化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2526-2543.DOI: 10.16085/j.issn.1000-6613.2023-2099
• 新能源与可再生能源 • 上一篇
刘苗1(), 焦莹莹1, 丁玲1, 李城城2, 何颖3, 孙亮亮3, 郝青青1,2, 陈汇勇1,2, 罗群兴1,2()
收稿日期:
2013-11-29
修回日期:
2024-02-02
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
罗群兴
作者简介:
刘苗(1998—),女,硕士研究生,研究方向为生物质催化转化。E-mail:liumiao7@stumail.nwu.edu.cn。
基金资助:
LIU Miao1(), JIAO Yingying1, DING Ling1, LI Chengcheng2, HE Ying3, SUN Liangliang3, HAO Qingqing1,2, CHEN Huiyong1,2, LUO Qunxing1,2()
Received:
2013-11-29
Revised:
2024-02-02
Online:
2024-05-15
Published:
2024-06-15
Contact:
LUO Qunxing
摘要:
5-羟甲基糠醛(HMF)是生物质转化为化学品、燃料和聚酯材料的重要平台化合物之一。理性设计高效催化剂、优化催化反应过程、开发新型分离以及反应-分离单元耦合技术能够强化HMF生产综合效能,还可以简化工艺流程、降低碳排放和能耗。本文立足于酸催化己糖脱水合成HMF过程中反应和分离的关键科学问题,从催化剂活性位“接力式”设计、催化反应串联耦合、表面亲疏水性调控、反应溶剂匹配、固-液吸附材料、吸附机制和构-效关系、反应-分离过程强化等方面出发,系统综述酸催化己糖脱水合成HMF过程中的反应、分离和过程耦合相关研究进展,为生物质资源高效转化利用过程中催化和分离系统的综合设计提供参考与指导。
中图分类号:
刘苗, 焦莹莹, 丁玲, 李城城, 何颖, 孙亮亮, 郝青青, 陈汇勇, 罗群兴. 酸催化己糖脱水合成5-羟甲基糠醛:反应、分离和过程耦合[J]. 化工进展, 2024, 43(5): 2526-2543.
LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543.
反应体系 | 催化剂 | 反应溶剂 | 反应条件 | 催化性能 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
温度/℃ | 时间/h | XGlu/% | SHMF/% | YHMF/% | ||||
均相 | HCl+AlCl3 | H2O/仲丁基苯酚 | 170 | 0.7 | 91 | 68 | 62 | [ |
HCl+CrCl3 | H2O/THF | 140 | 3 | 95 | 62 | 59 | [ | |
[EMIM]Cl+CrCl2 | 1-乙基-3-甲基咪唑氯盐 | 100 | 3 | 99 | 69.7 | 70 | [ | |
HCl+NaCl | H2O-GVL | 140 | 1 | 96 | 64.5 | 62 | [ | |
CrCl3·6H2O | DES of TEAB | 130 | 0.25 | n. m. | n. m. | 76 | [ | |
均相-多相 | Sn-Beta+HCl | H2O-NaCl/丁醇-THF | 180 | 1 | 79 | 72 | 57 | [ |
Cr-CP+HCl | H2O-DMSO | 170 | 4 | 97.7 | 65.4 | 63.9 | [ | |
Cr-CP+H2SO4 | H2O-DMSO | 170 | 4 | 98.8 | 56.4 | 55.7 | [ | |
Cr-MIL-101+H4SiW12O40 | H2O-GVL | 140 | 8 | 92 | n. m. | 40 | [ | |
多相 | Nb-Beta | H2O-NaCl/MIBK | 180 | 12 | 97.4 | 84.3 | 82.1 | [ |
Cr-MIL-101-SO3H | H2O-GVL | 180 | 2 | 98 | 45.8 | 44.9 | [ | |
SO3H-NH-MCM-41 | H2O | 120 | 2 | n. m. | n. m. | 89 | [ | |
SnPCP@MnO2-PDA | DMSO | 150 | 5 | 92.2 | 60.5 | 55.8 | [ | |
SO3H-OAC | H2O-NaCl/THF | 160 | 3 | 93 | 99.9 | 93 | [ | |
SnO x /C | H2O-NaCl/THF | 180 | 2 | 92.1 | 91.3 | 84.1 | [ |
表1 葡萄糖异构-果糖脱水催化反应耦合体系和性能结果
反应体系 | 催化剂 | 反应溶剂 | 反应条件 | 催化性能 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
温度/℃ | 时间/h | XGlu/% | SHMF/% | YHMF/% | ||||
均相 | HCl+AlCl3 | H2O/仲丁基苯酚 | 170 | 0.7 | 91 | 68 | 62 | [ |
HCl+CrCl3 | H2O/THF | 140 | 3 | 95 | 62 | 59 | [ | |
[EMIM]Cl+CrCl2 | 1-乙基-3-甲基咪唑氯盐 | 100 | 3 | 99 | 69.7 | 70 | [ | |
HCl+NaCl | H2O-GVL | 140 | 1 | 96 | 64.5 | 62 | [ | |
CrCl3·6H2O | DES of TEAB | 130 | 0.25 | n. m. | n. m. | 76 | [ | |
均相-多相 | Sn-Beta+HCl | H2O-NaCl/丁醇-THF | 180 | 1 | 79 | 72 | 57 | [ |
Cr-CP+HCl | H2O-DMSO | 170 | 4 | 97.7 | 65.4 | 63.9 | [ | |
Cr-CP+H2SO4 | H2O-DMSO | 170 | 4 | 98.8 | 56.4 | 55.7 | [ | |
Cr-MIL-101+H4SiW12O40 | H2O-GVL | 140 | 8 | 92 | n. m. | 40 | [ | |
多相 | Nb-Beta | H2O-NaCl/MIBK | 180 | 12 | 97.4 | 84.3 | 82.1 | [ |
Cr-MIL-101-SO3H | H2O-GVL | 180 | 2 | 98 | 45.8 | 44.9 | [ | |
SO3H-NH-MCM-41 | H2O | 120 | 2 | n. m. | n. m. | 89 | [ | |
SnPCP@MnO2-PDA | DMSO | 150 | 5 | 92.2 | 60.5 | 55.8 | [ | |
SO3H-OAC | H2O-NaCl/THF | 160 | 3 | 93 | 99.9 | 93 | [ | |
SnO x /C | H2O-NaCl/THF | 180 | 2 | 92.1 | 91.3 | 84.1 | [ |
吸附剂材料 | 吸附质 | 参考文献 | |||
---|---|---|---|---|---|
果糖 | HMF | 乙酰丙酸 | 甲酸 | ||
球形活性炭 | n. m. | Langmuir | n. m. | n. m. | [ |
颗粒活性炭 | n. m. | Freundlich | n. m. | n. m. | [ |
H-Beta | Henry | Redlich-Peterson | Redlich-Peterson | Freundlich | [ |
NU-1000 | 无吸附 | Langmuir | n. m. | n. m. | [ |
ZIF-8 | n. m. | Langmuir | n. m. | n. m. | [ |
HCP | Langmuir | Freundlich | Freundlich | Langmuir | [ |
Freundlich | Redlich-Peterson | Freundlich | Freundlich | ||
Redlich-Peterson | Redlich-Peterson | Freundlich | Redlich-Peterson | ||
H-PAP | n. m. | Langmuir | n. m. | n. m. | [ |
SY-01树脂 | n. m. | Langmuir | Langmuir | Langmuir | [ |
表2 典型吸附剂材料对果糖脱水体系各组分吸附等温线模型①
吸附剂材料 | 吸附质 | 参考文献 | |||
---|---|---|---|---|---|
果糖 | HMF | 乙酰丙酸 | 甲酸 | ||
球形活性炭 | n. m. | Langmuir | n. m. | n. m. | [ |
颗粒活性炭 | n. m. | Freundlich | n. m. | n. m. | [ |
H-Beta | Henry | Redlich-Peterson | Redlich-Peterson | Freundlich | [ |
NU-1000 | 无吸附 | Langmuir | n. m. | n. m. | [ |
ZIF-8 | n. m. | Langmuir | n. m. | n. m. | [ |
HCP | Langmuir | Freundlich | Freundlich | Langmuir | [ |
Freundlich | Redlich-Peterson | Freundlich | Freundlich | ||
Redlich-Peterson | Redlich-Peterson | Freundlich | Redlich-Peterson | ||
H-PAP | n. m. | Langmuir | n. m. | n. m. | [ |
SY-01树脂 | n. m. | Langmuir | Langmuir | Langmuir | [ |
1 | RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484. |
2 | CHHEDA Juben N, HUBER George W, DUMESIC James A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie International Edition, 2007, 46(38): 7164-7183. |
3 | SIKARWAR VINEET Singh, ZHAO Ming, Peter Clough, et al. An overview of advances in biomass gasification[J]. Energy & Environmental Science, 2016, 9(10): 2939-2977. |
4 | AKIEN Geoffrey R, QI Long, HORVÁTH Istvan T. Molecular mapping of the acid catalysed dehydration of fructose[J]. Chemical Communications, 2012, 48(47): 5850-5852. |
5 | FILICIOTTO Layla, BALU Alina M, ROMERO Antonio A, et al. Reconstruction of humins formation mechanism from decomposition products: A GC-MS study based on catalytic continuous flow depolymerizations[J]. Molecular Catalysis, 2019, 479: 5-164. |
6 | KUSTER B F M. 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture[J]. Starch-Stärke, 1990, 42(8): 314-321. |
7 | ROSENFELD Catherine, KONNERTH Johannes, Wilfried SAILER-KRONLACHNER, et al. Current situation of the challenging scale-up development of hydroxymethylfurfural production[J]. ChemSusChem, 2020, 13(14): 3544-3564. |
8 | ISTASSE Thibaut, RICHEL Aurore. Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design[J]. RSC Advances, 2020, 10(40): 23720-23742. |
9 | ZHU Liangfang, FU Xing, HU Yexin, et al. Controlling the reaction networks for efficient conversion of glucose into 5-hydroxymethylfurfural[J]. ChemSusChem, 2020, 13(18): 4812-4832. |
10 | MEIER Sebastian. Mechanism and malleability of glucose dehydration to HMF: Entry points and water-induced diversions[J]. Catalysis Science & Technology, 2020, 10(6): 1724-1730. |
11 | VILLANUEVA Nicolas I, MARZIALETTI Teresita G. Mechanism and kinetic parameters of glucose and fructose dehydration to 5-hydroxymethylfurfural over solid phosphate catalysts in water[J]. Catalysis Today, 2018, 302: 100-107. |
12 | JADHAV Harishchandra, PEDERSEN Christian Marcus, Theis SØLLING, et al. 3-Deoxy-glucosone is an intermediate in the formation of furfurals from d-glucose[J]. ChemSusChem, 2011, 4(8): 1049-1051. |
13 | PAGAN-TORRES Yomaira J, WANG Tianfu, GALLO Jean Marcel R, et al. Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent[J]. ACS Catalysis, 2012, 2(6): 930-934. |
14 | CHOUDHARY Vinit, MUSHRIF Samir H, Christopher HO, et al. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media[J]. Journal of the American Chemical Society, 2013, 135(10): 3997-4006. |
15 | ZHAO Haibo, HOLLADAY Johnathan E, BROWN Heather, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597. |
16 | LI Minghao, LI Wenzhi, LU Yijuan, et al. High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system[J]. RSC Advances, 2017, 7(24): 14330-14336. |
17 | GUO Xusheng, ZHU Haoxiang, SI Yuxi, et al. Highly efficient and selective preparation of 5-hydroxymethylfurfural from concentrated carbohydrates using deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(44): 14579-14587. |
18 | NIKOLLA Eranda, Yuriy ROMÁN-LESHKOV, Manuel MOLINEr, et al. “One-pot” synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-Beta zeolite[J]. ACS Catalysis, 2011, 1(4): 408-410. |
19 | JIANG Nan, QI Wei, WU Zhongjie, et al. “One-pot” conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid[J]. Catalysis Today, 2018, 302: 94-99. |
20 | Marta LARA-SERRANO, Silvia MORALES-DELAROSA, CAMPOS-MARTIN Jose M, et al. One-pot conversion of glucose into 5-hydroxymethylfurfural using MOFs and Brønsted-acid tandem catalysts[J]. Advanced Sustainable Systems, 2022, 6(5): 2100444. |
21 | CANDU Natalia, El FERGANI Magdi, VERZIU Marian, et al. Efficient glucose dehydration to HMF onto Nb-BEA catalysts[J]. Catalysis Today, 2019, 325: 109-116. |
22 | SU Ye, CHANG Ganggang, ZHANG Zhiguo, et al. Catalytic dehydration of glucose to 5-hydroxymethylfurfural with a bifunctional metal-organic framework[J]. AIChE Journal, 2016, 62(12): 4403-4417. |
23 | NIAKAN Mahsa, QIAN Chao, ZHOU Shaodong. Highly efficient one-pot conversion of glucose to 5-hydroxymethylfurfural over acid-base bifunctional MCM-41 mesoporous silica under mild aqueous conditions[J]. Energy & Fuels, 2023, 37(21): 16639-16647. |
24 | LI Ke, DU Mengmeng, JI Peijun. Multifunctional tin-based heterogeneous catalyst for catalytic conversion of glucose to 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5636-5644. |
25 | NAHAVANDI Milad, KASANNENI Tiruma, YUAN Zhong Shun Sean, et al. Efficient conversion of glucose into 5-hydroxymethylfurfural using a sulfonated carbon-based solid acid catalyst: An experimental and numerical study[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 11970-11984. |
26 | WANG Ke, REZAYAN Armin, SI Lin Qi, et al. Highly efficient 5-hydroxymethylfurfural production from glucose over bifunctional SnO x /C catalyst[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11351-11360. |
27 | GUO Bin, YE Lin, TANG Gangfeng, et al. Effect of Brønsted/Lewis acid ratio on conversion of sugars to 5-hydroxymethylfurfural over mesoporous Nb and Nb-W oxides[J]. Chinese Journal of Chemistry, 2017, 35(10): 1529-1539. |
28 | LI Xiangcheng, PENG Kaihao, LIU Xiaohui, et al. Comprehensive understanding of the role of Brønsted and Lewis acid sites in glucose conversion into 5-hydromethylfurfural[J]. ChemCatChem, 2017, 9(14): 2739-2746. |
29 | 胡磊, 孙勇, 林鹿. 葡萄糖脱水制备5-羟甲基糠醛的研究进展[J]. 化工进展, 2011, 30(8): 1711-1716. |
HU Lei, SUN Yong, LIN Lu. Research progress on the preparation of 5-hydroxymethylfurfural from glucose dehydration[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1711-1716. | |
30 | COMBS Elliot, CINLAR Basak, Yomaira PAGAN-TORRES, et al. Influence of alkali and alkaline earth metal salts on glucose conversion to 5-hydroxymethylfurfural in an aqueous system[J]. Catalysis Communications, 2013, 30: 1-4. |
31 | ZHANG Ximing, MURRIA Priya, JIANG Yuan, et al. Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media[J]. Green Chemistry, 2016, 18(19): 5219-5229. |
32 | ZHANG Ximing, HEWETSON Barron B, MOSIER Nathan S. Kinetics of maleic acid and aluminum chloride catalyzed dehydration and degradation of glucose[J]. Energy & Fuels, 2015, 29(4): 2387-2393. |
33 | SAJID Muhammad, BAI Yu Chen, LIU De Hua, et al. Conversion of glucose to 5-hydroxymethylfurfural by co-catalysis of p-toluenesulfonic acid (pTSA) and chlorides: A comparison based on kinetic modeling[J]. Waste and Biomass Valorization, 2021, 12(6): 3271-3286. |
34 | Dallas SWIFT T, NGUYEN Hannah, ANDERKO Andrzej, et al. Tandem Lewis/Brønsted homogeneous acid catalysis: Conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium( Ⅲ ) chloride and hydrochloric acid solution[J]. Green Chemistry, 2015, 17(10): 4725-4735. |
35 | MUSHRIF Samir H, VARGHESE Jithin J, VLACHOS Dionisios G. Insights into the Cr(Ⅲ) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics[J]. Physical Chemistry Chemical Physics, 2014, 16(36): 19564-19572. |
36 | PIDKO Evgeny A, DEGIRMENCI Volkan, VAN Santen Rutger A, et al. Coordination properties of ionic liquid-mediated chromium(Ⅱ) and copper(Ⅱ) chlorides and their complexes with glucose[J]. Inorganic Chemistry, 2010, 49(21): 10081-10091. |
37 | PIDKO Evgeny A, DEGIRMENCI Volkan, HENSEN Emiel J M. On the mechanism of Lewis acid catalyzed glucose transformations in ionic liquids[J]. ChemCatChem, 2012, 4(9): 1263-1271. |
38 | ZHANG Yanmei, PIDKO Evgeny A, HENSEN Emiel J M. Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids[J]. Chemistry-A European Journal, 2011, 17(19): 5281-5288. |
39 | JIA Songyan, XU Zhanwei, ZHANG Z Conrad. Catalytic conversion of glucose in dimethylsulfoxide/water binary mix with chromium trichloride: Role of water on the product distribution[J]. Chemical Engineering Journal, 2014, 254: 333-339. |
40 | TAARNING Esben, Irantzu SÁDABA, JENSEN Pernille R, et al. Discovery and exploration of the efficient acyclic dehydration of hexoses in dimethyl sulfoxide/water[J]. ChemSusChem, 2019, 12(23): 5086-5091. |
41 | SEZGIN Esra, KEÇECI Merve Esen, AKMAZ Solmaz, et al. Heterogeneous Cr-zeolites (USY and Beta) for the conversion of glucose and cellulose to 5-hydroxymethylfurfural (HMF)[J]. Cellulose, 2019, 26(17): 9035-9043. |
42 | BHANJA Piyali, MODAK Arindam, CHATTERJEE Sauvik, et al. Bifunctionalized mesoporous SBA-15: A new heterogeneous catalyst for the facile synthesis of 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2763-2773. |
43 | YAN Hongpeng, YANG Yu, TONG Dongmei, et al. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO4 2-/ZrO2 and SO 4 2 - /ZrO2-Al2O3 solid acid catalysts[J]. Catalysis Communications, 2009, 10(11): 1558-1563. |
44 | 苏叶, 鲍宗必, 张治国, 等. L酸/B酸可调的磺酸功能化MIL-101(Cr)材料催化葡萄糖脱水制备5-羟甲基糠醛[J].化工学报, 2016, 67(7): 2799-2807. |
SU Ye, BAO Zongbi, ZHANG Zhiguo, et al. L-acid/B-acid tunable sulfonic acid functionalized MIL-101(Cr) material catalyzed glucose dehydration to prepare 5-hydroxymethylfurfural[J]. Journal of Chemical Engineering, 2016, 67(7): 2799-2007. | |
45 | MOLINER Manuel, Yuriy ROMÁN-LESHKOV, DAVIS Mark E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences, 2010, 107(14): 6164-6168. |
46 | Dallas SWIFT T, NGUYEN Hannah, ERDMAN Zachary, et al. Tandem Lewis acid/Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite Beta[J]. Journal of Catalysis, 2016, 333: 149-161. |
47 | ZHANG Tingwei, WEI Haiying, JIN Yongcan, et al. Dehydration of glucose to 5-hydroxymethylfurfural over Sn-containing dendritic mesoporous silica[J]. Chemical Engineering Journal, 2023, 454: 140415. |
48 | REZAYAN Armin, WANG Ke, NIE Ren Feng, et al. Synthesis of bifunctional tin-based silica-carbon catalysts, Sn/KIT-1/C, with tunable acid sites for the catalytic transformation of glucose into 5-hydroxymethylfurfural[J]. Chemical Engineering Journal, 2022, 429: 132261. |
49 | OTOMO Ryoichi, YOKOI Toshiyuki, KONDO Junko N, et al. Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural[J]. Applied Catalysis A: General, 2014, 470: 318-326. |
50 | WANG Zhongxu, LU Peng, Li Shuo, et al. A surface modification strategy to prepare hierarchical Beta molecular sieves for glucose dehydration[J]. Dalton Transactions, 2023, 52(38): 13507-13516. |
51 | OTOMO Ryoichi, YOKOI Toshiyuki, TATSUMI Takashi. OSDA-free zeolite Beta with high aluminum content efficiently catalyzes a tandem reaction for conversion of glucose to 5-hydroxymethylfurfural[J]. ChemCatChem, 2015, 7(24): 4180-4187. |
52 | LI Liang, DING Jianghong, JIANG Jingang, et al. One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts[J]. Chinese Journal of Catalysis, 2015, 36(6): 820-828. |
53 | PENG Wun-Huie, LEE Yin-Ying, WU Connie, et al. Acid-base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion[J]. Journal of Materials Chemistry, 2012, 22(43): 23181-23185. |
54 | ZHU Xiaofan, LIANG Qiqi, FU Yan, et al. Efficient synthesis of 5-hydroxymethylfurfural by MCM-41 modified with multiple acid sites[J]. Sustainable Energy & Fuels, 2023, 7(8): 2003-2011. |
55 | SARAVANAMURUGAN Shunmugavel, PANIAGUA Marta, MELERO Juan A, et al. Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and agueous media[J]. Journal of the American Chemical Society, 2013, 135(14): 5246-5249. |
56 | HUANG Fangmin, SU Yuwen, TAO Yu, et al. Preparation of 5-hydroxymethylfurfural from glucose catalyzed by silica-supported phosphotungstic acid heterogeneous catalyst[J]. Fuel, 2018, 226: 417-422. |
57 | ALJAMMAL Noor, JABBOUR Christia, THYBAUT Joris W, et al. Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects[J]. Coordination Chemistry Reviews, 2019, 401: 213064. |
58 | LIAO Yute, MATSAGAR Babasanheb M, WU Kevin C W. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13628-13643. |
59 | FANG Ruiqi, DHAKSHINAMOORTHY Amarajothi, LI Yingwei. Metal organic frameworks for biomass conversion[J]. Chemical Society Reviews, 2020, 49(11): 3638-3687. |
60 | CORMA Avelino, DOMINE Marcelo E, NEMETH Laszlo, et al. Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (meerwein-ponndorf-verley reaction)[J]. Journal of the American Chemical Society, 2002, 124(13): 3194-3195. |
61 | RICARDO Bermejo-Deval, ASSARY Rajeev S, NIKOLLA Eranda, et al. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites[J]. Proceedings of the National Academy of Sciences, 2012, 109(25): 9727-9732. |
62 | FLEYS Matthieu, THOMPSON Robert W, MACDONALD John C. Comparison of the behavior of water in silicalite and dealuminated zeolite Y at different temperatures by molecular dynamic simulations[J]. The Journal of Physical Chemistry B, 2004, 108(32): 12197-12203. |
63 | DEMONTIS P, STARA G, SUFFRITTI G B. Behavior of water in the hydrophobic zeolite silicalite at different temperatures. A molecular dynamics study[J]. The Journal of Physical Chemistry B, 2003, 107(18): 4426-4436. |
64 | RICARDO Bermejo-Deval, MARAT Orazov, RAJAMANI Gounder, et al. Active sites in Sn-Beta for glucose isomerization to fructose and epimerization to mannose[J]. ACS Catalysis, 2014, 4(7): 2288-2297. |
65 | CORDON Michael J, HALL Jacklyn N, HARRIS James W, et al. Deactivation of Sn-Beta zeolites caused by structural transformation of hydrophobic to hydrophilic micropores during aqueous-phase glucose isomerization[J]. Catalysis Science & Technology, 2019, 9(7): 1654-1668. |
66 | RICARDO Alamillo, Crisci ANTHONY J, JEAN Marcel R Gallo, et al. A tailored microenvironment for catalytic biomass conversion in inorganic-organic nanoreactors[J]. Angewandte Chemie International Edition, 2013, 52(39): 10349-10351. |
67 | LUO Qunxing, ZHANG Yuanbao, QI Long, et al. Glucose isomerization and epimerization over metal-organic frameworks with single-site active centers[J]. ChemCatChem 2019, 11(7): 1903-1909. |
68 | MARTA Lara-Serrano, SILVIA Morales-delaRosa, Campos-Martin JOSE M, et al. Isomerization of glucose to fructose catalyzed by metal-organic frameworks[J]. Sustainable Energy & Fuels, 2021, 5(15): 3847-3857. |
69 | GEORGE Akiyama, RYOTARO Matsuda, HIROSHI Sato, et al. Catalytic glucose isomerization by porous coordination polymers with open metal sites[J]. Chemistry—An Asian Journal, 2014, 9(10): 2772-2777. |
70 | VAN PUTTEN Robert-Jan, VAN DER WAAL Jan C, DE JONG Ed, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical Reviews, 2013, 113(3): 1499-1597. |
71 | LAI Fengjiao, YAN Feng, Wang Pengju, et al. Efficient conversion of carbohydrates and biomass into furan compounds by chitin/Ag co-modified H3PW12O40 catalysts[J]. Journal of Cleaner Production, 2021, 316: 128243. |
72 | ENOMOTO Kota, HOSOYA Takashi, MIYAFUJI Hisashi. High-yield production of 5-hydroxymethylfurfural from D-fructose, D-glucose, and cellulose by its in situ removal from the reaction system[J]. Cellulose, 2018, 25(4): 2249-2257. |
73 | WEI Zuojun, LIU Yingxin, THUSHARA Dilantha, et al. Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt-ionic liquid[J]. Green Chemistry, 2012, 14(4): 1220-1226. |
74 | HSIAO Yungwei, ANASTASOPOULOU Aikaterini, IERAPETRITOU Marianthi, et al. Cost and energy efficient cyclic separation of 5-hydroxymethyl furfural from an aqueous solution[J]. Green Chemistry, 2021, 23(11): 4008-4023. |
75 | 高志谨, 李永祥, 胡耀平. 低沸点溶剂中果糖制备呋喃衍生物的研究进展[J]. 化工进展, 2017, 36(3): 1052-1058. |
GAO Zhijin, LI Yongxiang, HU Yaoping. Research progress on the preparation of furan derivatives from fructose in low boiling solvents[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1052-1058. | |
76 | HU Lie, JIANG Yetao, WU Zhen, et al. State-of-the-art advances and perspectives in the separation of biomass-derived 5-hydroxymethylfurfural[J]. Journal of Cleaner Production, 2020, 276: 124219. |
77 | ESTEBAN Jesus, VORHOLT Andreas J, LEITNER Walter. An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: A rational selection of solvents using COSMO-RS and selection guides[J]. Green Chemistry, 2020, 22(7): 2097-2128. |
78 | SAHA Basudeb, ABU-OMAR Mahdi M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents[J]. Green Chemistry, 2014, 16(1): 24-38. |
79 | 石宁, 刘琪英, 王铁军, 等. 葡萄糖催化脱水制取5-羟甲基糠醛研究进展[J]. 化工进展, 2012, 31(4): 792-800. |
SHI Ning, LIU Qiying, Wang Tiejun, et al. Research progress on catalytic dehydration of glucose to produce 5-hydroxymethylfurfural[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 792-800. | |
80 | VINKE P, VAN BEKKUM H. The dehydration of fructose towards 5-hydroxymethylfurfural using activated carbon as adsorbent[J]. Starch-Stärke, 1992, 44(3): 90-96. |
81 | RAJABBEIGI Nafiseh, RANJAN Rajiv, TSAPATSIS Michael. Selective adsorption of HMF on porous carbons from fructose/DMSO mixtures[J]. Microporous and Mesoporous Materials, 2012, 158: 253-256. |
82 | YOO Won Cheol, RAJABBEIGI Nafiseh, MALLON Elizabeth E, et al. Elucidating structure-properties relations for the design of highly selective carbon-based HMF sorbents[J]. Microporous and Mesoporous Materials, 2014, 184: 72-82. |
83 | SCHUTE Kai, LOUVEN Yannik, DETONI Chaline, et al. Selective liquid phase adsorption of biogenic HMF on hydrophobic spherical activated carbons[J]. Chemie Ingenieur Technik, 2016, 88(3): 355-362. |
84 | Rolf SCHÖLLNER, EINICKE Wolf-Dietrich, Bärbel GLÄSER. Liquid-phase adsorption of monosaccharide-water mixtures on X and Y zeolites[J]. Journal of the Chemical Society Faraday Transactions, 1993, 89(11): 1871-1876. |
85 | RANJAN Rajiv, THUST Stefan, GOUNARIS Chrysanthos E, et al. Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery[J]. Microporous and Mesoporous Materials, 2009, 122(1): 143-148. |
86 | Marta LEÓN, Dallas SWIFT T, NIKOLAKIS Vladimiros, et al. Adsorption of the compounds encountered in monosaccharide dehydration in zeolite Beta[J]. Langmuir, 2013, 29(22): 6597-6605. |
87 | XIONG Ruichang, Marta LEÓN, NIKOLAKIS Vladimiros, et al. Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: Experiment and simulation[J]. ChemSusChem, 2014, 7(1): 236-244. |
88 | Pia KÜSGENS, ROSE Marcus, SENKOVSKA Irena, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3): 325-330. |
89 | AMROUCHE Hedi, CRETON Benoit, SIPERSTEIN Flor, et al. Prediction of thermodynamic properties of adsorbed gases in zeolitic imidazolate frameworks[J]. RSC Advances, 2012, 2(14): 6028-6035. |
90 | JIN Hua, LI Yanshuo, LIU Xinlei, et al. Recovery of HMF from aqueous solution by zeolitic imidazolate frameworks[J]. Chemical Engineering Science, 2015, 124: 170-178. |
91 | CAO Na, WANG Honglei, BAN Yujie, et al. Tuning of delicate host-guest interactions in hydrated MIL-53 and functional variants for furfural capture from aqueous solution[J]. Angewandte Chemie International Edition, 2021, 60(3): 1629-1634. |
92 | YABUSHITA Mizuho, LI Peng, KOBAYASHI Hirokazu, et al. Complete furanics-sugar separations with metal-organic framework NU-1000[J]. Chemical Communications, 2016, 52(79): 11791-11794. |
93 | XIE Yi, PHELPS Diana, LEE Chong-Ho, et al. Comparison of two adsorbents for sugar recovery from biomass hydrolyzate[J]. Industrial & Engineering Chemistry Research, 2005, 44(17): 6816-6823. |
94 | HATTORI Hideo, TAJIMA Kiyohiko, CHANG H Ted, et al. Selective adsorption of a substance derived from saccharides onto synthetic resin particles[J]. Adsorption, 2005, 11(1): 917-920. |
95 | IJZER Anne Corine, VRIEZEKOLK Erik, ROLEVINK Erik, et al. Performance analysis of aromatic adsorptive resins for the effective removal of furan derivatives from glucose[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(1): 101-109. |
96 | IJZER Anne Corine, VRIEZEKOLK Erik, ÐEKIC Zivkovic Tanja, et al. Adsorption kinetics of DowexTM OptiporeTM L493 for the removal of the furan 5-hydroxymethylfurfural from sugar[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(1): 96-104. |
97 | ZHENG Jiayi, PAN Baoying, XIAO Jiangxiong, et al. Experimental and mathematical simulation of noncompetitive and competitive adsorption dynamic of formic acid-levulinic acid-5-hydroxymethylfurfural from single, binary, and ternary systems in a fixed-bed column of SY-01 resin[J]. Industrial & Engineering Chemistry Research, 2018, 57(25): 8518-8528. |
98 | SAINIO Tuomo, TURKU Irina, HEINONEN Jari. Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(10): 6048-6057. |
99 | DETONI Chaline, GIERLICH Christian Henning, ROSE Marcus, et al. Selective liquid phase adsorption of 5-hydroxymethylfurfural on nanoporous hyper-cross-linked polymers[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2407-2415. |
100 | ZHANG Yuanbao, LUO Qunxing, LU Meiheng, et al. Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration[J]. Chemical Engineering Journal, 2019, 358: 467-479. |
101 | ROLLY GONZALES Ralph, HONG Yongseok, PARK Jonghun, et al. Kinetics and equilibria of 5-hydroxymethylfurfural (5-HMF) sequestration from algal hydrolyzate using granular activated carbon[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(4): 1157-1163. |
102 | ZHENG Jiayi, HE Xianda, CAI Chiliu, et al. Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly(divinylbenzene-co-ethyleneglycoldimethacrylate) resin[J]. Chemosphere, 2020, 239: 124732. |
103 | 张元宝. 中空聚合物对5-羟甲基糠醛选择吸附的构-效关系及机制[D]. 西安: 陕西师范大学, 2019. |
ZHANG Yuanbao. Structure activity relationship and mechanism of hollow polymer for selective adsorption of 5-hydroxymethylfurfural[D]. Xi’an: Shaanxi Normal University, 2019. | |
104 | 赵宇, 石琪, 董晋湘. ZIFs椭圆形孔窗的精细调控及糠醛/5-羟甲基糠醛吸附分离性能研究[J]. 化工学报, 2021, 72(1): 555-568, 633. |
ZHAO Yu, SHI Qi, DONG Jinxiang. Fine tuning of ZIFs elliptical pore windows and study on the adsorption and separation performance of furfural/5-hydroxymethylfurfural J]. Journal of Chemical Engineering, 2021, 72(1): 555-568, 633. | |
105 | 彭浩, 赵宇, 王静, 等. 憎水性ZIFs对糠醛和5-羟甲基糠醛的吸附分离性能[J]. 太原理工大学学报, 2019, 50(4): 444-452. |
PENG Hao, ZHAO Yu, WANG Jing, et al. The adsorption and separation performance of hydrophobic ZIFs for furfural and 5-hydroxymethylfurfural[J]. Journal of Taiyuan University of Technology, 2019, 50(4): 444-452. | |
106 | BLUMENTHAL Lena C, JENS Christian M, Jörn ULBRICH, et al. Systematic identification of solvents optimal for the extraction of 5-hydroxymethylfurfural from aqueous reactive solutions[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(1): 228-235. |
107 | Yuriy ROMÁN-LESHKOV, CHHEDA Juben, DUMESIC James A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782): 1933. |
108 | SUN Xiaofu, LIU Zhenghui, XUE Zhimin, et al. Extraction of 5-HMF from the conversion of glucose in ionic liquid [Bmim]Cl by compressed carbon dioxide[J]. Green Chemistry, 2015, 17(5): 2719-2722. |
109 | Yuriy ROMÁN-LESHKOV, DUMESIC James A. Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts[J]. Topics in Catalysis, 2009, 52(3): 297-303. |
110 | MOHAMMAD Sultan, HELD Christoph, ALTUNTEPE Emrah, et al. Influence of salts on the partitioning of 5-hydroxymethylfurfural in water/MIBK[J]. The Journal of Physical Chemistry B, 2016, 120(16): 3797-3808. |
111 | TORRES Aan I, DAOUTIDIS Prodromos, TSAPATSIS Michael. Continuous production of 5-hydroxymethylfurfural from fructose: A design case study[J]. Energy & Environmental Science, 2010, 3(10): 1560-1572. |
112 | WANG Zhaoxing, BHATTACHARYYA Souryadeep, VLACHOS Dionisios G. Solvent selection for biphasic extraction of 5-hydroxymethylfurfural via multiscale modeling and experiments[J]. Green Chemistry, 2020, 22(24): 8699-8712. |
113 | Dallas SWIFT T, BAGIA Christina, NIKOLAKIS Vladimiros, et al. Reactive adsorption for the selective dehydration of sugars to furans: Modeling and experiments[J]. AIChE Journal, 2013, 59(9): 3378-3390. |
114 | DORNATH Paul, FAN Wei. Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbent[J]. Microporous and Mesoporous Materials, 2014, 191: 10-17. |
115 | WANG Yanhong, FAN Lijiao, XIAO Liqun, et al. Role of reaction adsorption on the production of 5-hydroxymethylfurfural from fructose under microwave hydrothermal process[J]. Fuel, 2023, 340. |
116 | LIU Xinlei, JIN Hua, LI Yanshuo, et al. Metal-organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation[J]. Journal of Membrane Science, 2013, 428: 498-506. |
117 | JIN Hua, LIU Xinlei, BAN Yujie, et al. Conversion of xylose into furfural in a MOF-based mixed matrix membrane reactor[J]. Chemical Engineering Journal, 2016, 305: 12-18. |
118 | DIETZ Carin H J T, KROON Maaike C, DI Stefano Michela, et al. Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane[J]. Faraday Discussions, 2018, 206: 77-92. |
119 | QIN Fan, LI Shufeng, QIN Peiyong, et al. A PDMS membrane with high pervaporation performance for the separation of furfural and its potential in industrial application[J]. Green Chemistry, 2014, 16(3): 1262-1273. |
120 | WANG Alex, BALSARA Nitash P, BELL Alexis T. Continuous pervaporation-assisted furfural production catalyzed by CrCl3 [J]. Green Chemistry, 2018, 20(12): 2903-2912. |
121 | WANG Alex, BALSARA Nitash P, BELL Alexis T. Pervaporation-assisted catalytic conversion of xylose to furfural[J]. Green Chemistry, 2016, 18(14): 4073-4085. |
[1] | 姚乃瑜, 曹景沛, 庞新博, 赵小燕, 蔡士杰, 徐敏, 赵静平, 冯晓博, 伊凤娇. 低阶煤热解挥发分热催化重整研究进展[J]. 化工进展, 2024, 43(5): 2279-2293. |
[2] | 吴达, 蒋淑娇, 魏强, 袁胜华, 杨刚, 张成. 能源转型中渣油高效利用技术的研究进展[J]. 化工进展, 2024, 43(5): 2343-2353. |
[3] | 桂鑫, 陈汇勇, 白柏杨, 贾永梁, 马晓迅. Mo掺杂改性NiC/Al-MCM-41的芘催化加氢性能[J]. 化工进展, 2024, 43(5): 2386-2395. |
[4] | 丁思佳, 蒋淑娇, 杨占林, 彭绍忠, 蒋乾民. 基于氮化物结构与加氢行为关系设计重油加氢脱氮催化剂[J]. 化工进展, 2024, 43(5): 2436-2448. |
[5] | 韩伟, 韩恒文, 程薇, 汤玮健. 碳中和目标驱动下生物质燃料技术研究进展[J]. 化工进展, 2024, 43(5): 2463-2474. |
[6] | 黄坤, 许明, 吴秀娟, 裴思佳, 刘大伟, 马晓迅, 徐龙. 生物质活性炭的制备与微结构特性调控研究进展[J]. 化工进展, 2024, 43(5): 2475-2493. |
[7] | 石鎏, 胡振中, 李显, 孙一鸣, 童珊, 刘显哲, 郭丽, 刘豪, 彭冰, 李硕, 罗光前, 姚洪. 生物质气压烘焙技术研究进展[J]. 化工进展, 2024, 43(5): 2494-2511. |
[8] | 冯飞飞, 田斌, 马鹏飞, 韦荐昕, 徐龙, 田原宇, 马晓迅. 木质素分离原理与方法研究进展[J]. 化工进展, 2024, 43(5): 2512-2525. |
[9] | 范文轩, 徐双平, 贾宏葛, 张明宇, 蘧延庆. 芴基、酰亚胺基和萘基聚合物气体分离膜的研究进展[J]. 化工进展, 2024, 43(4): 1897-1911. |
[10] | 王冰, 王磊, 黄欣茹, 袁红鹏, 赖小娟, 李朋. 一种耐酸耐碱高强树脂的合成及性能[J]. 化工进展, 2024, 43(4): 1992-2000. |
[11] | 何林, 贺常晴, 隋红. 人工智能驱动新型界面分离材料的创制[J]. 化工进展, 2024, 43(4): 1649-1654. |
[12] | 杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666. |
[13] | 刘若璐, 汤海波, 何翡翡, 罗凤盈, 王金鸽, 杨娜, 李洪伟, 张锐明. 液态有机储氢技术研究现状与展望[J]. 化工进展, 2024, 43(4): 1731-1741. |
[14] | 王红妍, 马子然, 李歌, 马静, 赵春林, 周佳丽, 王磊, 彭胜攀. 燃煤耦合可再生燃料烟气多污染物协同催化脱除研究进展[J]. 化工进展, 2024, 43(4): 1783-1795. |
[15] | 陈家一, 高帷韬, 阴亚楠, 王诚, 欧阳鸿武, 毛宗强. 电化学沉积法制备质子交换膜燃料电池催化剂[J]. 化工进展, 2024, 43(4): 1796-1809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |