化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3834-3856.DOI: 10.16085/j.issn.1000-6613.2023-0952
收稿日期:
2023-06-09
修回日期:
2023-09-01
出版日期:
2024-07-25
发布日期:
2024-08-14
通讯作者:
王丽娜
作者简介:
王丽娜(1982—),女,博士,副教授,研究方向为新型纳米材料的导向构筑及功能化。E-mail:lzcsxy2019@126.com。
基金资助:
Received:
2023-06-09
Revised:
2023-09-01
Online:
2024-07-25
Published:
2024-08-14
Contact:
WANG Lina
摘要:
共价有机框架(COFs)是一种由C、B、N、O等轻元素通过强共价键有序连接形成的周期性网状结构的有机多孔材料,具有比表面积大、密度低、孔道规则、易修饰、结构多样、稳定性好等优点,在众多领域得到了广泛应用。本综述介绍了COFs的结构,总结了合成COFs的硼酸缩聚反应、C-C偶联反应、席夫碱反应、氰基自聚和芳醚聚合等反应类型的进展,并介绍了COFs的溶剂热合成法、微波加热合成法、离子热合成法、机械研磨合成法、界面合成法、微流控合成法及后合成修饰等制备方法,进而讨论了COFs结构的表征方法。此外,对COFs在气体吸附与分离、光催化、电催化、不对称催化合成及手性分离、电化学储能等领域的研究进展进行了总结。最后对目前COFs合成和应用的机遇和挑战进行了展望,希望能为COFs的进一步深入研究提供有益的启发和参考。
中图分类号:
王丽娜, 武金升. 共价有机框架材料的合成与应用研究进展[J]. 化工进展, 2024, 43(7): 3834-3856.
WANG Lina, WU Jinsheng. Research progress of synthesis and application of covalent organic frameworks[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3834-3856.
1 | DING Sanyuan, WANG Wei. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
2 | CÔTÉ Adrien P, BENIN Annabelle I, OCKWIG Nathan W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
3 | GUI Bo, LIN Guiqing, DING Huimin, et al. Three-dimensional covalent organic frameworks: From topology design to applications[J]. Accounts of Chemical Research, 2020, 53(10): 2225-2234. |
4 | BHUNIA Sukanya, DEO Kaivalya A, GAHARWAR Akhilesh. 2D covalent organic frameworks for biomedical applications[J]. Advanced Functional Materials, 2020, 30(27): 2002046. |
5 | XU Haisen, LUO Yi, Pei zhen SEE, et al. Divergent chemistry paths for 3D and 1D metallo-covalent organic frameworks ( C O F s ) [ J ] . Angewandte Chemie International Edition, 2020, 59(28): 11527-11532. |
6 | LOHSE Maria S, BEIN Thomas. Covalent organic frameworks: Structures, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(33): 1705553. |
7 | YANG Yizhou, Clara SCHÄFER, Karl BÖRJESSON. Detachable all-carbon-linked 3D covalent organic framework films for semiconductor/COF heterojunctions by continuous flow synthesis[J]. Chem, 2022, 8(8): 2217-2227. |
8 | YANG Yixuan, TANG Xihao, WU Jialin, et al. Transformation of a hydrazone-linked covalent organic framework into a highly stable hydrazide-linked one[J]. ACS Applied Polymer Materials, 2022, 4(7): 4624-4631. |
9 | TYLIANAKIS Emmanuel, KLONTZAS Emmanouel, FROUDAKIS George E. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks[J]. Nanoscale, 2011, 3(3): 856-869. |
10 | YANG Chengxiong, LIU Chang, CAO Yimeng, et al. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation[J]. Chemical Communications, 2015, 51(61): 12254-12257. |
11 | XU Junsong, YANG Can, BI Shuai, et al. Vinylene-linked covalent organic frameworks (COFs) with symmetry-tuned polarity and photocatalytic activity[J]. Angewandte Chemie International Edition, 2020, 59(52): 23845-23853. |
12 | QIU Jikuan, WANG Huiyong, ZHAO Yuling, et al. Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C-C coupling reactions[J]. Green Chemistry, 2020, 22(8): 2605-2612. |
13 | LIU Yuanyuan, LI Xiangchun, WANG Shi, et al. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks[J]. Nature Communications, 2020, 11(1): 5561. |
14 | GAO Yanxin, TAN Zunkun, YANG Rong, et al. Integrating polyarylether-COFs with TiO2 nanofibers for enhanced visible-light-driven CO2 reduction in artificial photosynthesis[J]. Applied Surface Science, 2022, 605: 154605. |
15 | EL-KADERI Hani M, HUNT Joseph R, MENDOZA-CORTÉS José L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272. |
16 | URIBE-ROMO Fernando J, HUNT Joseph R, FURUKAWA Hiroyasu, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13): 4570-4571. |
17 | LIN Guiqing, DING Huimin, YUAN Daqiang, et al. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. Journal of the American Chemical Society, 2016, 138(10): 3302-3305. |
18 | MA Tianqiong, KAPUSTIN Eugene A, YIN Shawn X, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks[J]. Science, 2018, 361(6397): 48-52. |
19 | XIE Yang, LI Jian, LIN Cong, et al. Tuning the topology of three-dimensional covalent organic frameworks via steric control: From pts to unprecedented ljh[J]. Journal of the American Chemical Society, 2021, 143(19): 7279-7284. |
20 | ZHANG Yuanyuan, DUAN Jiyun, MA Dou, et al. Three-dimensional anionic cyclodextrin-based covalent organic frameworks[J]. Angewandte Chemie International Edition, 2017, 129(51): 16531-16535. |
21 | MA Tianqiong, LI Jian, NIU Jing, et al. Observation of interpenetration isomerism in covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(22): 6763-6766. |
22 | GROPP Cornelius, MA Tianqiong, HANIKEL Nikita, et al. Design of higher valency in covalent organic frameworks[J]. Science, 2020, 370(6515): eabd6406. |
23 | GONG Chengtao, WANG Hao, SHENG Guan, et al. Synthesis and visualization of entangled 3D covalent organic frameworks with high-valency stereoscopic molecular nodes for gas separation[J]. Angewandte Chemie International Edition, 2022, 61(32): e202204899. |
24 | GAO Chao, LI Jian, YIN Sheng, et al. Twist building blocks from planar to tetrahedral for the synthesis of covalent organic frameworks[J]. Journal of the American Chemical Society, 2020, 142(8): 3718-3723. |
25 | WANG Yujie, LIU Yaozu, LI Hui, et al. Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering[J]. Journal of the American Chemical Society, 2020, 142(8): 3736-3741. |
26 | XU Xiaoyi, CAI Peiyu, CHEN Hongzheng, et al. Three-dimensional covalent organic frameworks with she topology[J]. Journal of the American Chemical Society, 2022, 144(40): 18511-18517. |
27 | GENG Keyu, HE Ting, LIU Ruoyang, et al. Covalent organic frameworks: Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
28 | YANG Haishen, DU Ya, WAN Shun, et al. Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles[J]. Chemical Science, 2015, 6(7): 4049-4053. |
29 | EVANS Austin M, PARENT Lucas R, FLANDERS Nathan C, et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks[J]. Science, 2018, 361(6397): 52-57. |
30 | WAN Shun, GUO Jia, KIM Jangbae, et al. A photoconductive covalent organic framework: Self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation[J]. Angewandte Chemie International Edition, 2009, 121(30): 5547-5550. |
31 | LIU Chunhua, ZHANG Wei, ZENG Qingdao, et al. A photoresponsive surface covalent organic framework: Surface-confined synthesis, isomerization, and controlled guest capture and release[J]. Chemistry—A European Journal, 2016, 22(20): 6768-6773. |
32 | GRILL Leonhard, DYER Matthew, LAFFERENTZ Leif, et al. Nano-architectures by covalent assembly of molecular building blocks[J]. Nature Nanotechnology, 2007, 2(11): 687-691. |
33 | LIPTON-DUFFIN J A, IVASENKO O, PEREPICHKA D F, et al. Synthesis of polyphenylene molecular wires by surface-confined polymerization[J]. Small, 2009, 5(5): 592-597. |
34 | LIPTON-DUFFIN J A, MIWA J A, KONDRATENKO M, et al. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11200-11204. |
35 | LIU Wei, LUO Xin, BAO Yang, et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction[J]. Nature Chemistry, 2017, 9(6): 563-570. |
36 | ZHOU Deng, TAN Xianyang, WU Huimin, et al. Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by suzuki polymerization on a liquid-liquid interface[J]. Angewandte Chemie International Edition, 2019, 58(5): 1376-1381. |
37 | MATSUOKA Ryota, SAKAMOTO Ryota, HOSHIKO Ken, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. Journal of the American Chemical Society, 2017, 139(8): 3145-3152. |
38 | WU Shaofei, LI Minchan, PHAN Hoa, et al. Toward two-dimensional π-conjugated covalent organic radical frameworks[J]. Angewandte Chemie International Edition, 2018, 57(27): 8007-8011. |
39 | LIN Guiqing, DING Huimin, CHEN Rufan, et al. 3D porphyrin-based covalent organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(25): 8705-8709. |
40 | KANDAMBETH Sharath, MALLICK Arijit, LUKOSE Binit, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48): 19524-19527. |
41 | ZHANG Yuebiao, SU Jie, FURUKAWA Hiroyasu, et al. Single-crystal structure of a covalent organic framework[J]. Journal of the American Chemical Society, 2013, 135(44): 16336-16339. |
42 | KUHN Pierre, ANTONIETTI Markus, THOMAS Arne. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie International Edition, 2008, 47(18): 3450-3453. |
43 | KATEKOMOL Phisan, ROESER Jérôme, BOJDYS Michael, et al. Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene[J]. Chemistry of Materials, 2013, 25(9): 1542-1548. |
44 | BOJDYS Michael J, JEROMENOK Jekaterina, THOMAS Arne, et al. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity[J]. Advanced Materials, 2010, 22(19): 2202-2205. |
45 | Subarna DEY, BHUNIA Asamanjoy, ESQUIVEL Dolores, et al. Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO2 adsorption[J]. Journal of Materials Chemistry A, 2016, 4(17): 6259-6263. |
46 | PUTHIARAJ Pillaiyar, CHO Sung-Min, LEE Yuri, et al. Microporous covalent triazine polymers: Efficient Friedel-Crafts synthesis and adsorption/storage of CO2 and CH4 [J]. Journal of Materials Chemistry A, 2015, 3(13): 6792-6797. |
47 | YU Soo-Young, MAHMOOD Javeed, Hyuk-Jun NOH, et al. Direct synthesis of a covalent triazine-based framework from aromatic amides[J]. Angewandte Chemie International Edition, 2018, 57(28): 8438-8442. |
48 | WANG Kewei, YANG Liming, WANG Xi, et al. Covalent triazine frameworks via a low-temperature polycondensation approach[J]. Angewandte Chemie International Edition, 2017, 56(45): 14149-14153. |
49 | PENG Peng, SHI Lei, HUO Feng, et al. In situ charge exfoliated soluble covalent organic framework directly used for Zn-air flow battery[J]. ACS Nano, 2019, 13(1): 878-884. |
50 | GUAN Xinyu, LI Hui, MA Yunchao, et al. Chemically stable polyarylether-based covalent organic frameworks[J]. Nature Chemistry, 2019, 11(6): 587-594. |
51 | LI Nana, JIANG Kaiyue, Fermín RODRÍGUEZ-HERNÁNDEZ, et al. Polyarylether-based 2D covalent-organic frameworks with In-plane D-A structures and tunable energy levels for energy storage[J]. Advanced Science, 2022, 9(6): e2104898. |
52 | CROWE Jonathan W, BALDWIN Luke A, MCGRIER Psaras L. Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units[J]. Journal of the American Chemical Society, 2016, 138(32): 10120-10123. |
53 | XIONG Shanxin, LIU Jian, WANG Yuancheng, et al. Solvothermal synthesis of triphenylamine-based covalent organic framework nanofibers with excellent cycle stability for supercapacitor electrodes[J]. Journal of Applied Polymer Science, 2022, 139(3): e51510. |
54 | SHI Xiansong, XIAO Ankang, ZHANG Chenxu, et al. Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration[J]. Journal of Membrane Science, 2019, 576: 116-122. |
55 | RITCHIE Lyndsey K, TREWIN Abbie, Aida REGUERA-GALAN, et al. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes[J]. Microporous and Mesoporous Materials, 2010, 132(1/2): 132-136. |
56 | WEI Hao, CHAI Shuangzhi, HU Nantao, et al. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity[J]. Chemical Communications, 2015, 51(61): 12178-12181. |
57 | MASCHITA Johannes, BANERJEE Tanmay, Gökcen SAVASCI, et al. Ionothermal synthesis of imide-linked covalent organic frameworks[J]. Angewandte Chemie International Edition, 2020, 59(36): 15750-15758. |
58 | HAO Gazi, LI Hao, MAO Chenhui, et al. Preparation of nano-Cu-Fe composite metal oxides via a mechanical grinding method and its catalytic performance for the thermal decomposition of ammonium perchlorate[J]. Combustion Science and Technology, 2021, 193(6): 987-1004. |
59 | EKSILER Kubra, ANDOU Yoshito, YILMAZ Faruk, et al. Dynamically controlled fibrillation under combination of ionic liquid with mechanical grinding[J]. Journal of Applied Polymer Science, 2017, 134(7): 44469-44476. |
60 | BANERJEE Tanmay, HAASE Frederik, Gökcen SAVASCI, et al. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts[J]. Journal of the American Chemical Society, 2017, 139(45): 16228-16234. |
61 | ZWANEVELD Nikolas A A, PAWLAK Rémy, ABEL Mathieu, et al. Organized formation of 2D extended covalent organic frameworks at surfaces[J]. Journal of the American Chemical Society, 2008, 130(21): 6678-6679. |
62 | KHAN Niaz ALI, ZHANG Runnan, WU Hong, et al. Solid-vapor interface engineered covalent organic framework membranes for molecular separation[J]. Journal of the American Chemical Society, 2020, 142(31): 13450-13458. |
63 | DONG Renhao, ZHANG Tao, FENG Xinliang. Interface-assisted synthesis of 2D materials: Trend and challenges[J]. Chemical Reviews, 2018, 118(13): 6189-6235. |
64 | Pablo MARTINEZ-BULIT, SORRENTI Alessandro, RODRIGUEZ SAN Miguel David, et al. In flow-based technologies: A new paradigm for the synthesis and processing of covalent-organic frameworks[J]. Chemical Engineering Journal, 2022, 435(3): 135117. |
65 | PENG Yongwu, WONG Wai, HU Zhigang, et al. Room temperature batch and continuous flow synthesis of water-stable covalent organic frameworks (COFs)[J]. Chemistry of Materials, 2016, 28(14): 5095-5101. |
66 | SINGH Vikram, JANG Seungwook, VISHWAKARMA Niraj K, et al. Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique[J]. NPG Asia Materials, 2018, 10(1): e456. |
67 | FRANCO Carlos, David RODRÍGUEZ-SAN-MIGUEL, SORRENTI Alessandro, et al. Biomimetic synthesis of sub-20nm covalent organic frameworks in water[J]. Journal of the American Chemical Society, 2020, 142(7): 3540-3547. |
68 | LIAO Qiaobo, KE Can, HUANG Xin, et al. A versatile method for functionalization of covalent organic frameworks via suzuki-miyaura cross-coupling[J]. Angewandte Chemie International Edition, 2021, 60(3): 1411-1416. |
69 | GUI Bo, LIU Xuefen, CHENG Yuanpeng, et al. Tailoring the pore surface of 3D covalent organic frameworks via post-synthetic click chemistry[J]. Angewandte Chemie International Edition, 2022, 61(2): e202113852. |
70 | YOU Dan, PAN Zhiquan, CHENG Qingrong. COFs-Ph@CdS S-scheme heterojunctions with photocatalytic hydrogen evolution and efficient degradation properties[J]. Journal of Alloys and Compounds, 2023, 930: 167069. |
71 | ZHAO Xiaodong, PANG Huaji, HUANG Dekang, et al. Construction of ultrastable nonsubstituted quinoline-bridged covalent organic frameworks via rhodium-catalyzed dehydrogenative annulation[J]. Angewandte Chemie International Edition, 2022, 61(41): e202208833. |
72 | ZHANG Weiwei, CHEN Linjiang, DAI Sheng, et al. Reconstructed covalent organic frameworks[J]. Nature, 2022, 604(7904): 72-79. |
73 | SHI Jilong, CHEN Rufan, HAO Huimin, et al. 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO[J]. Angewandte Chemie International Edition, 2020, 59(23): 9088-9093. |
74 | MU Zhenjie, ZHU Yuhao, LI Bixiao, et al. Covalent organic frameworks with record pore apertures[J]. Journal of the American Chemical Society, 2022, 144(11): 5145-5154. |
75 | YANG Liujun, WANG Yuxiang, YUAN Junwei, et al. Construction of covalent-integrated MOFs@COFs composite material for efficient synergistic adsorption and degradation of pollutants[J]. Chemical Engineering Journal, 2022, 446: 137095. |
76 | ABUZEID Hesham R, EL-MAHDY Ahmed F M, KUO Shiao-Wei. Hydrogen bonding induces dual porous types with microporous and mesoporous covalent organic frameworks based on bicarbazole units[J]. Microporous and Mesoporous Materials, 2020, 300: 110151. |
77 | MENDOZA-CORTÉS José L, HAN Sang Soo, FURUKAWA Hiroyasu, et al. Adsorption mechanism and uptake of methane in covalent organic frameworks: Theory and experiment[J]. The Journal of Physical Chemistry A, 2010, 114(40): 10824-10833. |
78 | FURUKAWA Hiroyasu, YAGHI Omar M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883. |
79 | MENDOZA-CORTÉS Jose L, GODDARD William A, FURUKAWA Hiroyasu, et al. A covalent organic framework that exceeds the DOE 2015 volumetric target for H2 uptake at 298 K[J]. The Journal of Physical Chemistry Letters, 2012, 3(18): 2671-2675. |
80 | FAN Hongwei, PENG Manhua, STRAUSS Ina, et al. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation[J]. Journal of the American Chemical Society, 2020, 142(15): 6872-6877. |
81 | JIN Fazheng, LIN En, WANG Ting, et al. Rationally fabricating three-dimensional covalent organic frameworks for propyne/propylene separation[J]. Journal of the American Chemical Society, 2022, 144(50): 23081-23088. |
82 | ZHONG Wanfu, Rongjian SA, LI Liuyi, et al. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO[J]. Journal of the American Chemical Society, 2019, 141(18): 7615-7621. |
83 | LU Meng, ZHANG Mi, LIU Jiang, et al. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction[J]. Journal of the American Chemical Society, 2022, 144(4): 1861-1871. |
84 | BHADRA Mohitosh, KANDAMBETH Sharath, SAHOO Manoj K, et al. Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z isomerization of olefins[J]. Journal of the American Chemical Society, 2019, 141(15): 6152-6156. |
85 | LI Wenqian, HUANG Xiaofeng, ZENG Tengwu, et al. Thiazolo[5,4-d]thiazole-based donor-acceptor covalent organic framework for sunlight-driven hydrogen evolution[J]. Angewandte Chemie International Edition, 2021, 60(4): 1869-1874. |
86 | STEGBAUER Linus, SCHWINGHAMMER Katharina, LOTSCH Bettina V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chemical Science, 2014, 5(7): 2789-2793. |
87 | HAN Wangkang, LIU Yong, YAN Xiaodong, et al. Integrating light-harvesting ruthenium(Ⅱ)-based units into three-dimensional metal covalent organic frameworks for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2022, 61(40): 202208791. |
88 | WAN Changpu, YI Jundong, CAO Rong, et al. Conductive metal/covalent organic frameworks for CO2 electro-reduction[J]. Chinese Journal of Structural Chemistry, 2022, 41(5): 2205001-2205014. |
89 | LI Cha, QIU Zining, SUN Hongming, et al. Recent progress in covalent organic frameworks (COFs) for electrocatalysis[J]. Chinese Journal of Structural Chemistry, 2022, 41(11): 2211084-2211099. |
90 | CHEN Mengyang, ZHOU Ye, REN Shibin, et al. Methods to make conductive covalent organic frameworks for electrocatalytic applications[J]. Chinese Journal of Structural Chemistry, 2022, 41(12): 2212107-2212119. |
91 | TANG Jiaqi, LIANG Zuozhong, QIN Haonan, et al. Large-area free-standing metalloporphyrin-based covalent organic framework films by liquid-air interfacial polymerization for oxygen electrocatalysis[J]. Angewandte Chemie International Edition, 2023, 62(1): e202214449. |
92 | HAN Bin, JIN Yucheng, CHEN Baotong, et al. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis[J]. Angewandte Chemie International Edition, 2022, 61(1): e202114244. |
93 | JIANG Minghang, HAN Linkai, PENG Peng, et al. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen-coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis[J]. Nano Letters, 2022, 22(1): 372-379. |
94 | DONG Hong, LU Meng, WANG Ya, et al. Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2022, 303: 120897. |
95 | BANDOMO DUBED Geyla C, MONDAL Suvendu Sekhar, FRANCO Federico, et al. Mechanically constrained catalytic Mn(CO)3Br single sites in a two-dimensional covalent organic framework for CO2 electroreduction in H2O[J]. ACS Catalysis, 2021, 11(12): 7210-7222. |
96 | PANG Yiying, WANG Bowei, KANG Yazhuo, et al. Sulfonated chiral covalent organic frameworks-mediated asymmetric Michael addition of acetone to β-nitroolefins[J]. Chemical Engineering Science, 2022, 260: 117933. |
97 | ZHANG Jie, HAN Xing, WU Xiaowei, et al. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis[J]. Journal of the American Chemical Society, 2017, 139(24): 8277-8285. |
98 | LI Fei, KAN Jinglan, YAO Bingjian, et al. Synthesis of chiral covalent organic frameworks via asymmetric organocatalysis for heterogeneous asymmetric catalysis[J]. Angewandte Chemie International Edition, 2022, 61(25): e202115044. |
99 | ZHANG Siyun, ZHOU Juan, LI Haibing. Chiral covalent organic framework packed nanochannel membrane for enantioseparation[J]. Angewandte Chemie International Edition, 2022, 61(27): e202204012. |
100 | YUAN Chen, JIA Wenyan, YU Ziyun, et al. Are highly stable covalent organic frameworks the key to universal chiral stationary phases for liquid and gas chromatographic s e p a r a t i o n s ? [ J]. Journal of the American Chemical Society, 2022, 144(2): 891-900. |
101 | ZHANG Sainan, ZHENG Yunlong, AN Hongde, et al. Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation[J]. Angewandte Chemie International Edition, 2018, 57(51): 16754-16759. |
102 | LIU Sijia, LIU Minghao, XU Qing, et al. Lithium ion conduction in covalent organic frameworks[J]. Chinese Journal of Structural Chemistry, 2022, 41(11): 2211003-2211017. |
103 | YAO Changjiang, WU Zhenzhen, XIE Jian, et al. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery[J]. ChemSusChem, 2020, 13(9): 2457-2463. |
104 | WANG Gang, CHANDRASEKHAR Naisa, BISWAL Bishnu P, et al. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage[J]. Advanced Materials, 2019, 31(28): e1901478. |
105 | KANG Tae Woog, LEE Jun-Hyeong, LEE Jaewoo, et al. An ion-channel-restructured zwitterionic covalent organic framework solid electrolyte for all-solid-state lithium-metal batteries[J]. Advanced Materials, 2023, 35(30): e2301308. |
106 | XU Fei, YANG Shuhao, CHEN Xiong, et al. Energy-storage covalent organic frameworks: Improving performance via engineering polysulfide chains on walls[J]. Chemical Science, 2019, 10(23): 6001-6006. |
107 | HALDAR Sattwick, KALEESWARAN Dhananjayan, RASE Deepak, et al. Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode[J]. Nanoscale Horizons, 2020, 5(8): 1264-1273. |
108 | SUN Ruimin, HOU Singyuk, LUO Chao, et al. A covalent organic framework for fast-charge and durable rechargeable Mg storage[J]. Nano Letters, 2020, 20(5): 3880-3888. |
109 | DUAN Ju, WANG Wenting, ZOU Degui, et al. Construction of a few-layered COF@CNT composite as an ultrahigh rate cathode for low-cost K-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31234-31244. |
110 | YUSRAN Yusran, LI Hui, GUAN Xinyu, et al. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors[J]. Advanced Materials, 2020, 32(8): e1907289. |
111 | MARTÍN-ILLÁN Jesús Á, SIERRA Laura, Pilar OCÓN, et al. Electrochemical double-layer capacitor based on carbon@ covalent organic framework aerogels[J]. Angewandte Chemie International Edition, 2022, 61(48): e202213106. |
112 | HALDAR Sattwick, KUSHWAHA Rinku, MAITY Rahul, et al. Pyridine-rich covalent organic frameworks as high-performance solid-state supercapacitors[J]. ACS Materials Letters, 2019, 1(4): 490-497. |
113 | HUANG Ning, ZHAI Lipeng, XU Hong, et al. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions[J]. Journal of the American Chemical Society, 2017, 139(6): 2428-2434. |
114 | ZHUANG Shuting, LIU Yong, WANG Jianlong. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution[J]. Journal of Hazardous Materials, 2020, 383: 121126. |
115 | MELLAH Abdelkarim, FERNANDES Soraia P S, Ramón RODRÍGUEZ, et al. Adsorption of pharmaceutical pollutants from water using covalent organic frameworks[J]. Chemistry—A European Journal, 2018, 24(42): 10601-10605. |
116 | SALONEN Laura M, PINELA Sara R, FERNANDES Soraia P S, et al. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework[J]. Journal of Chromatography A, 2017, 1525: 17-22. |
117 | LI Yongguang, WU Shanshan, ZHANG Lingling, et al. Precisely controlled multidimensional covalent frameworks: Polymerization of supramolecular colloids[J]. Angewandte Chemie International Edition, 2020, 59(48): 21525-21529. |
118 | ZHANG Guiyang, LI Xinle, LIAO Qiaobo, et al. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery[J]. Nature Communications, 2018, 9(1): 2785. |
119 | WANG Xinye, SUN Baohong, YE Ziqiu, et al. Enzyme-responsive COF-based thiol-targeting nanoinhibitor for curing bacterial infections[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38483-38496. |
120 | YAN Dong, WANG Zhifang, CHENG Peng, et al. Rational fabrication of crystalline smart materials for rapid detection and efficient removal of ozone[J]. Angewandte Chemie International Edition, 2021, 60(11): 6055-6060. |
121 | LIU Ming, CHEN Yongjun, HUANG Xin, et al. Porphyrin-based COF 2D materials: Variable modification of sensing performances by post-metallization[J]. Angewandte Chemie International Edition, 2022, 61(12): e202115308. |
122 | LIN Chao, SUN Linhai, MENG Xutong, et al. Covalent organic frameworks with tailored functionalities for modulating surface potentials in triboelectric nanogenerators[J]. Angewandte Chemie International Edition, 2022, 61(42): e202211601. |
[1] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
[2] | 杜倩, 侯明, 高冀芸, 杨黎, 鲁元佳, 郭胜惠. f-Ti3C2T x /ZIF-8异质结构增强NO2气体传感器的敏感性能[J]. 化工进展, 2024, 43(7): 3946-3954. |
[3] | 周锐, 俞科静, 徐阳. 化学镀铁镍碳纤维制备及其电磁屏蔽性能[J]. 化工进展, 2024, 43(7): 3955-3963. |
[4] | 杨磻槟, 丁国栋, 陈家庆, 冯子夏, 郑佳媛. 射流强化非填料式溶气设备的工作性能[J]. 化工进展, 2024, 43(6): 2977-2985. |
[5] | 张真, 张凡, 云祉婷. 绿氢在石化和化工行业的减碳经济性分析[J]. 化工进展, 2024, 43(6): 3021-3028. |
[6] | 曾壮, 李柯志, 苑志伟, 杜金涛, 李卓师, 王悦. CO/CO2 加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
[7] | 冯占雄, 张创, 刘德政, 汪云, 马强, 王诚. 不同气氛热处理对连续管道微波技术制备Pt/C催化剂氧还原性能的影响[J]. 化工进展, 2024, 43(6): 3080-3092. |
[8] | 陈志强, 夏明巍, 杨海平, 陈应泉, 王贤华, 陈汉平. 木质纤维素基碳量子点合成与调控研究进展[J]. 化工进展, 2024, 43(6): 3100-3113. |
[9] | 李莹莹, 刘安, 姜乐妍, 李晖, 陈春钰, 居殿春. 过渡金属硫化物Co9S8的制备及电化学性能研究进展[J]. 化工进展, 2024, 43(6): 3114-3127. |
[10] | 何瑞强, 方敏, 周健夺, 费华, 杨凯. 锂电池热管理用TPE基柔性复合相变材料的研究进展[J]. 化工进展, 2024, 43(6): 3159-3173. |
[11] | 孙悦, 邢宝林, 张耀杰, 冯来宏, 曾会会, 蒋振东, 徐冰, 贾建波, 张传祥, 谌伦建, 张越, 张文豪. B掺杂多孔碳纳米片的制备及其储锂性能[J]. 化工进展, 2024, 43(6): 3209-3220. |
[12] | 吕青檐, 高汉文, 谢昆谕, 范冬青, 黄龙, 陈志强. 废弃有机物用于混合菌群合成PHA的利用现状与挑战[J]. 化工进展, 2024, 43(6): 3374-3385. |
[13] | 黄澎, 邹颖, 王宝焕, 王逍妍, 赵勇, 梁鑫, 胡迪. 二氧化碳电催化还原反应制合成气催化剂研究进展[J]. 化工进展, 2024, 43(5): 2760-2775. |
[14] | 卢欣欣, 蔡东仁, 詹国武. 基于固体前体构建集成催化剂及CO2加氢研究进展[J]. 化工进展, 2024, 43(5): 2786-2802. |
[15] | 王嘉锐, 刘大伟, 邓耀, 徐瑾, 马晓迅, 徐龙. 载氧体在甲烷化学链重整反应中的研究进展[J]. 化工进展, 2024, 43(5): 2235-2253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |