化工进展 ›› 2024, Vol. 43 ›› Issue (9): 4996-5012.DOI: 10.16085/j.issn.1000-6613.2023-1495
• 材料科学与技术 • 上一篇
收稿日期:
2023-08-28
修回日期:
2023-11-16
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
单美霞,张亚涛
作者简介:
耿秀梅(1998—),女,硕士研究生,研究方向为气体分离膜。E-mail:gxm230230@163.com。
基金资助:
GENG Xiumei(), ZHANG Feng, ZHANG Xiang, SHAN Meixia(), ZHANG Yatao()
Received:
2023-08-28
Revised:
2023-11-16
Online:
2024-09-15
Published:
2024-09-30
Contact:
SHAN Meixia, ZHANG Yatao
摘要:
膜技术在二氧化碳捕集和分离过程中以高效、节能、经济等优势成为当前研究的热潮。聚合物膜由于可加工性强、成本低廉等优点已被广泛商业化,但聚合物膜存在渗透性和选择性的“trade-off”效应问题,即高渗透性膜选择性反而低,反之亦然。将多孔材料加入聚合物基质中制备的混合基质膜能够实现气体渗透性和选择性的同时提升,成为气体分离膜领域的研究趋势。本文综述了聚醚嵌段聚酰胺(Pebax)为聚合物基质、多孔材料为填料所制备的混合基质膜在二氧化碳分离稳定性方面的研究进展。概述了沸石、金属有机骨架和共价有机骨架三类多孔材料在水、酸、碱和有机溶剂等存在下的化学稳定性并对其机理进行解释。重点介绍了以Pebax为基质的混合基质膜在CO2分离过程中抗湿性和长期稳定性的研究现状。最后,针对膜稳定性在气体分离领域的发展,提出了多孔材料和膜在基础研究中的研究重点,指出了理论交叉实验以及多样化手段评估膜稳定性的研究方向。此外,从填料和聚合物的设计制备角度提出了改善膜稳定性的策略,旨在进一步提升Pebax混合基质膜对CO2混合气体的分离稳定性。
中图分类号:
耿秀梅, 张逢, 张翔, 单美霞, 张亚涛. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012.
GENG Xiumei, ZHANG Feng, ZHANG Xiang, SHAN Meixia, ZHANG Yatao. Research progress on the stability of Pebax-based mixed matrix membranes for CO2 separation[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4996-5012.
化学稳定性 | UiO-66 | ZIF-8 | MIL-125(Ti) | MOF-5 |
---|---|---|---|---|
水稳定性 | 强 | 强 | 弱 | 弱 |
酸稳定性 | 强 | 弱 | 强 | 弱 |
碱稳定性 | 强 | 强 | 弱 | 弱 |
表1 几种代表性MOFs的化学稳定性
化学稳定性 | UiO-66 | ZIF-8 | MIL-125(Ti) | MOF-5 |
---|---|---|---|---|
水稳定性 | 强 | 强 | 弱 | 弱 |
酸稳定性 | 强 | 弱 | 强 | 弱 |
碱稳定性 | 强 | 强 | 弱 | 弱 |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | 沸石填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试 时间/h | ||||
Pebax | SAPO-34 | 50 | 338 | 6.3 | 21 | 54 | 16 | 308 | 7 | — | [ | |||
4Azeolite | 10 | 97 | 1.8 | 3.7 | 54 | 26.5 | 298 | 5 | — | [ | ||||
MFI-ns | 5 | 159.1 | — | 5.8 | — | 27.4 | 298 | 2 | — | [ | ||||
ZeoliteY | 2 | 260100 | 8670 | — | 30 | — | 330 | 1 | 24 | [ | ||||
NaX | 1.5 | 187.76 | 0.65 | 3.27 | 288.86 | 57.41 | 298 | 6 | 50 | [ |
表2 沸石/Pebax混合基质膜气体分离性能及稳定性测试比较
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | 沸石填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试 时间/h | ||||
Pebax | SAPO-34 | 50 | 338 | 6.3 | 21 | 54 | 16 | 308 | 7 | — | [ | |||
4Azeolite | 10 | 97 | 1.8 | 3.7 | 54 | 26.5 | 298 | 5 | — | [ | ||||
MFI-ns | 5 | 159.1 | — | 5.8 | — | 27.4 | 298 | 2 | — | [ | ||||
ZeoliteY | 2 | 260100 | 8670 | — | 30 | — | 330 | 1 | 24 | [ | ||||
NaX | 1.5 | 187.76 | 0.65 | 3.27 | 288.86 | 57.41 | 298 | 6 | 50 | [ |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | MOFs填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试时间/h | ||||
Pebax | ZIF-8 | 20 | 290 | 9.4 | 19.2 | 41.1 | 15.1 | 298 | 3 | 360 | [ | |||
MWCNTs@ZIF-8 | 8 | 186.3 | 3.04 | — | 61.3 | — | 308 | 5 | 168 | [ | ||||
ZIF-300 | 30 | 83 | 0.99 | — | 84 | — | 293 | 4 | 100 | [ | ||||
UiO-66-NH2 | — | 130 | 1.81 | — | 72 | — | 298 | 3 | 100 (相对湿度=85%) | [ | ||||
UiO-66@HNT | 20 | 119 | 1.56 | — | 76 | — | 298 | 5 | 168 | [ | ||||
ns-Ni(im)2 | 2 | 123.3 | — | 3.4 | — | 36.5 | 298 | 2 | 120 | [ | ||||
Cu-BTC-SC | 15 | 49098 | 895.9 | 1227 | 54.8 | 40 | 298 | 1.5 | 100(加湿) | [ | ||||
Gly@Cu-BTC | 5 | 178.2 | — | 5.57 | — | 32 | 298 | 2 | 100(加湿) | [ | ||||
CFA-1 | 3 | 869 | 9.8 | — | 88.6 | — | 303 | 1 | 180 | [ |
表3 MOFs/Pebax混合基质膜气体分离性能及稳定性测试比较
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | MOFs填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试时间/h | ||||
Pebax | ZIF-8 | 20 | 290 | 9.4 | 19.2 | 41.1 | 15.1 | 298 | 3 | 360 | [ | |||
MWCNTs@ZIF-8 | 8 | 186.3 | 3.04 | — | 61.3 | — | 308 | 5 | 168 | [ | ||||
ZIF-300 | 30 | 83 | 0.99 | — | 84 | — | 293 | 4 | 100 | [ | ||||
UiO-66-NH2 | — | 130 | 1.81 | — | 72 | — | 298 | 3 | 100 (相对湿度=85%) | [ | ||||
UiO-66@HNT | 20 | 119 | 1.56 | — | 76 | — | 298 | 5 | 168 | [ | ||||
ns-Ni(im)2 | 2 | 123.3 | — | 3.4 | — | 36.5 | 298 | 2 | 120 | [ | ||||
Cu-BTC-SC | 15 | 49098 | 895.9 | 1227 | 54.8 | 40 | 298 | 1.5 | 100(加湿) | [ | ||||
Gly@Cu-BTC | 5 | 178.2 | — | 5.57 | — | 32 | 298 | 2 | 100(加湿) | [ | ||||
CFA-1 | 3 | 869 | 9.8 | — | 88.6 | — | 303 | 1 | 180 | [ |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | COF填料 | 负载量(质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试时间/h | ||||
Pebax | COF-5 | 0.4 | 493 | 10 | — | 49.3 | — | 303 | 1 | 120 | [ | |||
TpPa-nc | 1 | 20.3 | 0.3 | — | 72 | — | 298 | 3 | 120 | [ | ||||
COF-300 | 7 | 1268.4 | — | 41.3 | — | 30.7 | 303 | 2 | 60d(8.4%水) | [ | ||||
IL@COF-300 | 1601 | — | 40.5 | — | 39.5 | 60d(7.1%水) | ||||||||
PEG200@COF | 3 | 944 | — | 28.6 | — | 33 | 303 | 1 | 144 | [ | ||||
PEG350@COF | 1 | 1044 | — | 43.5 | — | 24 | ||||||||
mCOF | 0.8 | 477.2 | — | 15 | — | 31.9 | 303 | 2 | 168(加湿) | [ | ||||
CXM | 398.9 | — | 9 | — | 44.2 |
表4 COFs/Pebax混合基质膜气体分离性能及稳定性测试比较
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | COF填料 | 负载量(质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试时间/h | ||||
Pebax | COF-5 | 0.4 | 493 | 10 | — | 49.3 | — | 303 | 1 | 120 | [ | |||
TpPa-nc | 1 | 20.3 | 0.3 | — | 72 | — | 298 | 3 | 120 | [ | ||||
COF-300 | 7 | 1268.4 | — | 41.3 | — | 30.7 | 303 | 2 | 60d(8.4%水) | [ | ||||
IL@COF-300 | 1601 | — | 40.5 | — | 39.5 | 60d(7.1%水) | ||||||||
PEG200@COF | 3 | 944 | — | 28.6 | — | 33 | 303 | 1 | 144 | [ | ||||
PEG350@COF | 1 | 1044 | — | 43.5 | — | 24 | ||||||||
mCOF | 0.8 | 477.2 | — | 15 | — | 31.9 | 303 | 2 | 168(加湿) | [ | ||||
CXM | 398.9 | — | 9 | — | 44.2 |
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | 其他填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试 时间/h | ||||
Pebax | CC-PEINT | 8 | 710 | — | 11.83 | — | 60 | 298 | 2 | 120 | [ | |||
NPC | 5 | 553 | 9.8 | — | 56.4 | — | 298 | 1 | 360 | [ | ||||
ImGO | 0.8 | 64 | 0.7 | 2.55 | 90.3 | 25.1 | 298 | 4 | 50 | [ | ||||
CMC@MXene | 2 | 1823.5 | 45.47 | 45.1 | 40.1 | 40.4 | 298 | 1 | 60 | [ |
表5 其他材料/Pebax混合基质膜气体分离性能及稳定性测试比较
膜 | 气体分离性能 | 操作条件 | 参考 文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
渗透通量/Barrer | 选择性 | |||||||||||||
聚合物 | 其他填料 | 负载量 (质量分数)/% | CO2 | N2 | CH4 | CO2/N2 | CO2/CH4 | 测试 温度/K | 测试 压力/bar | 测试 时间/h | ||||
Pebax | CC-PEINT | 8 | 710 | — | 11.83 | — | 60 | 298 | 2 | 120 | [ | |||
NPC | 5 | 553 | 9.8 | — | 56.4 | — | 298 | 1 | 360 | [ | ||||
ImGO | 0.8 | 64 | 0.7 | 2.55 | 90.3 | 25.1 | 298 | 4 | 50 | [ | ||||
CMC@MXene | 2 | 1823.5 | 45.47 | 45.1 | 40.1 | 40.4 | 298 | 1 | 60 | [ |
63 | WALLER Peter J, LYLE Steven J, OSBORN POPP Thomas M, et al. Chemical conversion of linkages in covalent organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(48): 15519-15522. |
64 | URIBE-ROMO Fernando J, DOONAN Christian J, FURUKAWA Hiroyasu, et al. Crystalline covalent organic frameworks with hydrazone linkages[J]. Journal of the American Chemical Society, 2011, 133(30): 11478-11481. |
65 | LEE Jaewon, HONG Seokyoung, CHO Hyungtae, et al. Machine learning-based energy optimization for on-site SMR hydrogen production[J]. Energy Conversion and Management, 2021, 244: 114438. |
66 | LU H T, KANEHASHI S, SCHOLES C A, et al. The potential for use of cellulose triacetate membranes in post combustion capture[J]. International Journal of Greenhouse Gas Control, 2016, 55: 97-104. |
67 | ANANTHARAMAN Rahul, BOLLAND Olav, BOOTH Nick, et al. European best practice guidelines for assessment of CO2 capture technologies[R]. CAESAR Consortium, 2011. |
68 | YAVE Wilfredo, Anja CAR, PEINEMANN Klaus-Viktor. Nanostructured membrane material designed for carbon dioxide separation[J]. Journal of Membrane Science, 2010, 350(1/2): 124-129. |
69 | POTRECK Jens, NIJMEIJER Kitty, KOSINSKI Thomas, et al. Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074[J]. Journal of Membrane Science, 2009, 338(1/2): 11-16. |
70 | WU Hong, LI Xueqin, LI Yifan, et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties[J]. Journal of Membrane Science, 2014, 465: 78-90. |
71 | ZHAO Dan, REN Jizhong, LI Hui, et al. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation[J]. Journal of Energy Chemistry, 2014, 23(2): 227-234. |
72 | SURYA MURALI R, ISMAIL A F, RAHMAN M A, et al. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations[J]. Separation and Purification Technology, 2014, 129: 1-8. |
73 | ZHAO Jianhua, XIE Ke, LIU Liang, et al. Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite[J]. Journal of Membrane Science, 2019, 583: 23-30. |
74 | AHMAD Mohd Zamidi, Violeta MARTIN-GIL, SUPINKOVA Tatana, et al. Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation[J]. Separation and Purification Technology, 2021, 254: 117582. |
75 | ZHANG Qian, ZHOU Ming, LIU Xiufeng, et al. Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation[J]. Journal of Membrane Science, 2021, 636: 119612. |
76 | CHEN Yuanxin, WANG Bo, ZHAO Lin, et al. New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas[J]. Journal of Membrane Science, 2015, 495: 415-423. |
77 | MALEH Mohammad Salehi, RAISI Ahmadreza. CO2-philic moderate selective layer mixed matrix membranes containing surface functionalized NaX towards highly-efficient CO2 capture[J]. RSC Advances, 2019, 9(27): 15542-15553. |
78 | LI Shiguang, ALVARADO Guerrero, NOBLE Richard D, et al. Effects of impurities on CO2/CH4 separations through SAPO-34 membranes[J]. Journal of Membrane Science, 2005, 251(1/2): 59-66. |
79 | SUNITHA K, YAMUNA RANI K, MOULIK Siddhartha, et al. Separation of NMP/water mixtures by nanocomposite PEBA membrane: Part Ⅰ. Membrane synthesis, characterization and pervaporation performance[J]. Desalination, 2013, 330: 1-8. |
80 | Shu Hua GOH, LAU Hui Shen, YONG Wai fen. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: A review on advanced materials in harsh environmental applications[J]. Small, 2022, 18(20): 2107536. |
81 | SUTRISNA Putu Doddy, HOU Jingwei, LI Hongyu, et al. Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes[J]. Journal of Membrane Science, 2017, 524: 266-279. |
82 | LI Xiao, YU Shifan, LI Kun, et al. Enhanced gas separation performance of Pebax mixed matrix membranes by incorporating ZIF-8 in situ inserted by multiwalled carbon nanotubes[J]. Separation and Purification Technology, 2020, 248: 117080. |
83 | YUAN Jianwei, ZHU Haipeng, SUN Jiajia, et al. Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38575-38583. |
84 | SHEN Jie, LIU Gongping, HUANG Kang, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2016, 513: 155-165. |
85 | GUO Fei, LI Bingzhang, DING Rui, et al. A novel composite material UiO-66@HNT/pebax mixed matrix membranes for enhanced CO2/N2 separation[J]. Membranes, 2021, 11(9): 693. |
86 | LI Chunyu, WU Chao, ZHANG Baoquan. Enhanced CO2/CH4 separation performances of mixed matrix membranes incorporated with two-dimensional Ni-based MOF nanosheets[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 642-648. |
87 | XU Shanshan, HUANG Hongliang, GUO Xiangyu, et al. Highly selective gas transport channels in mixed matrix membranes fabricated by using water-stable Cu-BTC[J]. Separation and Purification Technology, 2021, 257: 117979. |
1 | JONES Matthew W, PETERS Glen P, GASSER Thomas, et al. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850[J]. Scientific Data, 2023, 10: 155. |
2 | MILLAR Richard J, FUGLESTVEDT Jan S, FRIEDLINGSTEIN Pierre, et al. Emission budgets and pathways consistent with limiting warming to 1.5℃[J]. Nature Geoscience, 2017, 10(10): 741-747. |
3 | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
4 | CHERNIKOVA Valeriya, SHEKHAH Osama, BELMABKHOUT Youssef, et al. Nanoporous fluorinated metal-organic framework-based membranes for CO2 capture[J]. ACS Applied Nano Materials, 2020, 3(7): 6432-6439. |
5 | SHI Dongchen, YU Xin, FAN Weidong, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coordination Chemistry Reviews, 2021, 437: 213794. |
6 | ZHOU Sheng, SHEKHAH Osama, Adrian RAMÍREZ, et al. Asymmetric pore windows in MOF membranes for natural gas valorization[J]. Nature, 2022, 606(7915): 706-712. |
7 | YU Bing, CONG Hailin, LI Zejing, et al. Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation[J]. Journal of Applied Polymer Science, 2013, 130(4): 2867-2876. |
8 | FURUKAWA Hiroyasu, Nakeun KO, GO Yong Bok, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428. |
9 | ROSI Nathaniel L, ECKERT Juergen, EDDAOUDI Mohamed, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129. |
10 | GENG Keyu, HE Ting, LIU Ruoyang, et al. Covalent organic frameworks: Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
11 | CHOI Minkee, CHO Hae Sung, SRIVASTAVA Rajendra, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Materials, 2006, 5(9): 718-723. |
12 | PARK Ho Bum, KAMCEV Jovan, ROBESON Lloyd M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
88 | WU Chao, GUO Hongyu, LIU Xiufeng, et al. Mixed matrix membrane comprising glycine grafted CuBTC for enhanced CO2 separation performances with excellent stability under humid atmosphere[J]. Separation and Purification Technology, 2022, 295: 121287. |
89 | ZHENG Weigang, TIAN Zhihong, WANG Zhen, et al. Dual-function biomimetic carrier based facilitated transport mixed matrix membranes with high stability for efficient CO2/N2 separation[J]. Separation and Purification Technology, 2022, 285: 120371. |
90 | MISHRA Biswajit, TRIPATHI Bijay P. Flexible covalent organic framework membranes with linear aliphatic amines for enhanced organic solvent nanofiltration[J]. Journal of Materials Chemistry A, 2023, 11(30): 16321-16333. |
91 | WANG Hongjian, ZHAO Jiashuai, LI Yang, et al. Aqueous two-phase interfacial assembly of COF membranes for water desalination[J]. Nano-Micro Letters, 2022, 14(1): 216. |
92 | WANG Han, ZENG Zhuotong, XU Piao, et al. Recent progress in covalent organic framework thin films: Fabrications, applications and perspectives[J]. Chemical Society Reviews, 2019, 48(2): 488-516. |
93 | ZHANG Yahui, MA Liang, Yongqin LYU, et al. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation[J]. Chemical Engineering Journal, 2022, 430: 133001. |
94 | DUAN Ke, WANG Jing, ZHANG Yatao, et al. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation[J]. Journal of Membrane Science, 2019, 572: 588-595. |
95 | ZOU Changchang, LI Qianqian, HUA Yinying, et al. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29093-29100. |
96 | ZHAO Rui, WU Hong, YANG Leixin, et al. Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading[J]. Journal of Membrane Science, 2020, 600: 117841. |
97 | LIU Yutao, WU Hong, WU Siqi, et al. Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation[J]. Journal of Membrane Science, 2021, 618: 118693. |
98 | GHANBARI Roham, MARANDI Alireza, ZARE Ehsan Nazarzadeh. Development of melamine-based covalent organic framework-MOF pearl-like heterostructure integrated poly(ether-block-amide) for CO2/CH4 separation[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109269. |
99 | SUN Yanyong, GOU Minmin. Highly efficient of CO2/CH4 separation performance via the pebax membranes with multi-functional polymer nanotubes[J]. Microporous and Mesoporous Materials, 2022, 342: 112120. |
13 | DATTA Shuvo Jit, MAYORAL Alvaro, BETTAHALLI Narasimha Murthy Srivatsa, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[J]. Science, 2022, 376(6597): 1080-1087. |
14 | XIANG Long, SHENG Luqian, WANG Chongqing, et al. Amino-functionalized ZIF-7 nanocrystals: Improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation[J]. Advanced Materials, 2017, 29(32): 1606999. |
15 | FENG Yang, YAN Wei, KANG Zixi, et al. Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes[J]. Chemical Engineering Journal, 2023, 465: 142873. |
16 | LI Shuo, SUN Yujie, WANG Zhaoxu, et al. Rapid fabrication of high-permeability mixed matrix membranes at mild condition for CO2 capture (small 19/2023)[J]. Small, 2023, 19(19): 2208177. |
17 | KANEHASHI Shinji, AGUIAR Alita, LU Hiep T, et al. Effects of industrial gas impurities on the performance of mixed matrix membranes[J]. Journal of Membrane Science, 2018, 549: 686-692. |
18 | CHEN Xiaoyuan, Hoang VINH-THANG, RAMIREZ Antonio Avalos, et al. Membrane gas separation technologies for biogas upgrading[J]. RSC Advances, 2015, 5(31): 24399-24448. |
19 | SAHOO Rupam, MONDAL Supriya, MUKHERJEE Debolina, et al. Meta-organic frameworks for CO2 separation from flue and biogas mixtures[J]. Advanced Functional Materials, 2022, 32(45): 2207197. |
20 | 闫海龙, 高缨佳, 胡爱军, 等. 分离CO2的纳米材料/Pebax混合基质膜研究进展[J]. 膜科学与技术, 2021, 41(5): 174-182. |
YAN Hailong, GAO Yingjia, HU Aijun, et al. Research progress of nanomaterial/Pebax mixed matrix membrane for CO2 separation[J]. Membrane Science and Technology, 2021, 41(5): 174-182. | |
21 | 俞江南, 李康, 陈飞, 等. 面向CO2分离的混合基质膜研究进展[J]. 化学工业与工程, 2023, 40(3): 74-83. |
YU Jiangnan, LI Kang, CHEN Fei, et al. Research progress of mixed matrix membranes for CO2 separation[J]. Chemical Industry and Engineering, 2023, 40(3): 74-83. | |
22 | ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids (Technical Report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. |
23 | CHENG Youdong, WANG Zhihong, ZHAO Dan. Mixed matrix membranes for natural gas upgrading: Current status and opportunities[J]. Industrial & Engineering Chemistry Research, 2018, 57: 4139-4169. |
24 | CARREON Moises A, LI Shiguang, FALCONER John L, et al. Alumina-supported SAPO-34 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2008, 130(16): 5412-5413. |
25 | LAN Jingming, WANG Baoying, BO Chunmiao, et al. Progress on fabrication and application of activated carbon sphere in recent decade[J]. Journal of Industrial and Engineering Chemistry, 2023, 120: 47-72. |
26 | SWAIN Suchhanda S, UNNIKRISHNAN Lakshmi, MOHANTY Smita, et al. Carbon nanotubes as potential candidate for separation of H2-CO2 gas pairs[J]. International Journal of Hydrogen Energy, 2017, 42(49): 29283-29299. |
27 | SIEGELMAN Rebecca L, KIM Eugene J, LONG Jeffrey R. Porous materials for carbon dioxide separations[J]. Nature Materials, 2021, 20(8): 1060-1072. |
28 | MASON Jarad A, MCDONALD Thomas M, Tae-Hyun BAE, et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O[J]. Journal of the American Chemical Society, 2015, 137(14): 4787-4803. |
29 | CHENG Youdong, YING Yunpan, JAPIP Susilo, et al. Membrane technology: Advanced porous materials in mixed matrix membranes [J]. Advanced Materials, 2018, 30(47): 1870355. |
30 | CHEN Yuzhen, ZHANG Rui, JIAO Long, et al. Metal-organic framework-derived porous materials for catalysis[J]. Coordination Chemistry Reviews, 2018, 362: 1-23. |
31 | XIA Qingchun, LI Zijian, TAN Chunxia, et al. Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions[J]. Journal of the American Chemical Society, 2017, 139(24): 8259-8266. |
32 | ZHAO Xiaojia, PACHFULE Pradip, THOMAS Arne. Covalent organic frameworks (COFs) for electrochemical applications[J]. Chemical Society Reviews, 2021, 50(12): 6871-6913. |
33 | ZHU Chengyi, PAN Mei, SU Chengyong. Metal-organic cages for biomedical applications[J]. Israel Journal of Chemistry, 2019, 59(3/4): 209-219. |
34 | YANG Ziqi, WU Zhongjie, Shing Bo PEH, et al. Mixed-matrix membranes containing porous materials for gas separation: From metal-organic frameworks to discrete molecular cages[J]. Engineering, 2023, 23: 40-55. |
35 | 时飞, 李奕帆. 混合基质膜在碳捕集领域的研究进展[J]. 化工进展, 2020, 39(6): 2453-2462. |
100 | WANG Yonghong, MA Zhiwei, ZHANG Xinru, et al. Mixed-matrix membranes consisting of Pebax and novel nitrogen-doped porous carbons for CO2 separation[J]. Journal of Membrane Science, 2022, 644: 120182. |
101 | DAI Yan, RUAN Xuehua, YAN Zhijun, et al. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture[J]. Separation and Purification Technology, 2016, 166: 171-180. |
102 | LUO Wenjia, NIU Zhenhua, MU Peng, et al. Pebax and CMC@MXene-based mixed matrix membrane with high mechanical strength for the highly efficient capture of CO2 [J]. Macromolecules, 2022, 55(21): 9851-9859. |
35 | SHI Fei, LI Yifan. Advances of mixed matrix membrane for CO2 capture[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. |
36 | BURTON Allen. Porous architectures[J]. Nature Materials, 2003, 2(7): 438-440. |
37 | CHAI Yuchao, DAI Weili, WU Guangjun, et al. Confinement in a zeolite and zeolite catalysis[J]. Accounts of Chemical Research, 2021, 54(13): 2894-2904. |
38 | FUNKE Hans H, FRENDER Kimberly R, GREEN Kevin M, et al. Influence of adsorbed molecules on the permeation properties of silicalite membranes[J]. Journal of Membrane Science, 1997, 129(1): 77-82. |
39 | IYOKI Kenta, KIKUMASA Kakeru, ONISHI Takako, et al. Extremely stable zeolites developed via designed liquid-mediated treatment[J]. Journal of the American Chemical Society, 2020, 142(8): 3931-3938. |
40 | KHULBE K C, MATSUURA T, FENG C Y, et al. Recent development on the effect of water/moisture on the performance of zeolite membrane and MMMs containing zeolite for gas separation; review[J]. RSC Advances, 2016, 6(49): 42943-42961. |
41 | KOSINOV Nikolay, AUFFRET Clement, Canan GÜCÜYENER, et al. High flux high-silica SSZ-13 membrane for CO2 separation[J]. Journal of Materials Chemistry A, 2014, 2(32): 13083-13092. |
42 | HUNGER B, MATYSIK S, HEUCHEL M, et al. Adsorption of water on zeolites of different types[J]. Journal of Thermal Analysis, 1997, 49(1): 553-565. |
43 | SHI Huaizhong, ZHANG Jiani, LI Jiyang. Highly stable aluminosilicate FAU zeolites with excellent proton conductivity[J]. Inorganic Chemistry Communications, 2021, 129: 108626. |
44 | ZHOU Hongcai, LONG Jeffrey R, YAGHI Omar M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
45 | LIANG Weibin, BHATT Prashant M, SHKURENKO Aleksander, et al. A tailor-made interpenetrated MOF with exceptional carbon-capture performance from flue gas[J]. Chem, 2019, 5(4): 950-963. |
46 | SEOANE Beatriz, CORONAS Joaquin, GASCON Ignacio, et al. Metal-organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture?[J]. Chemical Society Reviews, 2015, 44(8): 2421-2454. |
47 | SAHA Dipendu, DENG Shuguang. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177[J]. Journal of Colloid and Interface Science, 2010, 348(2): 615-620. |
48 | PETERSON Gregory W, WAGNER George W, BALBOA Alex, et al. Ammonia vapor removal by Cu3(BTC)2 and its characterization by MAS NMR[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2009, 113(31): 13906-13917. |
49 | ETHIRAJ Jayashree, BONINO Francesca, LAMBERTI Carlo, et al. H2S interaction with HKUST-1 and ZIF-8 MOFs: A multitechnique study[J]. Microporous and Mesoporous Materials, 2015, 207: 90-94. |
50 | NGUYEN Joseph G, COHEN Seth M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification[J]. Journal of the American Chemical Society, 2010 132(13): 4560-4561. |
51 | PARK Kyo Sung, NI Zheng, CÔTÉ Adrien P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
52 | LIU Xinlei, LI Yanshuo, BAN Yujie, et al. Improvement of hydrothermal stability of zeolitic imidazolate frameworks[J]. Chemical Communications, 2013, 49(80): 9140-9142. |
53 | PISCOPO C G, POLYZOIDIS A, SCHWARZER M, et al. Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications[J]. Microporous and Mesoporous Materials, 2015, 208: 30-35. |
54 | JOSHI Jayraj N, ZHU Guanghui, LEE Jason J, et al. Probing metal-organic framework design for adsorptive natural gas purification[J]. Langmuir, 2018, 34(29): 8443-8450. |
55 | CHEN Yang, ZHANG Feifei, WANG Yong, et al. Recyclable ammonia uptake of a MIL series of metal-organic frameworks with high structural stability[J]. Microporous and Mesoporous Materials, 2018, 258: 170-177. |
56 | KHABZINA Yoldes, DHAINAUT Jeremy, AHLHELM Matthias, et al. Synthesis and shaping scale-up study of functionalized UiO-66 MOF for ammonia air purification filters[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8200-8208. |
57 | DING Sanyuan, WANG Wei. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
58 | LANNI Laura M, William TILFORD R, BHARATHY Muktha, et al. Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2011, 133(35): 13975-13983. |
59 | WEI Pifeng, QI Mingzhu, WANG Zhipeng, et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis[J]. Journal of the American Chemical Society, 2018, 140(13): 4623-4631. |
60 | BISWAL Bishnu P, CHANDRA Suman, KANDAMBETH Sharath, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. Journal of the American Chemical Society, 2013, 135(14): 5328-5331. |
61 | XU Hong, GAO Jia, JIANG Donglin. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts[J]. Nature Chemistry, 2015, 7(11): 905-912. |
62 | DALAPATI Sasanka, JIN Shangbin, GAO Jia, et al. An azine-linked covalent organic framework[J]. Journal of the American Chemical Society, 2013, 135(46): 17310-17313. |
[1] | 石佳博, 张宇轩, 陈雪峰, 谭蕉君. 单宁酸-纳米协同改性胶原纤维多孔材料的制备及其油水分离性能[J]. 化工进展, 2024, 43(8): 4624-4629. |
[2] | 王丽娜, 武金升. 共价有机框架材料的合成与应用研究进展[J]. 化工进展, 2024, 43(7): 3834-3856. |
[3] | 黄军, 张应娟, 林茵童, 韦雪纯, 吴雨桐, 毋高博, 莫钧麟, 赵祯霞, 赵钟兴. 蚕沙基生物多孔炭的制备及对杀虫单/呋虫胺的协同吸附与缓释性能[J]. 化工进展, 2024, 43(7): 3964-3971. |
[4] | 王娟, 卞春林, 陈翔宇, 王莹, 王新东, 左彦鑫, 肖本益. 微好氧厌氧消化研究进展[J]. 化工进展, 2024, 43(7): 4005-4014. |
[5] | 王涛, 高翔, 高继峰, 邓海全, 余显涌, 周振华, 唐玲, 吕航. 改性Cu-BTC基混合基质膜在CO2分离中的应用[J]. 化工进展, 2024, 43(6): 3240-3246. |
[6] | 苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759. |
[7] | 李思, 陶艺月, 肖振翀, 张亮, 李俊, 朱恂, 廖强. 热再生电池堆-二氧化碳电化学还原池系统耦合特性[J]. 化工进展, 2024, 43(5): 2568-2575. |
[8] | 张金鹏, 屈婷, 荆洁颖, 李文英. 吸附强化水气变换制氢复合催化剂研究进展[J]. 化工进展, 2024, 43(5): 2629-2644. |
[9] | 李凯, 魏鹤琳, 左夏华, 杨卫民, 阎华, 安瑛. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验[J]. 化工进展, 2024, 43(4): 1944-1952. |
[10] | 齐亚兵, 吴子波, 杨清翠. Pickering乳液制备及稳定性研究进展[J]. 化工进展, 2024, 43(4): 2017-2030. |
[11] | 路广军, 韩晋钢, 陈英, 马志斌. 镁渣基多孔材料的制备及其对废水中Pb2+的吸附性能[J]. 化工进展, 2024, 43(4): 2126-2134. |
[12] | 刘涵, 曲明璐, 叶振东, 杨帆, 黄蓓佳, 张亚宁, 刘洪芝. 钙镁二元盐复合材料的储热性能[J]. 化工进展, 2024, 43(4): 1764-1773. |
[13] | 金彬浩, 朱小倩, 柯天, 张治国, 鲍宗必, 任其龙, 苏宝根, 杨启炜. 芳香烃/环烷烃吸附分离材料研究进展[J]. 化工进展, 2024, 43(4): 1863-1881. |
[14] | 卢志强, 石雨, 陈鹏宇, 张亮, 李俊, 付乾, 朱恂, 廖强. 具有高浓度氨腔室的立式热再生氨电池性能特性[J]. 化工进展, 2024, 43(3): 1224-1231. |
[15] | 刘泽鹏, 曾纪珺, 唐晓博, 赵波, 韩升, 廖袁淏, 张伟. 四种烷基咪唑磷酸酯离子液体的热力学性质[J]. 化工进展, 2024, 43(3): 1484-1491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |