1 |
王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.
|
|
WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9.
|
2 |
王文中, 邵东云, 程新科, 等. 中国浅层和中深层地热能的开发和利用[J]. 水电与新能源, 2022, 36(3): 21-25.
|
|
WANG Wenzhong, SHAO Dongyun, CHENG Xinke, et al. Development and utilization of the shallow and middle-deep geothermal energy in China[J]. Hydropower and New Energy, 2022, 36(3): 21-25.
|
3 |
许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947.
|
|
XU Tianfu, HU Zixu, LI Shengtao, et al. Enhanced geothermal system: International progresses and research status of China[J]. Acta Geologica Sinica, 2018, 92(9): 1936-1947.
|
4 |
BU Xianbiao, JIANG Kunqing, LI Huashan. Performance of geothermal single well for intermittent heating[J]. Energy, 2019, 186: 115858.
|
5 |
李盼. 干热岩CO2-EGS中热-流-固-化耦合效应研究[D]. 徐州: 中国矿业大学, 2020.
|
|
LI Pan. Study on effect of thermo-hydro-mechanical-chemical coupling in CO2-EGS of hot dry rock[D]. Xuzhou: China University of Mining and Technology, 2020.
|
6 |
孙致学, 姜传胤, 张凯, 等. 基于离散裂缝模型的CO2增强型地热系统THM耦合数值模拟[J]. 中国石油大学学报(自然科学版), 2020, 44(6): 79-87.
|
|
SUN Zhixue, JIANG Chuanyin, ZHANG Kai, et al. Numerical simulation for heat extraction of CO2-EGS with thermal-hydraulic-mechanical coupling method based on discrete fracture models[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 79-87.
|
7 |
SHI Yu, SONG Xianzhi, FENG Yanjun. Effects of lateral-well geometries on multilateral-well EGS performance based on a thermal-hydraulic-mechanical coupling model[J]. Geothermics, 2021, 89: 101939.
|
8 |
张杰, 谢经轩. 多分支井增强型地热开发系统设计及产能评价[J]. 天然气工业, 2021, 41(3): 179-188.
|
|
ZHANG Jie, XIE Jingxuan. Design and productivity evaluation of multi-lateral well enhanced geothermal development system[J]. Natural Gas Industry, 2021, 41(3): 179-188.
|
9 |
BREEDE K, DZEBISASHVILI K, LIU XL, et al. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future[J]. Geothermal Energy, 2013, 1(1): 1-27.
|
10 |
赵志宏. 岩石裂隙水-岩作用机制与力学行为研究[J]. 岩石力学与工程学报, 2021, 40(S2): 3063-3073.
|
|
ZHAO Zhihong. Study on water-rock interaction mechanisms and mechanical behaviors of single rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3063-3073.
|
11 |
DIPIPPO R. Geothermal power plants: Principles, applications, case studies and environmental impact[M]. 3rd ed. Amsterdam: Butterworth-Heinemann, 2012.
|
12 |
YANAGISAWA N, MATSUNAGA I, SUGITA H, et al. Temperature-dependent scale precipitation in the Hijiori Hot Dry Rock system, Japan[J]. Geothermics, 2008, 37(1): 1-18.
|
13 |
SONG Guofeng, SONG Xianzhi, JI Jiayan, et al. Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system[J]. Renewable Energy, 2022, 186: 126-142.
|
14 |
RAWAL C, GHASSEMI A. A reactive thermo-poroelastic analysis of water injection into an enhanced geothermal reservoir[J]. Geothermics, 2014, 50: 10-23.
|
15 |
PANDEY S N, CHAUDHURI A, RAJARAM H, et al. Fracture transmissivity evolution due to silica dissolution/precipitation during geothermal heat extraction[J]. Geothermics, 2015, 57: 111-126.
|
16 |
CHEN Yun, MA Guowei, WANG Huidong. The simulation of thermo-hydro-chemical coupled heat extraction process in fractured geothermal reservoir[J]. Applied Thermal Engineering, 2018, 143: 859-870.
|
17 |
赵阳升. 多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010.
|
|
ZHAO Yangsheng. Multi-field coupling of porous media and its engineering response[M]. Beijing: Science Press, 2010.
|
18 |
MILLINGTON R J, QUIRK J P. Permeability of porous solids[J]. Transactions of the Faraday Society, 1961, 57(0): 1200-1207.
|
19 |
RIMSTIDT J D, BARNES H L. The kinetics of silica-water reactions[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1683-1699.
|
20 |
WILSON John L, MILLER Paul J. Two-dimensional plume in uniform ground-water flow[J]. Journal of the Hydraulics Division, 1978, 104(4): 503-514.
|
21 |
HUANG Man, JIAO Yuyong, LUO Jin, et al. Numerical investigation on heat extraction performance of an enhanced geothermal system with supercritical N2O as working fluid[J]. Applied Thermal Engineering, 2020, 176: 115436.
|
22 |
BARENDS F. Complete solution for transient heat transport in porous media, following lauwerier's concept[C]//SPE Annual Technical Conference and Exhibition. Florence: Society of Petroleum Engineers, 2010.
|
23 |
张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6): 1087-1102.
|
|
ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 2018, 45(6): 1087-1102.
|
24 |
于漂罗, 张盛生, 查恩爽. 青海共和盆地新近系热储层地热资源量评价与分析[J]. 世界地质, 2021, 40(4): 907-914.
|
|
YU Piaoluo, ZHANG Shengsheng, ZHA Enshuang. Geothermal energy assessment and analysis in Neogene geothermal reservoir of Gonghe Basin, Qinghai[J]. Global Geology, 2021, 40(4): 907-914.
|
25 |
LEI Zhihong, ZHANG Yanjun, ZHANG Senqi, et al. Electricity generation from a three-horizontal-well enhanced geothermal system in the Qiabuqia geothermal field, China: Slickwater fracturing treatments for different reservoir scenarios[J]. Renewable Energy, 2020, 145: 65-83.
|
26 |
XU Chaoshui, DONG Shaoqun, WANG Hang, et al. Modelling of coupled hydro-thermo-chemical fluid flow through rock fracture networks and its applications[J]. Geosciences, 2021, 11(4): 153.
|
27 |
LIU Feng, KANG Yong, HU Yi, et al. Comparative investigation on the heat extraction performance of an enhanced geothermal system with N2O, CO2 and H2O as working fluids[J]. Applied Thermal Engineering, 2022, 200: 117594.
|