化工进展 ›› 2024, Vol. 43 ›› Issue (7): 3910-3922.DOI: 10.16085/j.issn.1000-6613.2023-1002
• 材料科学与技术 • 上一篇
赵伟刚1,2(), 张倩倩1, 蓝钰玲1, 闫雯1, 周晓剑2, 范毜仔3, 杜官本2()
收稿日期:
2023-06-18
修回日期:
2023-11-07
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
杜官本
作者简介:
赵伟刚(1983—),男,博士,副教授,硕士生导师,研究方向为生物质及其复合材料的开发在能源和环境领域的应用。 E-mail:weigang-zhao@fafu.edu.cn。
基金资助:
ZHAO Weigang1,2(), ZHANG Qianqian1, LAN Yuling1, YAN Wen1, ZHOU Xiaojian2, FAN Mizi3, DU Guanben2()
Received:
2023-06-18
Revised:
2023-11-07
Online:
2024-07-10
Published:
2024-08-14
Contact:
DU Guanben
摘要:
随着我国经济的迅速发展和人们对生活水平的要求越来越高,节能减排对实现“碳达峰”和“碳中和”的目标显得越来越重要。真空绝热板(vacuum insolation panels,VIP)是一种新型的高效保温隔热材料,其中,芯材作为VIP的核心和骨架结构,不仅承担着支撑作用,而且是板内热量传递的主要通道,对保证VIP的保温性能具有关键作用。基于此,本文首先重点介绍了真空绝热板在绿色建筑和冷链物流领域应用的意义,明确了目前制约真空绝热板领域发展的关键问题;随后综述了真空绝热板芯材的研究现状和进展,比对了不同种类芯材(颗粒类芯材、泡沫类芯材、纤维类芯材、生物质材料类芯材和复合类芯材)在原料来源、保温性能、生产工艺及环境保护方面的优劣,将绿色、可再生的生物质基材料用作真空绝热板芯材进行了对比探讨;最后对真空绝热板芯材未来的研究方向和发展前景进行了总结和展望。本文指出,传统以玻璃纤维、有机泡沫或者气相二氧化硅为芯材的真空绝热板,存在生产成本高、不可再生、难降解、污染环境等问题,所以通过功能化手段获得新型、绿色、低成本、具有良好微观孔隙结构和高热阻的芯材是制约真空绝热板发展的关键。生物质材料具有来源广泛、成本低廉、绿色环保、孔隙结构丰富等优点,是一种极具潜力的VIP芯材原料,也将是真空绝热板芯材的重要研究方向。因此,生物质基芯材真空绝热板未来的发展还需进一步拓宽其原料来源、改善制备方法和工艺、明确老化和使役性能、关注复合芯材的开发,不断提高VIP的性能,扩展其应用领域。
中图分类号:
赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922.
ZHAO Weigang, ZHANG Qianqian, LAN Yuling, YAN Wen, ZHOU Xiaojian, FAN Mizi, DU Guanben. Research progress and prospect of the core materials for vacuum insulation panel[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3910-3922.
1 | 龙飞, 沈月琴, 祁慧博, 等. 基于企业减排需求的森林碳汇定价机制[J]. 林业科学, 2020, 56(2): 164-173. |
LONG Fei, SHEN Yueqin, QI Huibo, et al. Forest carbon sequestration pricing mechanism based on enterprises’ demand for carbon emission reduction[J]. Scientia Silvae Sinicae, 2020, 56(2): 164-173. | |
2 | 欧阳志远, 史作廷, 石敏俊, 等. “碳达峰碳中和”: 挑战与对策[J]. 河北经贸大学学报, 2021, 42(5): 1-11. |
OUYANG Zhiyuan, SHI Zuoting, SHI Minjun, et al. Challenges and countermeasures of “carbon peak and carbon neutrality”[J]. Journal of Hebei University of Economics and Business, 2021, 42(5): 1-11. | |
3 | 聂丽丽. 铝箔在超细玻璃纤维叠层芯材中对真空绝热板性能的影响[D]. 南京: 南京航空航天大学, 2016. |
NIE Lili. Influence of Al foil in the ultra-fine glass fiber laminated coreon performance of vacuum insulation panel[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. | |
4 | LI C D, CHEN Z F, BOAFO F E, et al. Effect of pressure holding time of extraction process on thermal conductivity of glass fiber VIPs[J]. Journal of Materials Processing Technology, 2014, 214(3): 539-543. |
5 | ALAM M, SINGH H, SURESH S, et al. Energy and economic analysis of vacuum insulation panels (VIPs) used in non-domestic buildings[J]. Applied Energy, 2017, 188: 1-8. |
6 | 张昇. 复合阻燃硬质聚氨酯保温材料的制备及其在工程中的应用[D]. 太原: 中北大学, 2020. |
ZHANG Sheng. Preparation of composite flame retardant rigid polyurethane insulation material and its application in engineering[D]. Taiyuan: North University of China, 2020. | |
7 | LAKATOS Á, KOVÁCS Z. Comparison of thermal insulation performance of vacuum insulation panels with EPS protection layers measured with different methods[J]. Energy and Buildings, 2021, 236: 110771. |
8 | JELLE B P, KALNÆS S. Nanotech based vacuum insulation panels for building applications[M]//TORGAL F P, BURATTI C, KALAISELVAM S, et al. Nano and Biotech Based Materials for Energy Building Efficiency. Springer Cham, 2016: 167-214. |
9 | ABDELRADY A, ABDELHAFEZ M H H, RAGAB A. Use of insulation based on nanomaterials to improve energy efficiency of residential buildings in a hot desert climate[J]. Sustainability, 2021, 13(9): 5266. |
10 | SIMÕES N, GONÇALVES M, SERRA C, et al. Can vacuum insulation panels be cost-effective when applied in building façades?[J]. Building and Environment, 2021, 191: 107602. |
11 | DAVRAZ M, KORU M, BAYRAKÇI H C, et al. The effect of opacifier properties on thermal conductivity of vacuum insulation panel with fumed silica[J]. Journal of Thermal Analysis and Calorimetry, 2020, 142(4): 1377-1386. |
12 | 张时聪, 王珂, 杨芯岩, 等. 建筑部门碳达峰碳中和排放控制目标研究[J]. 建筑科学, 2021, 37(8): 189-198. |
ZHANG Shicong, WANG Ke, YANG Xinyan, et al. Research on emission goal of carbon peak and carbon neutral in building sector[J]. Building Science, 2021, 37(8): 189-198. | |
13 | HUNG A L D, PÁSZTORY Z. An overview of factors influencing thermal conductivity of building insulation materials[J]. Journal of Building Engineering, 2021, 44: 102604. |
14 | THIESSEN S, KNABBEN F T, MELO C, et al. An experimental study on the use of vaccum insulation panels in household refrigerators[C]// International Refrigeration and Air Conditioning Conference. The International Institute of Refrigeration,2016. |
15 | KALNÆS S, JELLE B. Vacuum insulation panel products: A state-of-the-art review and future research pathways[J]. Applied Energy, 2014, 116: 355-375. |
16 | FANTUCCI S, LORENZATI A, CAPOZZOLI A, et al. Analysis of the temperature dependence of the thermal conductivity in vacuum insulation panels[J]. Energy & Buildings, 2019, 183: 64-67. |
17 | RESALATI S, OKOROAFOR T, HENSHALL P, et al. Comparative life cycle assessment of different vacuum insulation panel core materials using a cradle to gate approach[J]. Building and Environment, 2021, 188: 107501. |
18 | ALAM M, SINGH H, LIMBACHIYA M C. Vacuum Insulation Panels (VIPs) for building construction industry—A review of the contemporary developments and future directions[J]. Applied Energy, 2011, 88(11): 3592-3602. |
19 | 张志诚. 木纤维/玻璃纤维芯材真空绝热板的工艺研究[D]. 福州: 福建农林大学, 2020. |
ZHANG Zhicheng. Research on the technology of wood fiber/glass fiber core vacuum insulation panel[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. | |
20 | 邸小波, 陈照峰. 真空绝热板用复合吸气剂研究[J]. 南京航空航天大学学报, 2017, 49(1): 24-28. |
DI Xiaobo, CHEN Zhaofeng. Investigation of composite getter for vacuum insulation panels[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(1): 24-28. | |
21 | YAMAMOTO H, OGURA D. Study of long-term performance of vacuum insulation panels containing getter materials in building environment[J]. Energy and Buildings, 2022, 255: 111648. |
22 | YAMAMOTO H, OGURA D. Dependence of gas permeation and adsorption on temperature in vacuum insulation panels (VIPs) containing getter materials[J]. Journal of Building Physics, 2022, 45(5): 604-628. |
23 | 李亚娟, 杨春光, 顾小克. 真空绝热板表面隔膜的影响因素及优化措施[J]. 节能, 2012, 31(2): 16-20, 2. |
LI Yajuan, YANG Chunguang, GU Xiaoke. Analysis on the influence factors of the envelop to the vacuum insulated panel and the optimizing measures[J]. Energy Conservation, 2012, 31(2): 16-20, 2. | |
24 | 谢振刚, 吕春锋. 阻隔包装薄膜对真空绝热板性能影响研究[C]//2017年中国家用电器技术大会论文集. 2017: 675-679. |
25 | BISWAS K, GILMER D, GHEZAWI N, et al. Demonstration of self-healing barrier films for vacuum insulation panels[J]. Vacuum, 2019, 164: 132-139. |
26 | MAO Shang, KAN Ankang, ZHU Wenbing, et al. The impact of vacuum degree and barrier envelope on thermal property and service life of vacuum insulation panels[J]. Energy and Buildings, 2020, 209: 109699. |
27 | CHANG B, ZHONG Landi, AKINC M. Low cost composites for vacuum insulation core material[J]. Vacuum, 2016, 131: 120-126. |
28 | BOUQUEREL M, DUFORESTEL T, BAILLIS D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas — A review[J]. Energy and Buildings, 2012, 54: 320-336. |
29 | J-S KWON, JANG C H, JUNG H, et al. Effective thermal conductivity of various filling materials for vacuum insulation panels[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5525-5532. |
30 | 陈照峰, 李承东, 陈清, 等. 真空绝热板芯材研究进展[J]. 科技导报, 2014, 32(9): 59-62. |
CHEN Zhaofeng, LI Chengdong, CHEN Qing, et al. Research progress of vacuum insulation panel core materials[J]. Science & Technology Review, 2014, 32(9): 59-62. | |
31 | SONG J, CHEN C J, ZHU S, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554(7691): 224-228. |
32 | VINCENT J. Structural Biomaterials[M]. 3rd ed. Princeton: Princeton University Press, 2012. |
33 | YANG C G, LI Y J, GAO X, et al. A review of vacuum degradation research and the experimental outgassing research of the core material - Pu foam on vacuum insulation panels[J]. Physics Procedia, 2012, 32: 239-244. |
34 | BOAFO F E, KIM J-H, J-G AHN, et al. Slim curtain wall spandrel integrated with vacuum insulation panel: A state-of-the-art review and future opportunities[J]. Journal of Building Engineering, 2021, 42: 102445. |
35 | FRICKE J, HEINEMANN U, EBERT H P. Vacuum insulation panels — From research to market[J]. Vacuum, 2008, 82(7): 680-690. |
36 | CAPS R, FRICKE J. Thermal conductivity of opacified powder filler materials for vacuum Insulations1[J]. International Journal of Thermophysics, 2000, 21(2): 445-452. |
37 | 张红林, 南瑶. 膨胀珍珠岩保温板性能主要影响因素研究[J]. 非金属矿, 2020, 43(2): 64-66. |
ZHANG Honglin, Yao NAN. Study on the main factors influencing performance of expanded perlite insulation board[J]. Non-Metallic Mines, 2020, 43(2): 64-66. | |
38 | VERMA S, SINGH H. Predicting the conductive heat transfer through evacuated perlite based vacuum insulation panels[J]. International Journal of Thermal Sciences, 2022, 171: 107245. |
39 | ALAM M, SINGH H, BRUNNER S, et al. Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite—Fumed silica composite for effective vacuum insulation panel (VIP) core[J]. Energy and Buildings, 2014, 69: 442-450. |
40 | 涂春炘, 赵伟刚, 戴达松, 等. 锯末粉真空绝热板的制备及性能[J]. 林业工程学报, 2018, 3(1): 32-37. |
TU Chunxin, ZHAO Weigang, DAI Dasong, et al. Preparation and properties of vacuum insulation panels from sawdust[J]. Journal of Forestry Engineering, 2018, 3(1): 32-37. | |
41 | 王保文, 李志慧, 刘恩文, 等. 真空绝热板芯材木粉原料的隔热性能分析[J]. 森林与环境学报, 2019, 39(1): 95-101. |
WANG Baowen, LI Zhihui, LIU Enwen, et al. Analysis of insulation performance of wood powder as core material of vacuum insulation panel[J]. Journal of Forest and Environment, 2019, 39(1): 95-101. | |
42 | 张建可. 聚氨酯软泡沫塑料隔热性能分析研究[J]. 真空与低温, 2006, 12(3): 180-184. |
ZHANG Jianke. Analyses and study for property of thermal insulation of soft polyurethane foam[J]. Vacuum and Cryogenics, 2006, 12(3): 180-184. | |
43 | TSENG P C, CHU H S. The effects of PE additive on the performance of polystyrene vacuum insulation panels[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 3084-3090. |
44 | YANG C G, XU L, WANG J, et al. Outgassing of rigid open-celled polyurethane foam used in vacuum insulation panels under vacuum condition[J]. Journal of Cellular Plastics, 2007, 43(1): 17-30. |
45 | TAO W H, CHANG C C, LIN J Y. An energy-efficiency, performance study of, vacuum insulation panels[J]. Journal of Cellular Plastics, 2000, 36(6): 441-450. |
46 | DE VOS R, ROSBOTHAM D, DESCHAGHT J. Open-celled polyurethane foam based vacuum panel technology: A fully polyurethane based composite technology for vacuum insulated appliances[J]. Journal of Cellular Plastics, 1996, 32(5): 470-484. |
47 | 阚安康, 韩厚德, 曹丹, 等. 开孔聚氨酯真空绝热板芯材的研究[J]. 绝缘材料, 2008, 41(2): 45-48. |
KAN Ankang, HAN Houde, CAO Dan, et al. Research on open-cell rigid polyurethane form for vacuum insulated panel core[J]. Insulating Materials, 2008, 41(2): 45-48. | |
48 | ZHOU S X, DING Y, WANG Z P, et al. Weathering of roofing insulation materials under multi-field coupling conditions[J]. Materials, 2019, 12(20): 3348. |
49 | DING Y, DONG J L, YANG T L, et al. Microscopic experimental analysis on weatherability of roof insulation materials under multi field coupling environment[J]. Materials Research Express, 2021, 8(3): 035504. |
50 | C-M WONG, M-L HUNG. Polystyrene foams as core materials used in vacuum insulation panel[J]. Journal of Cellular Plastics, 2008, 44(3): 239-259. |
51 | P-C TSENG, CHU H-S. An experimental study of the heat transfer in PS foam insulation[J]. Heat and Mass Transfer, 2009, 45(4): 399-406. |
52 | KIM J, LEE J-H, SONG T-H. Vacuum insulation properties of phenolic foam[J]. International Journal of Heat and Mass Transfer, 2012, 55(19/20): 5343-5349. |
53 | S-Y CHUNG, SIKORA P, STEPHAN D, et al. The effect of lightweight concrete cores on the thermal performance of vacuum insulation panels[J]. Materials, 2020, 13(11): 2632. |
54 | 赵伟刚, 罗路, 吴希, 等. 一种以单宁泡沫为芯材的真空绝热板及其制备方法: CN109109251A[P]. 2019-01-01. |
55 | J-S KWON, JANG C H, JUNG H, et al. Vacuum maintenance in vacuum insulation panels exemplified with a staggered beam VIP[J]. Energy & Buildings, 2010, 42(5): 590-597. |
56 | XU Tengzhou, CHEN Zhaofeng, YANG Yong, et al. Correlation between the thermo-physical properties and core material structure of vacuum insulation panel: Role of fiber types[J]. Fibers and Polymers, 2018, 19(5): 1032-1038. |
57 | LI C D, DUAN Z C, CHEN Q, et al. The effect of drying condition of glassfibre core material on the thermal conductivity of vacuum insulation panel[J]. Materials & Design, 2013, 50: 1030-1037. |
58 | 邸小波, 鲍崇高, 高义民, 等. 真空绝热板热导率与板内真空度关系研究[J]. 真空, 2011, 48(3): 12-15. |
DI Xiaobo, BAO Chonggao, GAO Yimin, et al. On the relationship between thermal conductivity and vacuum of vacuum insulation panels[J]. Vacuum, 2011, 48(3): 12-15. | |
59 | XU T Z, CHEN Z F, ZHOU J M, et al. Ultrafine glass fiber core material produced by wet method[J]. Advanced Materials Research, 2012, 430/431/432: 1343-1347. |
60 | CHEN Z, CHEN Z F, YANG Z G, et al. Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material[J]. Energy, 2015, 93: 945-954. |
61 | 温永刚, 王先荣, 陈光奇. FG型真空绝热板使用寿命评估[J]. 真空科学与技术学报, 2011, 31(1): 110-113. |
WEN Yonggang, WANG Xianrong, CHEN Guangqi. Service life evaluation of FG-type vacuum insulation panel[J]. Chinese Journal of Vacuum Science and Technology, 2011, 31(1): 110-113. | |
62 | DI X B, XIE Z G, CHEN J M, et al. Residual gas analysis in vacuum insulation panel (VIP) with glass fiber core and investigation of getter for VIP[J]. Building and Environment, 2020, 186: 107337. |
63 | 董旭, 戴达松, 范毜仔, 等. 竹纤维真空绝热板芯材的结构和性能研究[J]. 中国造纸, 2017, 36(12): 45-50. |
DONG Xu, DAI Dasong, FAN Mizi, et al. Structure and property of the vacuum core material of insulation panel made of the bamboo fibers[J]. China Pulp & Paper, 2017, 36(12): 45-50. | |
64 | 王保文. 干法制备木纤维基真空绝热板及其性能优化[D]. 福州: 福建农林大学, 2019. |
WANG Baowen. Optimization the performance on wood fiber based vacuum insulation panel by producing of dry-process[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. | |
65 | ZACH J, NOVÁK V, PETERKOVÁ J, et al. Development of vacuum insulation panels with utilization of organic by-products[J]. Energies, 2020, 13(5): 1165. |
66 | CASAS-LEDÓN Y, SALGADO K, JUAN C, et al. Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers[J]. Journal of Cleaner Production, 2020, 249: 119356. |
67 | MIDHUN V C, SURESH S, PRAVEEN B, et al. Preparation, characterisation and thermal property study of micro/nanocellulose crystals for vacuum insulation panel application[J]. Thermal Science and Engineering Progress, 2021, 25: 101045. |
68 | 陈照峰, 张俊雄, 王伟伟, 等. 真空绝热板技术的研究现状及发展趋势[J]. 南京航空航天大学学报, 2017, 49(1): 1-16. |
CHEN Zhaofeng, ZHANG Junxiong, WANG Weiwei, et al. Review of vacuum insulation panel technology and its development[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(1): 1-16. | |
69 | 李承东. 微/纳米孔结构芯材及其真空绝热板的制备与性能研究[D]. 南京: 南京航空航天大学, 2016. |
LI Chendong. Preparation and properties of micro/nano porous core materials and vacuum insulation panels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. | |
70 | DAVRAZ M, BAYRAKCI H C, YUSUFOĞLU Y. The effect of fiber, opacifier ratios and compression pressure on the thermal conductivity of fumed silica based vacuum insulation panels[J]. Arabian Journal for Science and Engineering, 2016, 41(11): 4263-4272. |
71 | DAVRAZ M, BAYRAKCI H C. Performance properties of vacuum insulation panels produced with various filling materials[J]. Science and Engineering of Composite Materials, 2014, 21(4): 521-527. |
72 | NI L, CHEN Z F, MUKHOPADHYAYA P, et al. Numerical simulation on thermal performance of vacuum insulation panels with fiber powder porous media based on CFD method[J]. International Journal of Thermal Sciences, 2022, 172: 107320. |
73 | 王保文, 李志慧, 戚兴来, 等. 木纤维/气相SiO2复合真空绝热板的制备与表征[J]. 西北农林科技大学学报(自然科学版), 2019, 47(10): 27-33. |
WANG Baowen, LI Zhihui, QI Xinglai, et al. Preparation and characterization of wood fiber/fumed silica vacuum insulation panel[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(10): 27-33. | |
74 | ZHUANG J D, GHAFFAR S H, FAN M Z, et al. Restructure of expanded cork with fumed silica as novel core materials for vacuum insulation panels[J]. Composites Part B: Engineering, 2017, 127: 215-221. |
75 | DONG Xu, ZHANG Qianqian, LAN Yuling, et al. Preparation and characterization of vacuum insulation panels with hybrid composite core materials of bamboo and glass fiber[J]. Industrial Crops and Products, 2022, 188: 115691. |
76 | ZHAO W G, YAN W, ZHANG Z C, et al. Development and performance evaluation of wood-pulp/glass fibre hybrid composites as core materials for vacuum insulation panels[J]. Journal of Cleaner Production, 2022, 357: 131957. |
[1] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
[2] | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2 促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7): 3824-3833. |
[3] | 杨光, 姜瑞婷, 张玥, 符子剑, 刘伟. 五氧化二钒/碳纳米复合材料在超级电容器中的应用[J]. 化工进展, 2024, 43(7): 3857-3871. |
[4] | 刘梦凡, 王华伟, 王亚楠, 张艳茹, 蒋旭彤, 孙英杰. Bio-FeMnCeO x 活化PMS降解四环素效能与机制[J]. 化工进展, 2024, 43(6): 3492-3502. |
[5] | 何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050. |
[6] | 何瑞强, 方敏, 周健夺, 费华, 杨凯. 锂电池热管理用TPE基柔性复合相变材料的研究进展[J]. 化工进展, 2024, 43(6): 3159-3173. |
[7] | 龚雪梅, 蒋军, 王超, 梅长彤. 纳米纤维素疏水改性及其功能化应用研究进展[J]. 化工进展, 2024, 43(6): 3187-3198. |
[8] | 杨磊, 邱广薇, 李思言, 葛宏程, 孙园园, 王菲, 范晓光. 基于温度和葡萄糖双重响应性共聚物微囊的胰岛素控释载体[J]. 化工进展, 2024, 43(6): 3277-3284. |
[9] | 闫哲, 刘畅, 王丰旭, 周宏旺, 刘樨, 赵雪冰. 耦合生物质氧化转化的CO2电化学还原[J]. 化工进展, 2024, 43(6): 3310-3321. |
[10] | 谢国平, 谭雪松, 刘鹏, 苗长林, 许光文, 庄新姝. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358. |
[11] | 韩伟, 韩恒文, 程薇, 汤玮健. 碳中和目标驱动下生物质燃料技术研究进展[J]. 化工进展, 2024, 43(5): 2463-2474. |
[12] | 黄坤, 许明, 吴秀娟, 裴思佳, 刘大伟, 马晓迅, 徐龙. 生物质活性炭的制备与微结构特性调控研究进展[J]. 化工进展, 2024, 43(5): 2475-2493. |
[13] | 石鎏, 胡振中, 李显, 孙一鸣, 童珊, 刘显哲, 郭丽, 刘豪, 彭冰, 李硕, 罗光前, 姚洪. 生物质气压烘焙技术研究进展[J]. 化工进展, 2024, 43(5): 2494-2511. |
[14] | 刘苗, 焦莹莹, 丁玲, 李城城, 何颖, 孙亮亮, 郝青青, 陈汇勇, 罗群兴. 酸催化己糖脱水合成5-羟甲基糠醛:反应、分离和过程耦合[J]. 化工进展, 2024, 43(5): 2526-2543. |
[15] | 王欣宇, 王超, 张梦娟, 刘方正, 李晗旸, 王正林, 贾鑫, 宋兴飞, 许光文, 韩振南. 松木颗粒流态化两段气化制备清洁燃气的工艺稳定性验证[J]. 化工进展, 2024, 43(5): 2576-2586. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |