化工进展 ›› 2024, Vol. 43 ›› Issue (9): 4859-4870.DOI: 10.16085/j.issn.1000-6613.2023-1434

• 能源加工与技术 • 上一篇    

全钒液流电池离子导电膜的选择性

张巍1,2(), 宋权斌1,2(), 周运河1,2, 董梦瑶1,2, 李婕1,2, 伍乔1,2, 付业昊1,2, 梁垚城1,2, 尹艳山1,2, 成珊1,2, 宋健3   

  1. 1.长沙理工大学能源与动力工程学院,湖南 长沙 410114
    2.可再生能源电力技术湖南省重点实验室,湖南 长沙 410114
    3.湖南大唐节能有限公司,湖南 长沙 410021
  • 收稿日期:2023-08-16 修回日期:2023-11-20 出版日期:2024-09-15 发布日期:2024-09-30
  • 通讯作者: 张巍,宋权斌
  • 作者简介:张巍(1974—),男,博士,副教授,硕士生导师,研究方向为能源高效清洁利用。E-mail:weizhang@csust.edu.cn
    宋权斌(1972—),男,博士,副教授,硕士生导师,研究方向为高效清洁燃烧。E-mail:sqb@csust.edu.cn
  • 基金资助:
    国家自然科学基金(52006016);湖南省自然科学基金(2023JJ30047);湖南省教育厅科学研究项目重点项目(21A0216);湖南省教育厅优秀青年项目(20B041);长沙理工大学青年教师成长计划(2019QJCZ044)

Selectivity of ion conductive membranes in all-vanadium flow battery

ZHANG Wei1,2(), SONG Quanbin1,2(), ZHOU Yunhe1,2, DONG Mengyao1,2, LI Jie1,2, WU Qiao1,2, FU Yehao1,2, LIANG Yaocheng1,2, YIN Yanshan1,2, CHENG Shan1,2, SONG Jian3   

  1. 1.College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
    2.Key Laboratory of Renewable Energy and Electric Power Technology of Hunan Province, Changsha 410114, Hunan, China
    3.Hunan Datang Energy Saving Company Limited, Changsha 410021, Hunan, China.
  • Received:2023-08-16 Revised:2023-11-20 Online:2024-09-15 Published:2024-09-30
  • Contact: ZHANG Wei, SONG Quanbin

摘要:

全钒液流电池(VFB)具有功率大、容量大、效率高、安全性能高的特点,近年来在储能应用方面受到广泛关注。离子导电膜作为VFB的关键组件,存在严重的钒离子交叉污染问题,易造成电池容量损失,降低电池使用寿命,因此深入了解VFB离子导电膜的选择性和质子传导对电池性能具有重要意义。本文综述了VFB中阳离子交换膜、阴离子交换膜、两性离子交换膜以及多孔膜等的研究进展,分析了离子导电膜上钒离子的渗透和质子的传输,重点总结了离子导电膜的改性、超薄复合膜设计、膜内微观结构优化及离子基团功能化对提高离子导电膜选择性和电导率的影响,较为全面地阐述了当前VFB离子导电膜选择性和电导率之间的平衡问题,为开发高性能、低成本、长寿命的离子导电膜,促进其商业化发展提供了参考依据,并展望了基于质子传导机制的氢键网络结构、多孔导电膜、低成本的超薄复合膜以及利用分子动力学模拟离子跨膜来提高VFB离子导电膜选择性的研究方向。

关键词: 全钒液流电池, 离子交换膜, 多孔膜, 离子选择性, 渗透率

Abstract:

Vanadium flow batteries (VFB) has received widespread attentions in energy storage applications in recent years due to its characteristics of large power, large capacity, high efficiency and high safety performance. As a key component of VFB, ion conductive membrane has a serious problem of vanadium ion cross contamination, which is easy to cause the loss of battery capacity and reduce the battery service life. Therefore, it is of great significance to deeply understand the selectivity of VFB ion conductive membrane and proton conduction. This paper provides a comprehensive review of the research progress in VFB, encompassing cation-exchange membranes, anion-exchange membranes, zwitterion-exchange membranes, and porous membranes. Analysis of vanadium ion permeation and proton transport across ion-conductive membranes is made, with a primary focus on the impact of membrane modification, ultrathin composite membrane design, optimization of membrane microstructures, and functionalization of ion groups on the selectivity and conductivity. The paper also makes a comprehensive discussion on the current balance between selectivity and conductivity in VFB ion-conductive membranes, offering valuable insights for the development of high-performance, cost-effective, and long-lasting ion-conductive membranes, as well as their commercialization. It also discusses the researches of the hydrogen bond network structure based on the proton conduction mechanism, porous conductive membranes, low-cost ultrathin composite films, and molecular dynamics simulation of ion transmembrane to improve the selectivity of VFB ion-conductive films.

Key words: all-vanadium flow battery, ion exchange membrane, porous membrane, ionic selectivity, permeability

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn