化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 340-349.DOI: 10.16085/j.issn.1000-6613.2025-0597
• 材料科学与技术 • 上一篇
洪康1,2(
), 张冲1,2, 马宏莉2, 孙雍荣2, 蒋丽群2(
), 包桂蓉1(
)
收稿日期:2025-04-21
修回日期:2025-06-23
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
蒋丽群,包桂蓉
作者简介:洪康(2001—),男,硕士研究生,研究方向为生物质硬炭。E-mail: 1293810776.qq.com。
基金资助:
HONG Kang1,2(
), ZHANG Chong1,2, MA Hongli2, SUN Yongrong2, JIANG Liqun2(
), BAO Guirong1(
)
Received:2025-04-21
Revised:2025-06-23
Online:2025-10-25
Published:2025-11-24
Contact:
JIANG Liqun, BAO Guirong
摘要:
生物质硬炭作为钠离子电池负极材料,凭借其可再生性、结构可调性及优异的储钠性能成为研究热点。本文系统综述其主要储钠机制,在此基础上分析硬炭材料的物理化学性质,并概述不同类型的生物质前体(农业废弃物、林业废弃物、工业废弃物)、生物质预处理工艺(化学法和物理法预处理)及炭化条件(温度、升温速率、扫气流量、炭化工艺)对硬炭结构和性能的影响,进一步展望生物质硬炭的研究方向,从而为生物质硬炭的理性设计与钠离子电池性能优化提供理论依据与技术支撑。
中图分类号:
洪康, 张冲, 马宏莉, 孙雍荣, 蒋丽群, 包桂蓉. 生物质硬炭基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 340-349.
HONG Kang, ZHANG Chong, MA Hongli, SUN Yongrong, JIANG Liqun, BAO Guirong. Research progress of biomass hard charcoal as an anode material for sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 340-349.
| 公司 | 前体 | 性能 | 产能情况 |
|---|---|---|---|
| 日本可乐丽 | 椰子壳 | 320~405mAh/g 首次库仑效率88%~90% | 已量产,产品售价高于2×105CNY/t |
| 佰思格 | 葡萄糖、淀粉、果壳等 | 400mAh/g以上 首次库仑效率≥92% | 2025年总产能预期提升至30000t,较2024年增长200%;目前公司已建成8条自动化产线 |
| 中科海纳 | 无烟煤、酚醛树脂 | 245mAh/g 首次库仑效率>88% | 2000t/a软炭负极材料产线已实现量产 |
| 贝特瑞 | 稻壳、果壳、树脂等 | 350mAh/g 首次库仑效率>88% | 400t/a中试线用于技术验证和新品开发;3000t/a量产线实现稳定供货 |
| 杉杉科技 | 榛子壳、树脂、沥青等 | 480mAh/g 首次库仑效率85% | 2023年硬炭产能达300t,2024年产能达1000t |
| 圣泉集团 | 椰子壳、树脂 | 330mAh/g以上 首次库仑效率≥88% | 已建成万吨级硬炭负极产线,并实现量产;计划投资2.48×109CNY建设年产1×105t生物基硬炭负极材料项目 |
| 翔丰华 | 树脂、果壳、焦类、石墨等 | 400mAh/g 首次库仑效率>80% | 产能8×104t/a,正在推进“6×104t人造石墨负极材料一体化生产基地”项目 |
| 元力股份 | 稻壳、椰子壳、毛竹等 | 330mAh/g 首次库仑效率87% | 主业务是活性炭,目前与金龙鱼共同布局马来西亚3×104t椰子壳转化为生物质硬炭的业务 |
| 多氟多 | 核桃壳 | — | 已完成2000t/a负极产线的投产,2025年规划产能提升至5GWh/a |
表1 钠离子电池负极生成企业、性能及产能情况
| 公司 | 前体 | 性能 | 产能情况 |
|---|---|---|---|
| 日本可乐丽 | 椰子壳 | 320~405mAh/g 首次库仑效率88%~90% | 已量产,产品售价高于2×105CNY/t |
| 佰思格 | 葡萄糖、淀粉、果壳等 | 400mAh/g以上 首次库仑效率≥92% | 2025年总产能预期提升至30000t,较2024年增长200%;目前公司已建成8条自动化产线 |
| 中科海纳 | 无烟煤、酚醛树脂 | 245mAh/g 首次库仑效率>88% | 2000t/a软炭负极材料产线已实现量产 |
| 贝特瑞 | 稻壳、果壳、树脂等 | 350mAh/g 首次库仑效率>88% | 400t/a中试线用于技术验证和新品开发;3000t/a量产线实现稳定供货 |
| 杉杉科技 | 榛子壳、树脂、沥青等 | 480mAh/g 首次库仑效率85% | 2023年硬炭产能达300t,2024年产能达1000t |
| 圣泉集团 | 椰子壳、树脂 | 330mAh/g以上 首次库仑效率≥88% | 已建成万吨级硬炭负极产线,并实现量产;计划投资2.48×109CNY建设年产1×105t生物基硬炭负极材料项目 |
| 翔丰华 | 树脂、果壳、焦类、石墨等 | 400mAh/g 首次库仑效率>80% | 产能8×104t/a,正在推进“6×104t人造石墨负极材料一体化生产基地”项目 |
| 元力股份 | 稻壳、椰子壳、毛竹等 | 330mAh/g 首次库仑效率87% | 主业务是活性炭,目前与金龙鱼共同布局马来西亚3×104t椰子壳转化为生物质硬炭的业务 |
| 多氟多 | 核桃壳 | — | 已完成2000t/a负极产线的投产,2025年规划产能提升至5GWh/a |
| 原料 | 预处理 | 炭化工艺 | 电化学性能 | 参考文献 |
|---|---|---|---|---|
| 榛子壳 | 酸洗 | 在氩气氛围下,加热至1400℃并保温3h | 342mAh/g的可逆容量 91%的ICE | [ |
| 竹子 | 碱洗 | 在氩气氛围下,加热至1300℃并保温2h | 303.8mAh/g的可逆容量 83.7%的ICE | [ |
| Ti₃C₂Tₓ MXene | 碱洗 | — | 313mAh/g的比容量 147mAh/g的可逆容量 | [ |
| 甘蔗渣 | 碱洗 | 在氩气氛围下,加热至950℃并保温6h | 212mAh/g的可逆放电容量 17%的初始衰减率 | [ |
| 废弃橡树叶 | 水热预处理 | 在氮气氛围下,加热至1300℃并保温2h | 378mAh/g的可逆容量 85%的ICE | [ |
| 纤维素 | 机械处理 | 在氩气氛围下,加热至350℃并保温3h,再以1℃/min加热至1300℃ | 斜坡区容量从178.3mAh/g增至342.3mAh/g | [ |
| 萘-2,6-二羧酸钠(Na-NDC) | 高能辐射处理 | — | 250mAh/g的可逆容量 78%的ICE | [ |
表2 生物质预处理工艺汇总
| 原料 | 预处理 | 炭化工艺 | 电化学性能 | 参考文献 |
|---|---|---|---|---|
| 榛子壳 | 酸洗 | 在氩气氛围下,加热至1400℃并保温3h | 342mAh/g的可逆容量 91%的ICE | [ |
| 竹子 | 碱洗 | 在氩气氛围下,加热至1300℃并保温2h | 303.8mAh/g的可逆容量 83.7%的ICE | [ |
| Ti₃C₂Tₓ MXene | 碱洗 | — | 313mAh/g的比容量 147mAh/g的可逆容量 | [ |
| 甘蔗渣 | 碱洗 | 在氩气氛围下,加热至950℃并保温6h | 212mAh/g的可逆放电容量 17%的初始衰减率 | [ |
| 废弃橡树叶 | 水热预处理 | 在氮气氛围下,加热至1300℃并保温2h | 378mAh/g的可逆容量 85%的ICE | [ |
| 纤维素 | 机械处理 | 在氩气氛围下,加热至350℃并保温3h,再以1℃/min加热至1300℃ | 斜坡区容量从178.3mAh/g增至342.3mAh/g | [ |
| 萘-2,6-二羧酸钠(Na-NDC) | 高能辐射处理 | — | 250mAh/g的可逆容量 78%的ICE | [ |
| [1] | ARMAND M, J-M TARASCON. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
| [2] | ZENG Ziqi, MURUGESAN Vijayakumar, HAN Kee Sung, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8): 674-681. |
| [3] | PEI Linyuan, CAO Hailiang, YANG Liangtao, et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries[J]. Ionics, 2020, 26(11): 5535-5542. |
| [4] | 邓文涛. 生物质基硬炭负极材料的制备及储钠性能研究[D]. 长沙: 中南林业科技大学, 2022. |
| DENG Wentao. Preparation and sodium storage performance of biomass-based hard carbon anode materials[D]. Changsha: Central South University of Forestry & Technology, 2022. | |
| [5] | FENG Dong, LIU Qi, SUN Fasen, et al. Study on the electrochemical features of carbon-coated GeS2 and GeSe2 anodes toward application in sodium-ion battery[J]. Energy & Fuels, 2021, 35(16): 13499-13505. |
| [6] | FENG Dong, TANG Shan, XU Hui, et al. High performance sodium-ion anodes based on FeSb2S4/Sb embedded within porous reduced graphene oxide/carbon nanotubes matrix[J]. Journal of Alloys and Compounds, 2023, 931: 167576. |
| [7] | XIAO Lifen, LU Haiyan, FANG Yongjin, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Advanced Energy Materials, 2018, 8(20): 1703238. |
| [8] | WANG Yuesheng, FENG Zimin, ZHU Wen, et al. High capacity and high efficiency maple tree-biomass-derived hard carbon as an anode material for sodium-ion batteries[J]. Materials, 2018, 11(8): 1294. |
| [9] | CHEN Zicheng, ZHANG Huiwen, HE Zhibin, et al. Bamboo as an emerging resource for worldwide pulping and papermaking[J]. BioResources, 2019, 14(1): 3-5. |
| [10] | ZHU Youyu, CHEN Mingming, LI Qi, et al. A porous biomass-derived anode for high-performance sodium-ion batteries[J]. Carbon, 2018, 129: 695-701. |
| [11] | ZHANG Minghao, LI Yu, WU Feng, et al. Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode[J]. Nano Energy, 2021, 82: 105738. |
| [12] | CHEN Xiaoyang, LIU Changyu, FANG Yongjin, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150. |
| [13] | FAN Xiangyu, KONG Xirui, ZHANG Pengtang, et al. Research progress on hard carbon materials in advanced sodium-ion batteries[J]. Energy Storage Materials, 2024, 69: 103386. |
| [14] | STEVENS D A, DAHN J R. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell[J]. Journal of the Electrochemical Society, 2000, 147(12): 4428. |
| [15] | STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803. |
| [16] | XU Zhen, WANG Jing, GUO Zhenyu, et al. The role of hydrothermal carbonization in sustainable sodium-ion battery anodes[J]. Advanced Energy Materials, 2022, 12(18): 2200208. |
| [17] | HUANG Yujie, ZHONG Xue, HU Xinyu, et al. Rationally designing closed pore structure by carbon dots to evoke sodium storage sites of hard carbon in low-potential region[J]. Advanced Functional Materials, 2024, 34(4): 2308392. |
| [18] | KOMABA Shinichi, MURATA Wataru, ISHIKAWA Toru, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
| [19] | ANISKEVICH Yauhen, YU Jun Ho, KIM Ji-Young, et al. Tracking sodium cluster dynamics in hard carbon with a low specific surface area for sodium-ion batteries[J]. Advanced Energy Materials, 2024, 14(18): 2304300. |
| [20] | CAO Yuliang, XIAO Lifen, SUSHKO Maria L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787. |
| [21] | LI Zhifei, BOMMIER Clement, CHONG Zhi sen, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Advanced Energy Materials, 2017, 7(18): 1602894. |
| [22] | QIU Shen, XIAO Lifen, SUSHKO Maria L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high‐efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. |
| [23] | SUN Ning, GUAN Zhaoruxin, LIU Yuwen, et al. Extended “adsorption-insertion” model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351. |
| [24] | CHEN Xiaoyang, FANG Youlong, TIAN Jiyu, et al. Electrochemical insight into the sodium-ion storage mechanism on a hard carbon anode[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18914-18922. |
| [25] | LI Yunming, HU Yongsheng, TITIRICI Maria-Magdalena, et al. Hard carbon microtubes made from renewable cotton as high‐performance anode material for sodium‐ion batteries[J]. Advanced Energy Materials, 2016, 6(18): 1600659. |
| [26] | ZHANG Biao, GHIMBEU Camélia Matei, LABERTY Christel, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials, 2016, 6: 1501588. |
| [27] | BAI Panxing, HE Yongwu, ZOU Xiaoxi, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217. |
| [28] | BOMMIER Clement, SURTA Todd Wesley, DOLGOS Michelle, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. |
| [29] | WANG Jing, YAN Lei, REN Qingjuan, et al. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery[J]. Electrochimica Acta, 2018, 291: 188-196. |
| [30] | LIU Pin, LI Yunming, HU Yongsheng, et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(34): 13046-13052. |
| [31] | TANG Yi, HE Junwei, PENG Jiao, et al. Electrochemical behavior of the biomass hard carbon derived from waste corncob as a sodium-ion battery anode[J]. Energy & Fuels, 2024, 38(8): 7389-7398. |
| [32] | WANG Huanlei, YU Wenhua, SHI Jing, et al. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries[J]. Electrochimica Acta, 2016, 188: 103-110. |
| [33] | XIANG Jiaxing, MA Luxiang, SUN Yanxia, et al. Ball-milling-assisted N/O codoping for enhanced sodium storage performance of coconut-shell-derived hard carbon anodes in sodium-ion batteries[J]. Langmuir, 2024, 40(45): 23853-23863. |
| [34] | WANG Jiaxu, LI Fangyu, DUAN Yuansen, et al. Sawdust-derived hard carbon as a high-performance anode for sodium-ion batteries[J]. Ionics, 2023, 29(6): 2311-2318. |
| [35] | GAO Tengteng, ZHOU Youhang, JIANG Yizhi, et al. Bamboo waste derived hard carbon as high performance anode for sodium-ion batteries[J]. Diamond and Related Materials, 2024, 150: 111737. |
| [36] | LU Mengwei, HUANG Ying, CHEN Chen. Cedarwood bark-derived hard carbon as an anode for high-performance sodium-ion batteries[J]. Energy & Fuels, 2020, 34(9): 11489-11497. |
| [37] | WANG Xiaohong, ZHENG Cheng, QI Li, et al. Carbon derived from pine needles as a Na+-storage electrode material in dual-ion batteries[J]. Global Challenges, 2017, 1(7): 1700055. |
| [38] | DÁVILA‐GUZMÁN Nancy Elizabeth, DE JESÚS CERINO-CÓRDOVA Felipe, Eduardo SOTO‐REGALADO, et al. Copper biosorption by spent coffee ground: Equilibrium, kinetics, and mechanism[J]. CLEAN—Soil, Air, Water, 2013, 41(6): 557-564. |
| [39] | PUJOL D, LIU C, GOMINHO J, et al. The chemical composition of exhausted coffee waste[J]. Industrial Crops and Products, 2013, 50: 423-429. |
| [40] | KALIBEK Madina, RAKHYMBAY Lunara, ZHAKIYEVA Zhanar, et al. From food waste to high-capacity hard carbon for rechargeable sodium-ion batteries[J]. Carbon Resources Conversion, 2024, 7(3): 100225. |
| [41] | WANG Jiacheng, ZHAO Jiahua, HE Xiangxi, et al. Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries[J]. Sustainable Materials and Technologies, 2022, 33: e00446. |
| [42] | KUAI J, XIE J, WANG J D, et al. Comparison and optimization of biomass-derived hard carbon as anode materials for sodium-ion batteries[J]. Chemical Physics Letters, 2024, 842: 141214. |
| [43] | YAO Yiwei, MA Yuan, CHEN Chi, et al. Enhanced sodium-storage performances of crumpled MXene nanosheets via alkali treatment-induced active ammonium ions[J]. Journal of Colloid and Interface Science, 2024, 670: 647-657. |
| [44] | MOHIT, HASHMI S A. Hard carbon anode derived from pre-treated bio-waste sugarcane bagasse for high capacity sodium-ion battery fabricated with bio-deFgradable porous polymer electrolyte[J]. Journal of Energy Storage, 2024, 83: 110694. |
| [45] | ISHAQ Muhammad, JABEEN Maher, HE Yushi, et al. Unveiling the critical role of pre-hydrothermal effect in plant biowaste-derived hard carbon for superior rate capability and cycle life in sodium-ion batteries[J]. Advanced Energy Materials, 2025, 15(16): 2403142. |
| [46] | LU Haiyan, AI Fangxing, JIA Yanlong, et al. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball‐milling method[J]. Small, 2018, 14(39): e1802694. |
| [47] | DESAI Aamod V, RAINER Daniel N, PRAMANIK Atin, et al. Rapid microwave-assisted synthesis and electrode optimization of organic anode materials in sodium-ion batteries[J]. Small Methods, 2021, 5(12): 2101016. |
| [48] | CHEN Dongyu, GAO Dongxiao, HUANG Shunchao, et al. Influence of acid-washed pretreatment on the pyrolysis of corn straw: A study on characteristics, kinetics and bio-oil composition[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105027. |
| [49] | AMNUAYCHEEWA Plaimein, HENGAROONPRASAN Rotchanaphan, RATTANAPORN Kittipong, et al. Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids[J]. Industrial Crops and Products, 2016, 87: 247-254. |
| [50] | TORGET R, WALTER P, HIMMEL M, et al. Dilute-acid pretreatment of corn residues and short-rotation woody crops[J]. Applied Biochemistry and Biotechnology, 1991, 28(1): 75-86. |
| [51] | PAN Guoyu, ZHAO Renfei, HUANG Zhikun, et al. Vascular tissue-derived hard carbon with ultra-high rate capability for sodium-ion storage[J]. Carbon, 2024, 224: 118955. |
| [52] | XIA Liangjun, ZHANG Chunhua, WANG Aming, et al. Morphologies and properties of Juncus effusus fiber after alkali treatment[J]. Cellulose, 2020, 27(4): 1909-1920. |
| [53] | ŠOŠTARIĆ Tatjana D, PETROVIĆ Marija S, PASTOR Ferenc T, et al. Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment[J]. Journal of Molecular Liquids, 2018, 259: 340-349. |
| [54] | Fuchun NAN, NAGARAJAN Selvaraj, CHEN Yuwei, et al. Enhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatment[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8951-8958. |
| [55] | HUANG Zongyi, HUANG Jiahong, ZHONG Lei, et al. Deconstruction engineering of lignocellulose toward high-plateau-capacity hard carbon anodes for sodium-ion batteries[J]. Small, 2024, 20(50): e2405632. |
| [56] | OLIVA A, TAN L C, PAPIRIO S, et al. Effect of methanol-organosolv pretreatment on anaerobic digestion of lignocellulosic materials[J]. Renewable Energy, 2021, 169: 1000-1012. |
| [57] | TANG Chenglun, SHAN Junqiang, CHEN Yanjun, et al. Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin[J]. Bioresource Technology, 2017, 232: 222-228. |
| [58] | ZHANG Xiue, CAO Yongjie, LI Guodong, et al. Exploring carbonization temperature to create closed pores for hard carbon as high-performance sodium-ion battery anodes[J]. Small, 2024, 20(31): e2311197. |
| [59] | WANG Pengzi, ZHU Xiaoshu, WANG Qiaoqiao, et al. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(12): 5761-5769. |
| [60] | 郭行, 韩纹莉, 董晓玲, 等. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. |
| GUO Hang, HAN Wenli, DONG Xiaoling, et al. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode[J]. CIESC Journal, 2022, 73(4): 1794-1806. | |
| [61] | WANG Qiaoqiao, ZHU Xiaoshu, LIU Yuhan, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666. |
| [62] | CHENG Zhiheng, ZHANG Hao, CUI Junfeng, et al. Interlayer-expanded carbon anodes with exceptional rates and long-term cycling via kinetically decoupled carbonization[J]. Joule, 2025, 9(3): 101812. |
| [63] | LI Yulong, YANG Yin, LIN Rundan, et al. Enhancing electrochemical performance in sodium-ion batteries: Strategic modification of oxygen-containing functional groups in hard carbon[J]. Fuel, 2025, 381:133397. |
| [64] | ALVIN Stevanus, YOON Dohyeon, CHANDRA Christian, et al. Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries[J]. Journal of Power Sources, 2019, 430: 157-168. |
| [1] | 李军良, 李悦, 孙道来. Cu/SiO2-Al2O3催化1,2-丁二醇加氢脱氧制备1-丁醇[J]. 化工进展, 2025, 44(S1): 222-231. |
| [2] | 李芮莹, 周颖, 周红军, 徐春明. 生物质衍生纳米碳基材料:电化学场景下的机遇与挑战[J]. 化工进展, 2025, 44(S1): 288-306. |
| [3] | 杜亮亮, 邵杰, 汪超, 宋俊达, 程尧, 开元, 胡超. 沥青基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 307-322. |
| [4] | 蒋春喜, 林定标, 卞耀, 周威, 陆海峰, 郭晓镭, 刘海峰. 用于气流床气化的稻壳原料特性及其影响[J]. 化工进展, 2025, 44(9): 4937-4944. |
| [5] | 张文静, 黄致新, 李士腾, 邓帅, 李双俊. 生物质碳气凝胶CO2吸附剂研究进展[J]. 化工进展, 2025, 44(9): 5018-5032. |
| [6] | 王蓝欣, 李飞, 钱亚男, 田于杰, 申峻, 王维. 固定床反应器不同水分煤热解数值模拟[J]. 化工进展, 2025, 44(8): 4513-4525. |
| [7] | 秘一芳, 王保国, 王文强, 孙国金, 曹志海. 氮自掺杂蓝藻生物质基活性炭的制备及其CO2吸附性能[J]. 化工进展, 2025, 44(7): 4223-4232. |
| [8] | 王阳峰, 蔡海乐, 张舒冬, 朱紫宸, 所聪, 杨雁, 侯栓弟. 钠离子电池石油焦基负极/电解液的相容性[J]. 化工进展, 2025, 44(7): 3850-3859. |
| [9] | 张健, 林日辉, 银江林, 李彦姿, 付雨璐, 刘晓霞. 甘蔗尾叶的干法预处理及其乙酰化产物的制备与表征[J]. 化工进展, 2025, 44(7): 3997-4005. |
| [10] | 任鹏锟, 仲兆平, 张小霓, 杨宇轩, 冉真真. 污泥-木屑基活性炭的制备及其对苯系VOCs的吸附性能[J]. 化工进展, 2025, 44(6): 3031-3040. |
| [11] | 张春华, 王国清, 张利军, 鲁波娜, 周丛, 刘俊杰. 管内扭带强化传热技术:涡流结构调控的进展与挑战[J]. 化工进展, 2025, 44(6): 3163-3174. |
| [12] | 张莹, 郑雪梅, 马爱元, 田时泓. 聚乙烯常规及微波催化热解产物分布特征的研究进展[J]. 化工进展, 2025, 44(6): 3224-3237. |
| [13] | 许志成, 高宁博, 全翠, 宋庆彬. 低温等离子体协同催化转化生物质气化焦油研究进展[J]. 化工进展, 2025, 44(6): 3432-3442. |
| [14] | 武亚丽, 张效林, 高丽敏, 黄茂财, 蔡斌, 张继兵. 秸秆粉/纤维资源化利用技术进展[J]. 化工进展, 2025, 44(6): 3509-3523. |
| [15] | 曹湘洪, 周峰, 姜睿, 刘诗哲, 方向晨, 亢万忠, 乔金樑, 聂红. 加快我国生物基材料产业发展的对策[J]. 化工进展, 2025, 44(5): 2385-2393. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |