化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2512-2525.DOI: 10.16085/j.issn.1000-6613.2023-1961
• 新能源与可再生能源 • 上一篇
冯飞飞1(), 田斌1(), 马鹏飞2, 韦荐昕1, 徐龙1, 田原宇3, 马晓迅1
收稿日期:
2023-11-08
修回日期:
2023-12-25
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
田斌
作者简介:
冯飞飞(1999—),女,硕士研究生,研究方向为木质素的热化学转化。E-mail:2694571383@qq.com。
基金资助:
FENG Feifei1(), TIAN Bin1(), MA Pengfei2, WEI Jianxin1, XU Long1, TIAN Yuanyu3, MA Xiaoxun1
Received:
2023-11-08
Revised:
2023-12-25
Online:
2024-05-15
Published:
2024-06-15
Contact:
TIAN Bin
摘要:
木质素经合理加工与转化能获得众多类型的燃料、化学品和材料,利用温和的方法分离木质素是实现其高价值利用的前提。本文综述了近年来木质素的分离方法及研究进展,重点介绍了各种分离方法的分离原理以及所得木质素的组成结构特点,归纳了不同方法的优缺点、适用性以及工业应用情况。酸法促进多糖聚合物中醚键的水解使半纤维素和纤维素解聚,碱法主要裂解木质素与碳水化合物间的醚键和酯键,作为传统木质素分离方法的酸法和碱法较为成熟,但容易引起木质素的自聚;有机溶剂法主要破坏β-芳基醚键,其分离条件较温和,能较好保留木质素的原有结构和反应活性;离子液体和低共熔溶剂等新型绿色溶剂体系具有溶剂和反应介质双重功能,受到了广泛关注。分离方法的耦合与物理、化学、生物技术的辅助将为优化木质素分离过程、探索木质素高值化利用发挥重要作用。
中图分类号:
冯飞飞, 田斌, 马鹏飞, 韦荐昕, 徐龙, 田原宇, 马晓迅. 木质素分离原理与方法研究进展[J]. 化工进展, 2024, 43(5): 2512-2525.
FENG Feifei, TIAN Bin, MA Pengfei, WEI Jianxin, XU Long, TIAN Yuanyu, MA Xiaoxun. Research progress on mechanism and methods of lignin separation[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2512-2525.
分离方法 | 优势 | 存在问题 | 适用性 | 工业应用情况 |
---|---|---|---|---|
酸法 | 木质素得率高 | 木质素缩聚,纯度不高 腐蚀设备 | 木质素含量测定 | 未见工业应用实例 |
碱法 | 环境和设备友好 原料来源广泛 | 木质素再聚合,结构破坏 分离效率与木质素含量负相关 | 合成聚合物 低木质素含量生物质 | 已达5000~10000t/a工业总产能 |
有机溶剂法 | ||||
醇溶剂 | 反应条件较温和 保留木质素结构、反应活性 | 反应能耗高 高沸点醇回收成本高 | 生产材料或化学品 | 已进行中试规模商业利用,如Alcell工艺、Biolignin工艺等 |
有机酸 | 反应条件温和 木质素选择性良好 | 木质素纯度低 有机酸有毒性、刺激性 | ||
IL法 | 木质素结构破坏小,产率、纯度高 IL不易挥发、热稳定性高、物化性质可调 | IL合成复杂、易吸湿、黏度大、价格高 | 生产增值化学品 | 高成本限制工业化 进程 |
DES法 | 木质素反应活性保留,溶解选择性高 DES易制备、成本低、易回收、可生物降解 | 反应时间较长 DES种类、功能性有限 | 制备均质木质素 生产精细化学品 | 应用前景广阔,目前无工业应用实例 |
球磨法 | 木质素化学改性小,最接近天然木质素 | 能耗高,效率低 木质素得率低 | 木质素表征分析 | 未实现工业规模转化 |
表1 不同木质素分离方法的对比分析
分离方法 | 优势 | 存在问题 | 适用性 | 工业应用情况 |
---|---|---|---|---|
酸法 | 木质素得率高 | 木质素缩聚,纯度不高 腐蚀设备 | 木质素含量测定 | 未见工业应用实例 |
碱法 | 环境和设备友好 原料来源广泛 | 木质素再聚合,结构破坏 分离效率与木质素含量负相关 | 合成聚合物 低木质素含量生物质 | 已达5000~10000t/a工业总产能 |
有机溶剂法 | ||||
醇溶剂 | 反应条件较温和 保留木质素结构、反应活性 | 反应能耗高 高沸点醇回收成本高 | 生产材料或化学品 | 已进行中试规模商业利用,如Alcell工艺、Biolignin工艺等 |
有机酸 | 反应条件温和 木质素选择性良好 | 木质素纯度低 有机酸有毒性、刺激性 | ||
IL法 | 木质素结构破坏小,产率、纯度高 IL不易挥发、热稳定性高、物化性质可调 | IL合成复杂、易吸湿、黏度大、价格高 | 生产增值化学品 | 高成本限制工业化 进程 |
DES法 | 木质素反应活性保留,溶解选择性高 DES易制备、成本低、易回收、可生物降解 | 反应时间较长 DES种类、功能性有限 | 制备均质木质素 生产精细化学品 | 应用前景广阔,目前无工业应用实例 |
球磨法 | 木质素化学改性小,最接近天然木质素 | 能耗高,效率低 木质素得率低 | 木质素表征分析 | 未实现工业规模转化 |
1 | Rosarita D’ORSI, DI FIDIO Nicola, ANTONETTI Claudia, et al. Isolation of pure lignin and highly digestible cellulose from defatted and steam-exploded Cynara cardunculus[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(5): 1875-1887. |
2 | 苗长林, 李惠文, 吕鹏梅, 等. 离子液体提取木质素及环氧树脂的合成[J]. 太阳能学报, 2021, 42(1): 371-378. |
MIAO Changlin, LI Huiwen, Pengmei LYU, et al. Ionic liquid extracted of lignin and synthesis of epoxy resin[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 371-378. | |
3 | 曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
ZENG Maozhu, SHE Yuqi, HU Yubin, et al. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. | |
4 | WANG Hongliang, PU Yunqiao, RAGAUSKAS Arthur, et al. From lignin to valuable products-strategies, challenges, and prospects[J]. Bioresource Technology, 2019, 271: 449-461. |
5 | SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical Society Reviews, 2018, 47(3): 852-908. |
6 | HUANG Danlian, LI Ruijin, XU Piao, et al. The cornerstone of realizing lignin value-addition: Exploiting the native structure and properties of lignin by extraction methods[J]. Chemical Engineering Journal, 2020, 402: 126237. |
7 | NISHIMURA Hiroshi, KAMIYA Akihiro, NAGATA Takashi, et al. Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls[J]. Scientific Reports, 2018, 8: 6538. |
8 | YANG Xue, SONG Yanliang, MA Sen, et al. Using γ-valerolactone and toluenesulfonic acid to extract lignin efficiently with a combined hydrolysis factor and structure characteristics analysis of lignin[J]. Cellulose, 2020, 27(7): 3581-3590. |
9 | ZHANG Baocai, GAO Yihong, ZHANG Lanjun, et al. The plant cell wall: Biosynthesis, construction, and functions[J]. Journal of Integrative Plant Biology, 2021, 63(1): 251-272. |
10 | BRETHAUER Simone, SHAHAB Robert L, STUDER Michael H. Impacts of biofilms on the conversion of cellulose[J]. Applied Microbiology and Biotechnology, 2020, 104(12): 5201-5212. |
11 | ZOU Qiuxia, HE Hongshen, XIE Jie, et al. Study on the mechanism of acid modified H-beta zeolite acidic sites on the catalytic pyrolysis of kraft lignin[J]. Chemical Engineering Journal, 2023, 462: 142029. |
12 | MARGELLOU Antigoni G, PAPPA Christina P, PSOCHIA Eleni A, et al. Mild isolation and characterization of surface lignin from hydrothermally pretreated lignocellulosic forestry and agro-industrial waste biomass[J]. Sustainable Chemistry and Pharmacy, 2023, 33: 101056. |
13 | LIU Xudong, BOUXIN Florent P, FAN Jiajun, et al. Recent advances in the catalytic depolymerization of lignin towards phenolic chemicals: A review[J]. ChemSusChem, 2020, 13(17): 4296-4317. |
14 | MARGARIDA MARTINS M, CARVALHEIRO Florbela, Francisco GÍRIO. An overview of lignin pathways of valorization: From isolation to refining and conversion into value-added products[J]. Biomass Conversion and Biorefinery, 2024, 14(3): 3183-3207. |
15 | ABDUS SALAM Muhammad, WAYNE CHEAH You, HOANG HO Phuoc, et al. Elucidating the role of NiMoS-USY during the hydrotreatment of Kraft lignin[J]. Chemical Engineering Journal, 2022, 442: 136216. |
16 | LI Yibing, MENG Xianzhi, MENG Rongqian, et al. Valorization of homogeneous linear catechyl lignin: Opportunities and challenges[J]. RSC Advances, 2023, 13(19): 12750-12759. |
17 | 李丰泉. 辣木籽壳吸附性及木质素提取与应用研究[D]. 重庆: 西南大学, 2020. |
LI Fengquan. Study on adsorption of moringa seed shell and extraction and application of lignin[D]. Chongqing: Southwest University, 2020. | |
18 | MERAJ Aatikah, SINGH Surendra Pratap, JAWAID M, et al. A review on eco-friendly isolation of lignin by natural deep eutectic solvents from agricultural wastes[J]. Journal of Polymers and the Environment, 2023, 31(8): 3283-3316. |
19 | 林菊, 马阳阳, 李苗云, 等. 传统熏烤木材中木质素结构表征及其热解特性[J]. 食品科学, 2023, 44(2): 32-38. |
LIN Ju, MA Yangyang, LI Miaoyun, et al. Structural characterization and pyrolysis characteristics of lignin in traditional smoked and roasted wood[J]. Food Science, 2023, 44(2): 32-38. | |
20 | 王绍庆, 李志合, 易维明, 等. 活化赤泥催化热解玉米芯木质素制备高值单酚[J]. 农业工程学报, 2020, 36(13): 203-211. |
WANG Shaoqing, LI Zhihe, YI Weiming, et al. Catalytic pyrolysis of maize cob lignin over activated red mud catalyst for value-added mono-phenol production[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 203-211. | |
21 | JAMPA Sureerat, Allen PUENTE-URBINA, MA Zhiqiang, et al. Optimization of lignin extraction from pine wood for fast pyrolysis by using a γ-valerolactone-based binary solvent system[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4058-4068. |
22 | HE Juan, HUANG Caoxing, LAI Chenhuan, et al. The effect of lignin degradation products on the generation of pseudo-lignin during dilute acid pretreatment[J]. Industrial Crops and Products, 2020, 146: 112205. |
23 | LI Ning, LI Yanding, YOO Chang Geun, et al. An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: A mechanistic study[J]. Green Chemistry, 2018, 20(18): 4224-4235. |
24 | SHIRAKI Yuya, GOTO Tomohiro, NONAKA Hiroshi. Concentrated sulfuric acid hydrolysis of softwood with t-butyl alcohol[J]. Biomass Conversion and Biorefinery, 2021, 11(3): 937-941. |
25 | Mostafizur RAHMAN M, ARAFAT Kazi M Yasin, JIN Yangcan, et al. Structural characterization of potassium hydroxide liquor lignin and its application in biorefinery[J]. Biomass Conversion and Biorefinery, 2023, 13(2): 727-737. |
26 | ARRUDA Marcela Daniela Muniz, DA PAZ LEÔNCIO ALVES Simone, DA CRUZ FILHO Iranildo José, et al. Characterization of a lignin from Crataeva tapia leaves and potential applications in medicinal and cosmetic formulations[J]. International Journal of Biological Macromolecules, 2021, 180: 286-298. |
27 | 周静, 沈葵忠, 房桂干, 等. 水热和碱醇联合预处理麦草结构解析及酶解性能研究[J]. 太阳能学报, 2020, 41(1): 179-185. |
ZHOU Jing, SHEN Kuizhong, FANG Guigan, et al. Investigation on chemical composition of wheat straw and enzymatic hydrolysis during hydrothermal pretreated and sequentially alkaline ethanol[J]. Acta Energiae Solaris Sinica, 2020, 41(1): 179-185. | |
28 | 詹云妮, 黄晨, 程金元, 等. 竹材碱性过氧化氢预处理及其酶水解性能研究[J]. 太阳能学报, 2022, 43(10): 326-334. |
ZHAN Yunni, HUANG Chen, CHENG Jinyuan, et al. Study of alkaline hydrogen peroxide pretreatment and enzymatic hydrolysis of bamboo[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 326-334. | |
29 | ERAGHI KAZZAZ Armin, FATEHI Pedram. Technical lignin and its potential modification routes: A mini-review[J]. Industrial Crops and Products, 2020, 154: 112732. |
30 | 董志国, 刘紫灏, 李建, 等. 超滤黑液木质素催化热解特性研究[J]. 太阳能学报, 2020, 41(2): 58-65. |
DONG Zhiguo, LIU Zihao, LI Jian, et al. Study on catalytic pyrolysis characteristics of lignin ultrafiltrated from black liquor [J]. Acta Energiae Solaris Sinica, 2020, 41(2): 58-65. | |
31 | LIAO Jingjing, LATIF Nur Hanis Abd, TRACHE Djalal, et al. Current advancement on the isolation, characterization and application of lignin[J]. International Journal of Biological Macromolecules, 2020, 162: 985-1024. |
32 | LI Tao, TAKKELLAPATI Sudhakar. The current and emerging sources of technical lignins and their applications[J]. Biofuels Bioproducts & Biorefining, 2018, 12(5): 756-787. |
33 | LOBATO-PERALTA Diego Ramón, Estefanía DUQUE-BRITO, VILLAFÁN-VIDALES Heidi Isabel, et al. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications[J]. Journal of Cleaner Production, 2021, 293: 126123. |
34 | FLORIAN Tiappi Deumaga Mathias, VILLANI Nicolas, AGUEDO Mario, et al. Chemical composition analysis and structural features of banana rachis lignin extracted by two organosolv methods[J]. Industrial Crops and Products, 2019, 132: 269-274. |
35 | 王东玲, 王文锦, 彭梓芳, 等. 醇溶剂提取松木木质素及其结构表征[J]. 化工学报, 2020, 71(8): 3761-3769. |
WANG Dongling, WANG Wenjin, PENG Zifang, et al. Structure characterization of pine lignin extracted by different alcohol solvents[J]. CIESC Journal, 2020, 71(8): 3761-3769. | |
36 | 曾诚, 宋国杰, 孙海彦, 等. 甘油预处理蔗渣的木质素分离提取及结构表征[J]. 化工进展, 2020, 39(11): 4418-4426. |
ZENG Cheng, SONG Guojie, SUN Haiyan, et al. Isolation and structural characterization of glycerol extracted sugarcane bagasse lignin[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4418-4426. | |
37 | 徐卉桐, 吴磊, 古丽美合日·艾散, 等. 乙二醇法提取棉秆木质素及其对聚丙烯抗氧化性能的影响[J]. 高分子材料科学与工程, 2022, 38(12): 63-70. |
XU Huitong, WU Lei, HASAN Gvlmira, et al. Extraction of lignin from cotton straw by ethylene glycol method and its effect on antioxidant properties of polypropylene[J]. Polymer Materials Science & Engineering, 2022, 38(12): 63-70. | |
38 | 宋晓敏, 徐文彪, 李亚茹, 等. 酸性溴化锂熔盐水合物溶解木质素的实验研究[J]. 太阳能学报, 2022, 43(3): 469-473. |
SONG Xiaomin, XU Wenbiao, LI Yaru, et al. Experiment study on dissolved lignin in acid lithium bromide fused salt hydrate[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 469-473. | |
39 | PAULSEN THORESEN Petter, LANGE Heiko, CRESTINI Claudia, et al. Characterization of organosolv birch lignins: Toward application-specific lignin production[J]. ACS Omega, 2021, 6(6): 4374-4385. |
40 | ZHANG Yongchao, NI Shuzhen, WU Ruijie, et al. Green fractionation approaches for isolation of biopolymers and the critical technical challenges[J]. Industrial Crops and Products, 2022, 177: 114451. |
41 | 何文强, 武小芬, 刘云, 等. 甲酸法分离南荻木质纤维素组分及其结构分析[J]. 太阳能学报, 2021, 42(11): 415-420. |
HE Wenqiang, WU Xiaofen, LIU Yun, et al. Fractionation and structural analysis of main components from triarrhena lutarioriparia by formic acid[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 415-420. | |
42 | 崔莹, 甘林火, 李爱多, 等. 一步法快速提取浅色甘蔗渣木质素的工艺优化[J]. 精细化工, 2020, 37(9): 1864-1869, 1925. |
CUI Ying, GAN Linhuo, LI Aiduo, et al. Optimization of one-step rapid extraction of light-colored bagasse lignin[J]. Fine Chemicals, 2020, 37(9): 1864-1869, 1925. | |
43 | FENG Chengqi, ZHU Jiatian, CAO Liming, et al. Acidolysis mechanism of lignin from bagasse during p-toluenesulfonic acid treatment[J]. Industrial Crops and Products, 2022, 176: 114374. |
44 | SIBEL Başakçılardan Kabakcı, MEDYA HATUN Tanış. Pretreatment of lignocellulosic biomass at atmospheric conditions by using different organosolv liquors: A comparison of lignins[J]. Biomass Conversion and Biorefinery, 2021, 11(6): 2869-2880. |
45 | LI Xiaoyu, LI Mingfei. Discrepancy of lignin dissolution from eucalyptus during formic acid fractionation[J]. International Journal of Biological Macromolecules, 2020, 164: 4662-4670. |
46 | 范宇阳, 雷鸣, 孔祥琛, 等. 枫木木质素热解自由基演变规律研究[J]. 太阳能学报, 2022, 43(11): 352-357. |
FAN Yuyang, LEI Ming, KONG Xiangchen, et al. Study on radical evolution during maple lignin pyrolysis[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 352-357. | |
47 | 韩明阳, 乔慧, 付佳铭, 等. 非水溶剂预处理木质纤维原料研究进展[J]. 化工进展, 2022, 41(8): 4086-4097. |
HAN Mingyang, QIAO Hui, FU Jiaming, et al. Research progress of non-aqueous solvents on the pretreatment of lignocellulose[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. | |
48 | PATRI Abhishek S, MOSTOFIAN Barmak, PU Yunqiao, et al. A multifunctional cosolvent pair reveals molecular principles of biomass deconstruction[J]. Journal of the American Chemical Society, 2019, 141(32): 12545-12557. |
49 | SMIT Arjan T, VAN ZOMEREN André, DUSSAN Karla, et al. Biomass pre-extraction as a versatile strategy to improve biorefinery feedstock flexibility, sugar yields, and lignin purity[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 6012-6022. |
50 | 吴文娟, 邹春阳, 黄丽菁, 等. 竹材在LiCl/DMSO溶剂体系中的溶解及再生性能[J]. 林业科学, 2020, 56(9): 201-206. |
WU Wenjuan, ZOU Chunyang, HUANG Lijing, et al. Dissolution and regeneration of bamboo in LiCl/DMSO solvent system[J]. Scientia Silvae Sinicae, 2020, 56(9): 201-206. | |
51 | LEE Eun-Ah, KIM Jeong-Ki, BANDI Rajkumar, et al. Ionic liquid-assisted isolation of lignin from lignocellulose and its esterification with fatty acids[J]. BioResources, 2022, 17(4): 5861-5877. |
52 | RAWAT Shivam, KUMAR Adarsh, BHASKAR Thallada. Ionic liquids for separation of lignin and transformation into value-added chemicals[J]. Current Opinion in Green and Sustainable Chemistry, 2022, 34: 100582. |
53 | 胡莉芳, 何鸿伟, 张宇, 等. 微波辅助离子液体EmimOAc提取毛竹木质素[J]. 化工进展, 2019, 38(9): 4352-4360. |
HU Lifang, HE Hongwei, ZHANG Yu, et al. Microwave-assisted extraction of lignin from bamboo by ionic liquid EmimOAc[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4352-4360. | |
54 | WEN Jialong, SUN Shaolong, XUE Bailiang, et al. Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment[J]. Journal of Agricultural and Food Chemistry, 2013, 61(3): 635-645. |
55 | HASANOV Isa, SHANMUGAM Sabarathinam, KIKAS Timo. Extraction and isolation of lignin from ash tree(Fraxinus exselsior) with protic ionic liquids(PILs)[J]. Chemosphere, 2022, 290: 133297. |
56 | FERNANDES Catarina, MELRO Elodie, Solange MAGALHÃES, et al. New deep eutectic solvent assisted extraction of highly pure lignin from maritime pine sawdust(Pinus pinaster Ait.)[J]. International Journal of Biological Macromolecules, 2021, 177: 294-305. |
57 | USMANI Zeba, SHARMA Minaxi, GUPTA Pratishtha, et al. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion[J]. Bioresource Technology, 2020, 304: 123003. |
58 | 皮奇峰, 朱妤婷, 吕微, 等. 低共熔溶剂低温预处理杨木及三组分结构演变规律研究[J]. 燃料化学学报, 2021, 49(12): 1791-1801. |
PI Qifeng, ZHU Yuting, Wei LYU, et al. Low temperature pretreatment of poplar using deep eutectic solvent and the structural evolution of three components of poplar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1791-1801. | |
59 | 王芷, 刘乾静, 刘莉, 等. 木质素提取及木质素吸附剂制备方法研究进展[J]. 现代化工, 2022, 42(6): 16-19. |
WANG Zhi, LIU Qianjing, LIU Li, et al. Research progress on preparation method for lignin adsorbent[J]. Modern Chemical Industry, 2022, 42(6): 16-19. | |
60 | 解先利, 刘云云, 余强, 等. 低共熔溶剂预处理提高甘草渣酶解效果优化[J]. 化工进展, 2022, 41(3): 1349-1356. |
XIE Xianli, LIU Yunyun, YU Qiang, et al. Improving enzymatic hydrolysis effect of herb residue by deep eutectic solvent pretreatment[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1349-1356. | |
61 | HONG Si, SHEN Xiaojun, SUN Zhuohua, et al. Insights into structural transformations of lignin toward high reactivity during choline chloride/formic acid deep eutectic solvents pretreatment[J]. Frontiers in Energy Research, 2020, 8: 573198. |
62 | ZHANG Man, TIAN Rubo, TANG Siyang, et al. Multistage treatment of bamboo powder waste biomass: Highly efficient and selective isolation of lignin components[J]. Waste Management, 2023, 166: 35-45. |
63 | HONG Si, SHEN Xiaojun, XUE Zhimin, et al. Structure-function relationships of deep eutectic solvents for lignin extraction and chemical transformation[J]. Green Chemistry, 2020, 22(21): 7219-7232. |
64 | ZHONG Lei, WANG Chao, YANG Guihua, et al. Rapid and efficient microwave-assisted guanidine hydrochloride deep eutectic solvent pretreatment for biological conversion of castor stalk[J]. Bioresource Technology, 2022, 343: 126022. |
65 | 李锋, 毛海立, 徐平, 等. 乳酸类低共熔溶剂分离油茶果壳木质素及其特性分析[J]. 精细化工, 2023, 40(1): 109-116, 168. |
LI Feng, MAO Haili, XU Ping, et al. Isolation and characteristic analysis of lignin extracted from camellia oleifera shell via lactic acid-based deep eutectic solvents[J]. Fine Chemicals, 2023, 40(1): 109-116, 168. | |
66 | 曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495. |
CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495. | |
67 | HAN Shuangmei, WANG Ruizhen, WANG Kui, et al. Low-condensed lignin and high-purity cellulose production from poplar by synergistic deep eutectic solvent-hydrogenolysis pretreatment[J]. Bioresource Technology, 2022, 363: 127905. |
68 | LIN Wenqian, YANG Jinlai, ZHENG Yayue, et al. Understanding the effects of different residual lignin fractions in acid-pretreated bamboo residues on its enzymatic digestibility[J]. Biotechnology for Biofuels, 2021, 14(1): 143. |
69 | YANG Guangrong, AN Xueying, YANG Shilong. The effect of ball milling time on the isolation of lignin in the cell wall of different biomass[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 807625. |
70 | Anders BJÖRKMAN. Isolation of lignin from finely divided wood with neutral solvents[J]. Nature, 1954, 174(4440): 1057-1058. |
71 | HE Mengke, HE Yilin, LI Zhiqi, et al. Structural characterization of lignin and lignin-carbohydrate complex(LCC) of sesame hull[J]. International Journal of Biological Macromolecules, 2022, 209: 258-267. |
72 | 黄明, 朱亮, 马中青, 等. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃料化学学报, 2021, 49(3): 292-302. |
HUANG Ming, ZHU Liang, MA Zhongqing, et al. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 292-302. | |
73 | 李猛, 张亚茹, 高梦亚, 等. 玉米秸秆苞叶与茎皮中磨木木质素和木素-碳水化合物复合体的傅里叶红外光谱分析[J]. 玉米科学, 2020, 28(3): 87-91, 98. |
LI Meng, ZHANG Yaru, GAO Mengya, et al. FT-IR analysis of MWL and LCC in different parts of corn stalk[J]. Journal of Maize Sciences, 2020, 28(3): 87-91, 98. |
[1] | 白毓黎, 白富栋, 张雷, 孙启梅, 李秀峥. 木质素基酚醛树脂的制备和过程优化[J]. 化工进展, 2024, 43(2): 1033-1038. |
[2] | 娄瑞, 牛涛嫄, 曹启航, 张依依, 雷雯祺, 卢聪敏, 王志伟. δ-MnO2原位负载纳米木质素基分级多孔炭的制备及其电化学性能[J]. 化工进展, 2024, 43(2): 1013-1021. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[5] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[6] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[7] | 陈禹婷, 白宇辰. 木质素氧化解聚制备芳香醛研究进展[J]. 化工进展, 2023, 42(12): 6576-6588. |
[8] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[9] | 张鹏, 王绍庆, 李志合, 张安东, 高亮, 万震, 宋宁. 赤泥/木质素共热解制备复合吸附材料及其性能[J]. 化工进展, 2022, 41(S1): 407-414. |
[10] | 蒲福龙, 伍尚炜, 郑映玲, 郑玉意, 侯雪丹. 基于乳酸的深度共熔溶剂提取秸秆木质素对纤维素酶水解效率的影响[J]. 化工进展, 2022, 41(9): 4937-4945. |
[11] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[12] | 汪兴, 赵子龙, 张小山, 王宏杰, 董文艺, 陈慧慧. 制备条件对生物炭载铁催化剂催化破络Ni-EDTA性能及活性组分浸出的影响[J]. 化工进展, 2022, 41(9): 4831-4839. |
[13] | 张伟, 安兴业, 刘利琴, 龙垠荧, 张昊, 程正柏, 曹海兵, 刘洪斌. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
[14] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[15] | 娄瑞, 刘钰, 田杰, 张亚男. 纳米木质素基多孔炭的制备及其电化学性能[J]. 化工进展, 2022, 41(6): 3170-3177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |