化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3114-3127.DOI: 10.16085/j.issn.1000-6613.2023-0790
• 材料科学与技术 • 上一篇
李莹莹(), 刘安, 姜乐妍, 李晖, 陈春钰, 居殿春()
收稿日期:
2023-05-11
修回日期:
2023-06-24
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
居殿春
作者简介:
李莹莹(1998—),女,硕士研究生,研究方向为冶金物理化学。E-mail:211143401101@stu.just.edu.cn。
基金资助:
LI Yingying(), LIU An, JIANG Leyan, LI Hui, CHEN Chunyu, JU Dianchun()
Received:
2023-05-11
Revised:
2023-06-24
Online:
2024-06-15
Published:
2024-07-02
Contact:
JU Dianchun
摘要:
过渡金属硫化物Co9S8由于具有比电容高、倍率性能好、循环寿命长、生产成本较低等特点,是一类极有潜在应用前景的石墨替代储能材料。但Co9S8存在充放电过程中体积膨胀大和导电性差等问题,导致充放电过程中材料结构易破坏,容量衰减快,还不能完全满足实际市场需求。本文基于Co9S8不同类型复合材料在各领域的最新研究,综述了Co9S8材料在实际应用中通过结构设计(形貌和颗粒大小调控)、多组分掺杂以及表面包覆等策略克服该材料存在的缺陷,通过对现有研究的归纳与总结,简述针对过渡金属硫化物Co9S8的主要改性手段,并对其今后的研究重点提出可行性建议。
中图分类号:
李莹莹, 刘安, 姜乐妍, 李晖, 陈春钰, 居殿春. 过渡金属硫化物Co9S8的制备及电化学性能研究进展[J]. 化工进展, 2024, 43(6): 3114-3127.
LI Yingying, LIU An, JIANG Leyan, LI Hui, CHEN Chunyu, JU Dianchun. Progress in the preparation and electrochemical properties of transition metal sulfide Co9S8[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3114-3127.
方法 | 条件 | 优点 |
---|---|---|
溶剂热法 | 有机物或者其他非水溶媒将原料分散或溶解在溶剂里,在密封条件下通过高压达到超临界状态使前体变得活跃而发生相关反应 | 具有结晶度高、尺寸均匀、形貌良好 |
电沉积法 | 在条件一定的电解液中,发生电化学沉积的结果 | 具有简便、经济、可避免各种黏结剂的优点 |
硫化法 | 通过氧化物制备硫化物或将硫化物离子固定到材料或分子中的过程。通常,先制备前体溶液,通过配备有和控制压力的管式反应器进行热硫化过程 | 可避免各种黏结剂的优点 |
离子交换法 | 溶液中离子与交换剂反应基团作用能力相对较大,交换剂中的被交换基团离子则由于作用力不足而进入溶液中 | 具有条件温和、成本低等优点 |
表1 硫化钴制备方法优点对比
方法 | 条件 | 优点 |
---|---|---|
溶剂热法 | 有机物或者其他非水溶媒将原料分散或溶解在溶剂里,在密封条件下通过高压达到超临界状态使前体变得活跃而发生相关反应 | 具有结晶度高、尺寸均匀、形貌良好 |
电沉积法 | 在条件一定的电解液中,发生电化学沉积的结果 | 具有简便、经济、可避免各种黏结剂的优点 |
硫化法 | 通过氧化物制备硫化物或将硫化物离子固定到材料或分子中的过程。通常,先制备前体溶液,通过配备有和控制压力的管式反应器进行热硫化过程 | 可避免各种黏结剂的优点 |
离子交换法 | 溶液中离子与交换剂反应基团作用能力相对较大,交换剂中的被交换基团离子则由于作用力不足而进入溶液中 | 具有条件温和、成本低等优点 |
参数 | Co9S8/C-S[ | MoF-Co9S8@C[ | Co9S8/rGO[ | N-C@Co9S8@G[ |
---|---|---|---|---|
结构 | ||||
空间维度 | 0-D | 3-D | 3-D | 2-D |
成本 | 中等 | 中等 | 低 | 高 |
比电容 | 高 | 高 | 高 | 高 |
循环稳定性 | 高 | 高 | 中等 | 高 |
表2 部分形貌调控改性Co9S8材料对比
参数 | Co9S8/C-S[ | MoF-Co9S8@C[ | Co9S8/rGO[ | N-C@Co9S8@G[ |
---|---|---|---|---|
结构 | ||||
空间维度 | 0-D | 3-D | 3-D | 2-D |
成本 | 中等 | 中等 | 低 | 高 |
比电容 | 高 | 高 | 高 | 高 |
循环稳定性 | 高 | 高 | 中等 | 高 |
改性方法 | 过程 | 性能 |
---|---|---|
碳包覆改性 | 无机/碳复合材料作为硫载体;引入碳来改善极性材料的电导率和孔体积 | 有效分散活性金属复合纳米粒子;缓冲材料以抑制粉化,还作为导电基质以促进电荷转移;提高了电极的导电性、结构稳定性,在延长循环过程中有效地保持了结构的完整性 |
氧化物掺杂改性 | 将氧化物与Co9S8杂合 | 复合材料具有氧化物和Co9S8纳米材料二者的优点即高的比容量和良好的循环性能 |
表3 结构调控改性Co9S8性能对比
改性方法 | 过程 | 性能 |
---|---|---|
碳包覆改性 | 无机/碳复合材料作为硫载体;引入碳来改善极性材料的电导率和孔体积 | 有效分散活性金属复合纳米粒子;缓冲材料以抑制粉化,还作为导电基质以促进电荷转移;提高了电极的导电性、结构稳定性,在延长循环过程中有效地保持了结构的完整性 |
氧化物掺杂改性 | 将氧化物与Co9S8杂合 | 复合材料具有氧化物和Co9S8纳米材料二者的优点即高的比容量和良好的循环性能 |
改性方法 | 过程 | 性能 |
---|---|---|
铝元素掺杂 | 在复合材料中嵌入Al掺杂的Co9S8纳米粒子 | 提高硫化钴导电性;克服其反应过程中的堆积和团聚,从而固定与电解质离子的电化学反应动力学 |
硫元素掺杂 | 使用具有孔结构的碳材料作为硫的包封主体 | 防止多硫化物溶解,并提供足够的空间以容纳必要的体积膨胀;解决了由于硫的低导电性、中间体多硫化锂的溶解、严重的体积膨胀引起的快速容量衰减 |
铁元素掺杂 | 拓扑化学脱嵌方法 | 优化该材料的固有活性 |
氮、硫双掺杂 | 调整碳材料中的电子结构,氮、硫原子来取代sp2碳原子 | 产生协同效应或产生新的电荷分布特性,从而大大提高催化活性;提高了材料的导电性,提供更多的活性位点 |
表4 元素掺杂改性Co9S8性能对比
改性方法 | 过程 | 性能 |
---|---|---|
铝元素掺杂 | 在复合材料中嵌入Al掺杂的Co9S8纳米粒子 | 提高硫化钴导电性;克服其反应过程中的堆积和团聚,从而固定与电解质离子的电化学反应动力学 |
硫元素掺杂 | 使用具有孔结构的碳材料作为硫的包封主体 | 防止多硫化物溶解,并提供足够的空间以容纳必要的体积膨胀;解决了由于硫的低导电性、中间体多硫化锂的溶解、严重的体积膨胀引起的快速容量衰减 |
铁元素掺杂 | 拓扑化学脱嵌方法 | 优化该材料的固有活性 |
氮、硫双掺杂 | 调整碳材料中的电子结构,氮、硫原子来取代sp2碳原子 | 产生协同效应或产生新的电荷分布特性,从而大大提高催化活性;提高了材料的导电性,提供更多的活性位点 |
1 | 杨友麒. “双碳”形势下能源化工企业绿色低碳转型进展[J]. 现代化工, 2023, 43(1): 1-12. |
YANG Youqi. Progress of energy and chemical companies in transition towards green low carbon under peak carbon dioxide emission and carbon neutrality[J]. Modern Chemical Industry, 2023, 43(1): 1-12. | |
2 | 张晓强. 以能源绿色低碳发展为关键统筹做好“双碳”工作[J]. 全球化, 2022(1): 27-33, 134. |
ZHANG Xiaoqiang. Take the green and low-carbon development of energy As the key to achieve “carbon peaking and carbon neutrality”[J]. Globalization, 2022(1): 27-33, 134. | |
3 | 王文爽. “双碳”背景下煤炭行业环境会计信息披露探讨[J]. 合作经济与科技, 2023(11): 151-153. |
WANG Wengshuang. Discussion on environmental accounting information disclosure of coal industry under the background of “double carbon” [J]. Co-Operative Economy & Science, 2023(11): 151-153. | |
4 | CHOI Christopher, ASHBY David S, BUTTS Danielle M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2019, 5(1): 5-19. |
5 | OWUSU Kwadwo Asare, QU Longbing, LI Jiantao, et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors[J]. Nature Communications, 2017, 8: 14264. |
6 | HAO Pin, ZHU Wenqian, LI Liyi, et al. Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis[J]. Electrochimica Acta, 2020, 338: 135883. |
7 | 杨梦欢. Co x S y 及其纳米复合物的制备及在能源储存与转换中的应用[D]. 北京: 北京理工大学, 2016. |
YANG Menghuan. Synthesis of cobalt sulfides and their nanocomposites for applications in energy conversion and storage[D]. Beijing: Beijing Institute of Technology, 2016. | |
8 | LU Wen, YUAN Ze, XU Chunyang, et al. Construction of mesoporous Cu-doped Co9S8 rectangular nanotube arrays for high energy density all-solid-state asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(10): 5333-5343. |
9 | 张宁, 冯靖书, 杨倩倩, 等. 一维CdS-Co9S8复合材料的制备及光催化产氢性能[J]. 中国粉体技术, 2021, 27(3): 73-79. |
ZHANG Ning, FENG Jingshu, YANG Qianqian, et al. Sythesis of 1D CdS-Co9S8 composites for photocatalytic hydrogen production[J]. China Powder Science and Technology, 2021, 27(3): 73-79. | |
10 | YANG Jing, ZHU Guoxing, LIU Yuanjun, et al. Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction[J]. Advanced Functional Materials, 2016, 26(26): 4712-4721. |
11 | 张浩, 刘梦洁, 钱惠, 等. P掺杂Co9S8@VS2纳米管阵列的制备及其水性锌离子混合超级电容器性能研究[J]. 功能材料, 2022, 53(3): 3136-3145. |
ZAHNG Hao, LIU Mengie, QIAN Hui, et al. P-doped Co9S8@VS2 nanotube arrays: preparation and performance of water- based zinc-ion mixed supercapacitors[J]. Journal of Functional Materials, 2022, 53(3): 3136-3145. | |
12 | 朱芳芳. 钴基复合电极材料的构筑及其超级电容性能研究[D]. 镇江: 江苏大学, 2022. |
ZHU Fangfang. Construction of cobalt-based composite electrode materials and study on supercapacitor performance[D]. Zhenjiang: Jiangsu University, 2022. | |
13 | 肖凤. 过渡金属基硫族化合物的制备及电化学析氧性能研究[D]. 绵阳: 西南科技大学, 2022. |
XIAO Feng. Research on preparation and performances of transition metal-based chalcogenides for electrochemical oxygen evolution reaction[D]. Mianyang: Southwest University of Science and Technology, 2022. | |
14 | 曹利华. 油茶树基炭及其复合材料的制备与电容特性研究[D]. 南京: 南京林业大学, 2021. |
CAO Lihua. Preparation and capacitance characteristics of carbon-based electrode materials derived from camellia oleifera[D]. Nanjing: Nanjing Forestry University, 2021. | |
15 | 陈婕, 黎晓华, 熊信柏, 等. 水热电沉积法生长Co9S8薄膜电极[J]. 稀有金属材料与工程, 2019, 48(3): 967-972. |
CHEN Jie, LI Xiaohua, XIONG Xinbo, et al. Hydrothermal electrochemical deposition synthesis of Co9S8 film electrode[J]. Rare Metal Materials and Engineering, 2019, 48(3): 967-972. | |
16 | KIM Jun, JIN Haneul, Aram OH, et al. Synthesis of compositionally tunable, hollow mixed metal sulphide Co x Ni y S z octahedral nanocages and their composition-dependent electrocatalytic activities for oxygen evolution reaction[J]. Nanoscale, 2017, 9(40): 15397-15406. |
17 | LI Zhao, LI Chuanlong, HUANG Jingjing, et al. Structure engineering of amorphous P-CoS hollow electrocatalysts for promoted oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(34): 15189-15197. |
18 | LIU Qun, HONG Xiaodan, YOU Xingyan, et al. Designing heterostructured metal sulfide core-shell nanoneedle films as battery-type electrodes for hybrid supercapacitors[J]. Energy Storage Materials, 2020, 24: 541-549. |
19 | GUAN Bu yuan, YU Le, WANG Xiao, et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors[J]. Advanced Materials, 2017, 29(6): 1605051-1605055. |
20 | 张瑞娜. 钴基催化剂的构筑及其电解水制氢耦合HMF氧化[D]. 延安: 延安大学, 2022. |
ZHANG Ruina. Construction of cobalt-based catalysts and the electrolysis of water for hydrogen evolution coupled with HMF oxidation[D]. Yan’an: Yan’an University, 2022. | |
21 | 陈楠楠. 过渡金属复合材料的制备及电解水催化性能的研究[D]. 太原: 中北大学, 2022. |
CHEN Nannan. Preparation of transition metal composites and electrocatalytic performance for water splitting[D]. Taiyuan: North University of China, 2022. | |
22 | CHEN Xiang, PENG Hongjie, ZHANG Rui, et al. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides?[J]. ACS Energy Letters, 2017, 2(4): 795-801. |
23 | ZHAO Jinbao, ZHANG Yiyong, WANG Yunhui, et al. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries[J]. Journal of Energy Chemistry, 2018, 27(6): 1536-1554. |
24 | HUANG Junda, WEI Zengxi, LIAO Jiaqin, et al. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2 [J]. Journal of Energy Chemistry, 2019, 33: 100-124. |
25 | LIU Xue, HE Qiu, YUAN Hong, et al. Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 48: 109-115. |
26 | CHEN Tao, MA Lianbo, CHENG Baorui, et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries[J]. Nano Energy, 2017, 38: 239-248. |
27 | SUN Shixiong, LUO Jiahuan, QIAN Yong, et al. Metal-organic framework derived honeycomb Co9S8@C composites for high-performance supercapacitors[J]. Advanced Energy Materials, 2018, 8(25): 1-9. |
28 | YANG Yu, MA Fangwu, WANG Jiawei, et al. Comparative analysis of Co9S8/S-doped rGO composites as high-performance electrodes via facile one-step anneal fabrication for supercapacitor application[J]. Journal of Alloys and Compounds, 2020, 815: 152448. |
29 | LI Ningning, SUN Li, WANG Kai, et al. Sandwiched N-carbon@Co9S8@Graphene nanosheets as high capacity anode for both half and full lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 51: 62-71. |
30 | YANG Tingting, QI Yuruo, ZHONG Wei, et al. A strategy for polysulfides/polyselenides protection based on Co9S8@SiO2/C host in Na-SeS2 batteries[J]. Advanced Functional Materials, 2021, 31(2): 2001952. |
31 | GUO Can, ZHANG Wenchao, LIU Yi, et al. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(29): 1901925. |
32 | YIN Mengmeng, FENG Xueting, ZHAO Dan, et al. Hierarchical Co9S8@Carbon hollow microspheres as an anode for sodium ion batteries with ultralong cycling stability[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6122-6130. |
33 | LIU Zhiming, LU Tianchi, Song Taeseup, et al. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(7): 1576-1580. |
34 | 许春树, 姚庆达, 梁永贤, 等. 金属-有机框架材料的调控策略及其对典型重金属离子的吸附性能[J]. 化工进展, 2023, 42(12): 6518-6534. |
XU Chunshu, YAO Qingda, LIANG Yongxian, et al. Modulation strategies of metal-organic framework materials and its adsorption performance on typical heavy metal ions[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6518-6534. | |
35 | ZHANG Yaohui, WANG Nana, XUE Pan, et al. Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery[J]. Chemical Engineering Journal, 2018, 343: 512-519. |
36 | 曹雪辰. 低共熔溶剂制备过渡金属硫化物@石墨烯及储锂性能研究[D]. 镇江:江苏科技大学, 2022. |
CAO Xuechen. Lithium-stored properties of transition metal sulfide@graphene prepared by deep eutectic solvent [D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. | |
37 | XU Siyu, CAO Xuechen, LI Fan, et al. Novel 3D Co9S8@graphene nanocomposites prepared by deep eutectic solvents for lithium-ion storage[J]. Journal of Alloys and Compounds, 2023, 936: 168080. |
38 | YANG Yu, MA Fangwu, HAN Wei, et al. Efficient supercapacitors based on Co9S8/graphene composites for electric vehicles[J]. SAE International Journal of Alternative Powertrains, 2018, 7(3): 289-295. |
39 | RAJENDRAN Ramachandran, SARANYA Murugan, Chella Santhosh, et al. Co9S8 nanoflakes on graphene (Co9S8/G) nanocomposites for high performance supercapacitors[J]. RSC Advances, 2014, 4(40): 21151-21162. |
40 | MAO Xiling, HE Xin, YANG Wenyao, et al. Hierarchical holey Co9S8@S-rGO hybrid electrodes for high-performance asymmetric supercapacitors[J]. Electrochimica Acta, 2019, 328: 135078. |
41 | ZHOU Yanli, ZHU Qian, TIAN Jian, et al. TiO2 Nanobelt@Co9S8 composites as promising anode materials for lithium and sodium ion batteries[J]. Nanomaterials, 2017, 7(9): 252. |
42 | XIA Y, YANG P, SUN Y, et al. One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Advanced Materials, 2003, 15(5): 353-389. |
43 | WANG Jiaming, HUANG Ying, HAN Xiaopeng, et al. Construction of hierarchical Co9S8@NiO synergistic microstructure for high-performance asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2021, 603: 440-449. |
44 | KANG Jianli, ZHANG Shaofei, ZHANG Zhijia. Three-dimensional binder-free nanoarchitectures for advanced pseudocapacitors[J]. Advanced Materials, 2017, 29(48): 1700515. |
45 | 王帅晴, 杨思文, 李娜, 等. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
WANG Shuaiqing, YANG Siwen, LI Na, et al. Research progress on element doped biomass carbon materials for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. | |
46 | GODA Emad S, REHMAN Aafaq UR, PANDIT Bidhan, et al. Al-doped Co9S8 encapsulated by nitrogen-doped graphene for solid-state asymmetric supercapacitors[J]. Chemical Engineering Journal, 2022, 428: 132470. |
47 | DAI Chunlong, Jin-Myoung LIM, WANG Minqiang, et al. Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(14): 1704443. |
48 | WANG Zongpeng, LIN Zhiping, DENG Jun, et al. Oxygen evolution reaction: Elevating the d-band center of six-coordinated octahedrons in Co9S8 through Fe-incorporated topochemical deintercalation (adv. energy mater. 5/2021)[J]. Advanced Energy Materials, 2021, 11(5): 2003023. |
49 | ZHANG Shiguo, TSUZUKI Seiji, UENO Kazuhide, et al. Upper limit of nitrogen content in carbon materials[J]. Angewandte Chemie International Edition, 2015, 54(4): 1302-1306. |
50 | PEI Fei, AN Taihua, ZANG Jun, et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: Rational design of hollow carbon host for Li-S batteries[J]. Advanced Energy Materials, 2016, 6(8): 1502539 |
51 | DING Yuanli, KOPOLD Peter, HAHN Kersten, et al. Lithium-sulfur batteries: Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries[J]. Advanced Functional Materials, 2016, 26(7): 1112-1119 |
52 | TANG Cheng, ZHANG Qiang, ZHAO Mengqiang, et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(35): 6100-6105. |
53 | LIANG Zheng, ZHENG G, LI Weiyang, et al. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure[J]. ACS nano, 2014, 8(5): 5249-5256. |
54 | WANG Xiaolei, LI Ge, LI Jingde, et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(8): 2533-2538. |
55 | TAO Xinyong, WANG Jianguo, YING Zhuogao, et al. Strong sulfur binding with conducting magnéli-phase TinO2 n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014, 14(9): 5288-5294. |
56 | SHAO Qi, LIU Jiaqi, WU Qiong, et al. In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn-air battery[J]. Nano-Micro Letters, 2019, 11(1): 4. |
57 | Dandan LYU, YAO Sixian, Asad ALI, et al. N, S codoped carbon matrix-encapsulated Co9S8 nanoparticles as a highly efficient and durable bifunctional oxygen redox electrocatalyst for rechargeable Zn-air batteries[J]. Advanced Energy Materials, 2021, 11(28):2101249. |
58 | DU Weimin, WANG Zhiyong, ZHU Zhaoqiang, et al. Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2(25): 9613-9619. |
59 | YANG Zeheng, ZHU Xiao, WANG Kun, et al. Preparation of NiCo2S4 flaky arrays on Ni foam as binder-free supercapacitor electrode[J]. Applied Surface Science, 2015, 347: 690-695. |
60 | ZHAO Jian, SONG Guanying, YUAN Xiangcheng, et al. Sulfur-deficient Co9S8/Ni3S2 nanoflakes anchored on N-doped graphene nanotubes as high-performance electrode materials for asymmetric supercapacitors[J]. Science China Technological Sciences, 2020, 63(4): 675-685. |
[1] | 陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983. |
[2] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[3] | 李龙, 邢宝林, 鲍倜傲, 靳鹏, 曾会会, 郭晖, 张越, 张文豪. 微扩层改性对煤基石墨微观结构和储锂性能的影响[J]. 化工进展, 2023, 42(12): 6259-6269. |
[4] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[5] | 王艺霖, 李诗杰. 盐酸预处理对浒苔基活性炭电化学性能的影响[J]. 化工进展, 2022, 41(12): 6454-6460. |
[6] | 彭得群. CuGeO3/泡沫镍负极材料的制备及其电化学性能[J]. 化工进展, 2022, 41(1): 343-349. |
[7] | 屈亚松, 俞小花, 谢刚, 史春阳, 杨亚刚, 李永刚. Zn-Al-Ce水滑石在Zn-Ni二次电池中的电化学性能[J]. 化工进展, 2021, 40(3): 1558-1564. |
[8] | 梁芳楠, 刘志伟, 张宁, 刘有智. 细乳液法制备MnO2/PPy复合材料及其电化学性能[J]. 化工进展, 2019, 38(02): 979-986. |
[9] | 童晓梅, 郝芹芹, 闫子英, 郑博学. 硅烷改性环氧树脂自修复微胶囊的制备及应用[J]. 化工进展, 2018, 37(09): 3555-3561. |
[10] | 张英杰, 朱子翼, 董鹏, 赵少博, 章艳佳, 杨成云, 杨城沣, 韦克毅, 李雪. 钠离子电池碳基负极材料的研究进展[J]. 化工进展, 2017, 36(11): 4106-4115. |
[11] | 刘勇军. 过渡金属硫化物催化稳态活性相[J]. 化工进展, 2012, 31(09): 1968-1974. |
[12] | 马紫峰,张慧娟,原鲜霞,蒋淇忠. 低温燃料电池用非贵金属氧还原催化剂研究进展 [J]. 化工进展, 2011, 30(1): 150-. |
[13] | 李景坤,廖小珍,马紫峰. LiFePO4正极材料制备过程研究进展 [J]. 化工进展, 2010, 29(8): 1508-. |
[14] | 缪明生,钟 秦,曲虹霞. H2S固体氧化物燃料电池的制备及其性能 [J]. 化工进展, 2008, 27(7): 1038-. |
[15] | 董 琪,康红欣,闫艳波. 充电截止电压对锂离子电池化学性能的影响 [J]. 化工进展, 2008, 27(5): 770-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |