化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2536-2545.DOI: 10.16085/j.issn.1000-6613.2020-1285
蒋坤卿1,4(), 黄思浩1,4, 李华山1,2,3, 卜宪标1,2,3(
)
收稿日期:
2020-07-07
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
卜宪标
作者简介:
蒋坤卿(1996—),男,硕士研究生,研究方向为地热能利用。E-mail:基金资助:
JIANG Kunqing1,4(), HUANG Sihao1,4, LI Huashan1,2,3, BU Xianbiao1,2,3(
)
Received:
2020-07-07
Online:
2021-05-06
Published:
2021-05-24
Contact:
BU Xianbiao
摘要:
为了解决深井换热器单井换热功率不高的问题,提出了一种单井增强型地热系统(single-well enhanced geothermal system,SEGS),SEGS通过在地热单井的钻孔周围建立人造热储来强化单井的换热能力。利用数值模拟的方式对SEGS进行了分析,研究了SEGS应用于建筑供暖的表现。结果表明:当换热流体采用由内管流入外管流出的流动方向布置形式时,SEGS的换热效果最好;此时单井单个供暖季平均换热功率为1603.6kW,是深井换热器的2.2倍。SEGS的换热功率随着人造热储半径的增大而增大,人造热储半径由50m提升至90m时,半径每增加10m带来的平均换热功率提升分别为102.7kW、67.0kW、43.8kW和29.2kW。单井换热功率随人造热储的厚度增加呈现先上升后略有下降的趋势,考虑到初投资问题建议热储厚度设计为400m。SEGS的换热功率随入口温度的降低以及入口流量的升高而增加。对于SEGS深度小于1500m的部分,需要考虑外管的保温。
中图分类号:
蒋坤卿, 黄思浩, 李华山, 卜宪标. 单井增强型地热系统性能分析[J]. 化工进展, 2021, 40(5): 2536-2545.
JIANG Kunqing, HUANG Sihao, LI Huashan, BU Xianbiao. Performance analysis of single well enhanced geothermal system[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2536-2545.
物质 | 密度/kg·m-3 | 热导率/W·m-1·K-1 | 比热容/J·kg-1·K-1 |
---|---|---|---|
水泥 | 2140 | 0.8 | 1900 |
岩石 | 2800 | 3.5 | 920 |
内管 | 910 | 0.21 | 1900 |
外管 | 8030 | 43.75 | 502.48 |
水 | 998.2 | 0.6 | 4182 |
表1 物性参数
物质 | 密度/kg·m-3 | 热导率/W·m-1·K-1 | 比热容/J·kg-1·K-1 |
---|---|---|---|
水泥 | 2140 | 0.8 | 1900 |
岩石 | 2800 | 3.5 | 920 |
内管 | 910 | 0.21 | 1900 |
外管 | 8030 | 43.75 | 502.48 |
水 | 998.2 | 0.6 | 4182 |
网格数量 | 出口温度/K |
---|---|
84234 | 307.92 |
105084 | 308.02 |
130284 | 308.03 |
231634 | 308.01 |
308334 | 308.01 |
535634 | 308.01 |
表2 网格无关性验证结果
网格数量 | 出口温度/K |
---|---|
84234 | 307.92 |
105084 | 308.02 |
130284 | 308.03 |
231634 | 308.01 |
308334 | 308.01 |
535634 | 308.01 |
1 | TEMPLETON J D, GHOREISHI-MADISEH S A, HASSANI F, et al. Abandoned petroleum wells as sustainable sources of geothermal energy[J]. Energy, 2014, 70: 366-373. |
2 | RYBACH L. Geothermal energy: sustainability and the environment[J]. Geothermics, 2003, 32(4-6): 463-470. |
3 | OLASOLO P, JUÁREZ M C, MORALES M P, et al. Enhanced geothermal systems (EGS): a review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144. |
4 | BARBIER E. Geothermal energy technology and current status: an overview[J]. Renewable and Sustainable Energy Reviews, 2002, 6(1/2): 3-65. |
5 | 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152. |
XU Tianfu, YUAN Yilong, JIANG Zhenjiao, et al. Hot dry rock and enhanced geothermal engineering: international experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139-1152. | |
6 | 廖志杰, 万天丰, 张振国. 增强型地热系统: 潜力大、开发难[J]. 地学前缘, 2015, 22(1): 335-344. |
LIAO Zhijie, WAN Tianfeng, ZHANG Zhenguo. The enhanced geothermal system(EGS): huge capacity and difficult exploitation[J]. Earth Science Frontiers, 2015, 22(1): 335-344. | |
7 | KUJAWA T, NOWAK W, STACHEL A A. Utilization of existing deep geological wells for acquisitions of geothermal energy[J]. Energy, 2006, 31: 650-664. |
8 | 李克文, 王磊, 毛小平, 等. 油田伴生地热资源评价与高效开发[J]. 科技导报, 2012, 30(32): 32-41. |
LI Kewen, WANG Lei, MAO Xiaoping, et al. Evaluation and efficient development of geothermal resource associated with oilfield[J]. Science & Technology Review, 2012, 30(32): 32-41. | |
9 | MORITA K, BOLLMEIER W S, MIZOGAMI H. An experiment to prove the concept of the downhole coaxial heat-exahanger (DCHE) in Hawaii[C]//MATA G. Anniversary-Geothermal Resources Council. 20th. Davis: Geothermal Resources Council, 1992: 9-16. |
10 | BU Xianbiao, JIANG Kunqing, LI Huashan. Performance of geothermal single well for intermittent heating[J]. Energy, 2019, 186: 115858. |
11 | SONG Xianzhi, WANG Gaosheng, SHI Yu, et al. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 2018, 164: 1298-1310. |
12 | DENG Jiewen, WEI Qingpeng, HE Shi, et al. Simulation analysis on the heat performance of deep borehole heat exchangers in medium-depth geothermal heat pump systems[J]. Energies, 2020, 13: 28. |
13 | DENG Jiewen, HE Shi, WEI Qingpeng, et al. Field test and optimization of heat pumps and water distribution systems in medium-depth geothermal heat pump systems[J]. Energy and Buildings, 2020, 209: 14. |
14 | LIU Jun, WANG Fenghao, CAI Wanlong, et al. Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger[J]. Renewable Energy, 2020, 149: 384-399. |
15 | LUO Yongqiang, YU Jinghua, YAN Tian, et al. Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method[J]. Energy and Buildings, 2020, 212: 16. |
16 | PAN Sheng, KONG Yanlong, CHEN Chaofan, et al. Optimization of the utilization of deep borehole heat exchangers[J]. Geothermal Energy, 2020, 8(1): 1-20. |
17 | MOKHTARI H, HADIANNASAB H, MOSTAFAVI M, et al. Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger[J]. Energy, 2016, 102: 260-275. |
18 | CHENG Wenlong, LI Tongtong, NIAN Yongle, et al. Evaluation of working fluids for geothermal power generation from abandoned oil wells[J]. Applied Energy, 2014, 118: 238-245. |
19 | WIGHT N M, BENNETT N S. Geothermal energy from abandoned oil and gas wells using water in combination with a closed wellbore[J]. Applied Thermal Engineering, 2015, 89: 908-915. |
20 | BU Xianbiao, MA Weibin, LI Huashan. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renewable Energy, 2012, 41: 80-85. |
21 | DAVIS A P, MICHAELIDES E E. Geothermal power production from abandoned oil wells[J]. Energy, 2009, 34(7): 866-872. |
22 | CHENG Wenlong, LI Tongtong, NIAN Yongle, et al. Studies on geothermal power generation using abandoned oil wells[J]. Energy, 2013, 59: 248-254. |
23 | ALIMONTI C, SOLDO E. Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger[J]. Renewable Energy, 2016, 86: 292-301. |
24 | 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60: 4741-4752. |
KONG Yanlong, CHEN Chaofan, SHAO Haibing, et al. Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese Journal of Geophysics, 2017, 60: 4741-4752. | |
25 | WANG Zhe, MCCLURE M W, HORNE R N. A single-well EGS configuration using a thermosiphon[C]//Thirty-Fourth Workshop on Geothermal Reservoir Engineering, 2009. |
26 | HUANG Wenbo, CAO Wenjiong, JIANG Fangming. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy, 2018, 162: 630-644. |
27 | DAI Chuanshan, LI Jiashu, SHI Yu, et al. An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design[J]. Applied Energy, 2019, 252: 113447. |
28 | CHENG Wenlong, LIU Jian, NIAN Yongle, et al. Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs[J]. Energy, 2016, 109: 537-545. |
29 | FENG Y, TYAGI M, WHITE C D. A downhole heat exchanger for horizontal wells in low-enthalpy geopressured geothermal brine reservoirs[J]. Geothermics, 2015, 53: 368-378. |
30 | PANEL M L. The future of geothermal energy: impact of enhanced geothermal systems[EGS] on the united states in the 21st century[EB/OL]. 2006. |
31 | HOLZBECHER E O. Modeling density-driven flow in porous media[M]. Berlin, Heidelberg: Springer, 1998. |
32 | BATAILLE A, GENTHON P, RABINOWICZ M, et al. Modeling the coupling between free and forced convection in a vertical permeable slot: implications for the heat production of an enhanced geothermal system[J]. Geothermics, 2006, 35(5/6): 654-682. |
33 | BU Xianbiao, RAN Yunmin, ZHANG Dongdong. Experimental and simulation studies of geothermal single well for building heating[J]. Renewable Energy, 2019, 143: 1902-1909. |
34 | LI J, DAI C, LI F. Experiment and modeling of heat extraction from a cylindrical saturated porous tank with a coaxial open loop[C]// Proceedings World Geothermal Congress. Reykjavik, Iceland, 2020. |
35 | BECKERMANN C, VISKANTA R, RAMADHYANI S. Natural convection in vertical enclosures containing simultaneously fluid and porous layers[J]. Journal of Fluid Mechanics, 1988, 186: 257-284. |
36 | CHEN Jiliang, JIANG Fangming. Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy[J]. Renewable Energy, 2015, 74: 37-48. |
37 | FANG Liang, DIAO Nairen, SHAO Zhukun, et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings, 2018, 167: 79-88. |
38 | KALMÁR L, MEDGYES T, SZANYI J. Specifying boundary conditions for economical closed loop deep geothermal heat production[J]. Energy, 2020, 196: 117068. |
39 | CAO Wenjiong, HUANG Wenbo, JIANG Fangming. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J]. International Journal of Heat and Mass Transfer, 2016, 92: 1205-1217. |
40 | 陈雁. 地热井下换热器的模拟试验与理论研究[D]. 天津: 天津大学, 2009. |
CHEN Yan. Experimental simulation and theoretical investigation on downhole heat exchanger[D]. Tianjin: Tianjin University, 2009. |
[1] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[2] | 李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83. |
[3] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[4] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[5] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[6] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[7] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[8] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[9] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[10] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[11] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[12] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[13] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[14] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[15] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 625
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 442
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |