2364-2370, 2377. |
NIE Xiaojuan, LI Xia, MA Hongyan. Synthesis and application of cyclodextrin polymers[J]. Fine Chemicals, 2019, 36(12): 2364-2370, 2377. | |
33 | GAIDAMAUSKAS E, NORKUS E, BUTKUS E, et al. Deprotonation of β-cyclodextrin in alkaline solutions[J]. Carbohydrate Research, 2009, 344(2): 250-254. |
34 | XIONG Shu, ZHANG Dongyan, MEI Shuang, et al. Thin film composite membranes containing intrinsic CD cavities in the selective layer[J]. Journal of Membrane Science, 2018, 551: 294-304. |
35 | MBULI B S, NXUMALO E N, MHLANGA S D, et al. Development of antifouling polyamide thin-film composite membranes modified with amino-cyclodextrins and diethylamino-cyclodextrins for water treatment[J]. Journal of Applied Polymer Science, 2014, 131(8): 40109. |
36 | 李春, 贾萌萌, 张梦蕾, 等. 基于羟丙基-β-环糊精的界面聚合纳滤膜及其性能研究[J]. 膜科学与技术, 2021, 41(6): 118-125. |
LI Chun, JIA Mengmeng, ZHANG Menglei, et al. The interface polymerized nanofiltration membrane with hydroxypropyl-β-cyclodextrin as aqueous monomer[J]. Membrane Science and Technology, 2021, 41(6): 118-125. | |
37 | YAO Zhikan, GUO Hao, YANG Zhe, et al. Preparation of nanocavity-contained thin film composite nanofiltration membranes with enhanced permeability and divalent to monovalent ion selectivity[J]. Desalination, 2018, 445: 115-122. |
38 | HUANG Tiefan, PUSPASARI T, NUNES S P, et al. Ultrathin 2D-layered cyclodextrin membranes for high-performance organic solvent nanofiltration[J]. Advanced Functional Materials, 2020, 30(4): 1906797. |
39 | YASSARI M, SHAKERI A. Nature based forward osmosis membranes: A novel approach for improved anti-fouling properties of thin film composite membranes[J]. Chemical Engineering Research and Design, 2022, 184: 137-151. |
40 | JIANG Zhiwei, DONG Ruijiao, EVANS A M, et al. Aligned macrocycle pores in ultrathin films for accurate molecular sieving[J]. Nature, 2022, 609(7925): 58-64. |
41 | 兰秀娟. 环糊精衍生物/醋酸纤维素共混纳滤膜的研究[D]. 厦门: 厦门大学, 2017. |
LAN Xiujuan. Study on cyclodextrin derivatives/cellulose acetate blended nanofiltration membrane[D]. Xiamen: Xiamen University, 2017. | |
42 | JEON Sungkwon, PARK Chan Hyung, SHIN Seung Su, et al. Fabrication and structural tailoring of reverse osmosis membranes using β-cyclodextrin-cored star polymers[J]. Journal of Membrane Science, 2020, 611: 118415. |
43 | LIU Min, NOTHLING M D, TAN S S L, et al. Polyrotaxane-based thin film composite membranes for enhanced nanofiltration performance[J]. Separation and Purification Technology, 2020, 246: 116893. |
44 | TESHA J M, DLAMINI D S, QASEEM S, et al. Tight ultrafiltration: Layer deposition of trimesoyl chloride/β-cyclodextrin onto polysulfone/poly(styrene-co-maleic anhydride) membrane for water treatment[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103733. |
45 | YU Xi, ZHU Tengyang, XU Sheng, et al. Second interfacial polymerization of thin-film composite hollow fibers with amine- cyclodextrins for pervaporation dehydration[J]. AIChE Journal, 2021, 67(5): e17144. |
46 | XU Shu, WANG Panpan, SUN Zhiqiang, et al. Dual-functionalization of polymeric membranes via cyclodextrin-based host-guest assembly for biofouling control[J]. Journal of Membrane Science, 2019, 569: 124-136. |
47 | ZHAO Ying, LI Nan, SHI Jie, et al. Extra-thin composite nanofiltration membranes tuned by γ-cyclodextrins containing amphipathic cavities for efficient separation of magnesium/lithium ions[J]. Separation and Purification Technology, 2022, 286: 120419. |
48 | WU Haowen, LIU Yingying, ZHANG Haifeng, et al. Rapid construction of cyclodextrin polyester layer on polyamide for preparing highly permeable reverse osmosis membrane[J]. Journal of Membrane Science, 2022, 660: 120862. |
49 | WANG Yan, BAO Chunyang, LI Die, et al. Antifouling and chlorine-resistant cyclodextrin loose nanofiltration membrane for high-efficiency fractionation of dyes and salts[J]. Journal of Membrane Science, 2022, 661: 120925. |
50 | BARUAH K, HAZARIKA S. Separation of acetic acid from dilute aqueous solution by nanofiltration membrane[J]. Journal of Applied Polymer Science, 2014, 131(15): e40537. |
51 | 周凯丽. 基于环糊精的聚合物超滤膜的制备及性能研究[D]. 济南: 济南大学, 2018. |
ZHOU Kaili. Preparation and properties of polymer ultrafiltration membrane based on cyclodextrin[D]. Jinan: University of Jinan, 2018. | |
52 | ZHANG Rui, LI Yu, ZHU Xuyang, et al. Application of β-cyclodextrin-modified/PVDF blend magnetic membranes for direct metal ions removal from wastewater[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(7): 2692-2707. |
53 | MA Jing, HE Yi, ZENG Guangyong, et al. High‐flux PVDF membrane incorporated with β‐cyclodextrin modified halloysite nanotubes for dye rejection and Cu(Ⅱ) removal from water[J]. Polymers for Advanced Technologies, 2018, 29(11): 2704-2714. |
54 | RAHIMI Z, ZINATIZADEH A A, ZINADINI S, et al. β-Cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes[J]. Separation and Purification Technology, 2020, 247: 116979. |
55 | CHOI Sung Hak, CHUNG Jae Woo, PRIESTLEY R D, et al. Functionalization of polysulfone hollow fiber membranes with amphiphilic β-cyclodextrin and their applications for the removal of endocrine disrupting plasticizer[J]. Journal of Membrane Science, 2012, 409/410: 75-81. |
56 | 马思思. 环糊精和聚轮烷改性抗污染膜的构建及其抗污染行为研究[D]. 天津: 天津工业大学, 2020. |
MA Sisi. Construction of anti-pollution membrane modified by cyclodextrin and polyrotaxane and its anti-pollution behavior[D]. Tianjin: Tianjin Polytechnic University, 2020. |
[1] | 焦文磊, 刘震, 陈俊先, 张天钰, 姬忠礼. 叶片式分离元件结构及性能影响因素研究进展[J]. 化工进展, 2024, 43(8): 4187-4202. |
[2] | 王世伟, 王超, 郭琪, 丁红兵. 基于ECT模型修正及算法优化的超音速分离流场图像重建[J]. 化工进展, 2024, 43(8): 4222-4229. |
[3] | 宋家恺, 孔令真, 陈家庆, 孙欢, 李奇, 李长河, 王思诚, 孔标. 脱液型管式气液分离器旋流分离段内液膜流动和分离特性[J]. 化工进展, 2024, 43(8): 4297-4306. |
[4] | 唐安琪, 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群. 聚酰亚胺气体分离膜的物理老化现象浅析[J]. 化工进展, 2024, 43(7): 3923-3933. |
[5] | 杜倩, 侯明, 高冀芸, 杨黎, 鲁元佳, 郭胜惠. f-Ti3C2T x /ZIF-8异质结构增强NO2气体传感器的敏感性能[J]. 化工进展, 2024, 43(7): 3946-3954. |
[6] | 李妍, 吴芹, 陈康成, 张耀远, 史大昕, 黎汉生. 聚酰亚胺渗透汽化膜用于有机溶剂脱水的改性研究进展[J]. 化工进展, 2024, 43(6): 2915-2927. |
[7] | 王涛, 高翔, 高继峰, 邓海全, 余显涌, 周振华, 唐玲, 吕航. 改性Cu-BTC基混合基质膜在CO2分离中的应用[J]. 化工进展, 2024, 43(6): 3240-3246. |
[8] | 王宝山, 陈晓杰, 赵培宇, 张许. 基于三维生物膜电极的难生化有机化工废水处理研究进展[J]. 化工进展, 2024, 43(6): 3359-3373. |
[9] | 马海飞, 廖亚龙, 武敏, 贾小宝, 杨双宇. 湿法炼铜浸出液萃取分离硫酸机理[J]. 化工进展, 2024, 43(6): 3410-3419. |
[10] | 周秋明, 牛丛丛, 吕帅帅, 李红伟, 文富利, 徐润, 李明丰. 通过产物转化分离推动CO2加氢制甲醇过程的研究进展[J]. 化工进展, 2024, 43(5): 2776-2785. |
[11] | 李海鹏, 吴桐, 王琪, 郜时旺, 王晓龙, 李旭, 高新华, 年佩, 魏逸彬. 透水NaA分子筛膜强化的CO2加氢高效制甲醇[J]. 化工进展, 2024, 43(5): 2834-2842. |
[12] | 冯飞飞, 田斌, 马鹏飞, 韦荐昕, 徐龙, 田原宇, 马晓迅. 木质素分离原理与方法研究进展[J]. 化工进展, 2024, 43(5): 2512-2525. |
[13] | 刘苗, 焦莹莹, 丁玲, 李城城, 何颖, 孙亮亮, 郝青青, 陈汇勇, 罗群兴. 酸催化己糖脱水合成5-羟甲基糠醛:反应、分离和过程耦合[J]. 化工进展, 2024, 43(5): 2526-2543. |
[14] | 张宝, 王鹏, 安勇攀, 吕平, 蒋建良. 船舶应用燃料电池系统的设计与试验[J]. 化工进展, 2024, 43(5): 2554-2567. |
[15] | 范文轩, 徐双平, 贾宏葛, 张明宇, 蘧延庆. 芴基、酰亚胺基和萘基聚合物气体分离膜的研究进展[J]. 化工进展, 2024, 43(4): 1897-1911. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |