化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 288-306.DOI: 10.16085/j.issn.1000-6613.2025-0671
• 材料科学与技术 • 上一篇
李芮莹1(
), 周颖2,3(
), 周红军3,4,5,6, 徐春明3,4
收稿日期:2025-05-09
修回日期:2025-08-19
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
周颖
作者简介:李芮莹(1998—),女,博士研究生,研究方向为化工低碳技术开发。E-mail:lrycup@126.com。
基金资助:
LI Ruiying1(
), ZHOU Ying2,3(
), ZHOU Hongjun3,4,5,6, XU Chunming3,4
Received:2025-05-09
Revised:2025-08-19
Online:2025-10-25
Published:2025-11-24
Contact:
ZHOU Ying
摘要:
全球可再生能源投资规模持续扩大,推动着技术创新与材料创新,使可再生能源成为最具经济竞争力的能源。而可再生能源不仅具备能源属性,能够实现跨季节能量存储与多能互补,还具备材料属性,可推动“绿碳材料”在电力变革过程中的潜在应用拓展。本文聚焦可再生能源的材料属性,选择典型且丰富的碳类,侧重生物质基的纳米级尺度碳材料,综述并讨论其在因电力波动性需求而耦合的电解水制氢、电化学储能等关键技术实施过程中,在“氢化能源系统”消纳端的氢以及“新型电力系统”储能端的电化学器件中的应用潜力,其中包括生物质衍生纳米碳基材料的来源、制备、调控及改性;结合理论计算、实验研究及工业案例,分析在消纳端的氢和储能端的电化学器件中的相关应用及影响,与此同时,进一步探讨规模化过程中的机遇及挑战,为低碳化进程的绿碳应用提供理论支撑与创新融合。
中图分类号:
李芮莹, 周颖, 周红军, 徐春明. 生物质衍生纳米碳基材料:电化学场景下的机遇与挑战[J]. 化工进展, 2025, 44(S1): 288-306.
LI Ruiying, ZHOU Ying, ZHOU Hongjun, XU Chunming. Biomass-derived nano-carbon-based materials: Opportunities and challenges in electrochemical applications[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 288-306.
| 方法 | 温度/℃ | 原料处理 | 特点 | 参考文献 |
|---|---|---|---|---|
| 水热碳化法 | 180~280 | 通常需要粉碎 | 反应条件温和,温度低,用于处理高水分生物质 | [ |
| 传统热解法 | 300~1000 | 通常需要粉碎 | 工艺相对简单,可大规模生产,但能耗较高,对设备要求较高 | [ |
| 活化法 | 300~900 | 通常使用如KOH等对生物质进行处理 | 提高产物的比表面积和孔径,但活化剂的使用可能会带来环境污染与成本增高问题 | [ |
| 模板法 | 400~800 | 硬模板(如二氧化硅等)或软模板(如表面活性剂等) | 产物具有比表面积大、孔隙丰富、孔径分布有序特点,具有良好的结构可控性,但模板的制备和去除较为复杂 | [ |
| 微波辅助碳化 | 300~3000 | 通常需要干燥、粉碎 | 产率高,加热均匀、快速,低能耗,高生产效率,但微波设备的成本较高 | [ |
| 太阳能热解 | 250~850 | 通常需要干燥、粉碎 | 温度高,升温速率高,成本经济,工艺节能,但太阳辐射条件不稳定,影响热解过程 | [ |
| 激光诱导碳化 | 300~3000 | 对原料进行清洁、干燥等 | 低能耗,高可控性,仅限于表面处理,但设备投资高、均匀性差 | [ |
| 熔融盐碳化 | 200~1000 | 粉碎后与熔融盐充分混合 | 产物具有高比表面积和孔隙率,但存在熔融盐需要回收处理问题 | [ |
| 焦耳热闪蒸 | 300~900 | 对原料进行干燥、分散等处理 | 产物为特殊结构和性能的碳材料,如石墨烯,但对能量控制和设备的要求高 | [ |
表1 生物质衍生纳米碳基材料的制备方法
| 方法 | 温度/℃ | 原料处理 | 特点 | 参考文献 |
|---|---|---|---|---|
| 水热碳化法 | 180~280 | 通常需要粉碎 | 反应条件温和,温度低,用于处理高水分生物质 | [ |
| 传统热解法 | 300~1000 | 通常需要粉碎 | 工艺相对简单,可大规模生产,但能耗较高,对设备要求较高 | [ |
| 活化法 | 300~900 | 通常使用如KOH等对生物质进行处理 | 提高产物的比表面积和孔径,但活化剂的使用可能会带来环境污染与成本增高问题 | [ |
| 模板法 | 400~800 | 硬模板(如二氧化硅等)或软模板(如表面活性剂等) | 产物具有比表面积大、孔隙丰富、孔径分布有序特点,具有良好的结构可控性,但模板的制备和去除较为复杂 | [ |
| 微波辅助碳化 | 300~3000 | 通常需要干燥、粉碎 | 产率高,加热均匀、快速,低能耗,高生产效率,但微波设备的成本较高 | [ |
| 太阳能热解 | 250~850 | 通常需要干燥、粉碎 | 温度高,升温速率高,成本经济,工艺节能,但太阳辐射条件不稳定,影响热解过程 | [ |
| 激光诱导碳化 | 300~3000 | 对原料进行清洁、干燥等 | 低能耗,高可控性,仅限于表面处理,但设备投资高、均匀性差 | [ |
| 熔融盐碳化 | 200~1000 | 粉碎后与熔融盐充分混合 | 产物具有高比表面积和孔隙率,但存在熔融盐需要回收处理问题 | [ |
| 焦耳热闪蒸 | 300~900 | 对原料进行干燥、分散等处理 | 产物为特殊结构和性能的碳材料,如石墨烯,但对能量控制和设备的要求高 | [ |
| 项目 | 生物质碳材料 | 石墨烯 | 碳纳米管 | 炭黑 | 碳纤维 |
|---|---|---|---|---|---|
| 原料来源 | 生物质废弃物 | 石墨等化石基前体 | 石油焦、天然气等化石基前体 | 石油裂解产物 | 聚丙烯腈等化石基前体 |
| 合成工艺 | 热解碳化、水热碳化等 | 化学气相沉积 | 电弧放电法、化学气相沉积 | 燃烧或热解 | 高温碳化、石墨化 |
| 结构特征 | 多形态、多孔 | 二维片层 | 一维管状 | 纳米颗粒 | 纤维状 |
| 物化性质 | 天然含N、S、O等元素,稳定性好、环保 | 高导电性、高机械强度、化学稳定性高 | 高导电性、高机械强度、化学稳定性高 | 高导电性、机械强度低、化学稳定性高 | 高导电性、化学稳定性高 |
| 环境效益 | 碳足迹低、具有可持续性 | 高碳排放量、制备能耗高 | 高碳排放量 | 高污染 | 高能耗 |
| 应用领域 | 储能电极、土壤改良等 | 电子器件、催化剂等 | 催化剂载体等 | 橡胶填充剂、颜料等 | 航空航天结构材料等 |
表2 生物质衍生纳米碳基材料与典型碳材料对比
| 项目 | 生物质碳材料 | 石墨烯 | 碳纳米管 | 炭黑 | 碳纤维 |
|---|---|---|---|---|---|
| 原料来源 | 生物质废弃物 | 石墨等化石基前体 | 石油焦、天然气等化石基前体 | 石油裂解产物 | 聚丙烯腈等化石基前体 |
| 合成工艺 | 热解碳化、水热碳化等 | 化学气相沉积 | 电弧放电法、化学气相沉积 | 燃烧或热解 | 高温碳化、石墨化 |
| 结构特征 | 多形态、多孔 | 二维片层 | 一维管状 | 纳米颗粒 | 纤维状 |
| 物化性质 | 天然含N、S、O等元素,稳定性好、环保 | 高导电性、高机械强度、化学稳定性高 | 高导电性、高机械强度、化学稳定性高 | 高导电性、机械强度低、化学稳定性高 | 高导电性、化学稳定性高 |
| 环境效益 | 碳足迹低、具有可持续性 | 高碳排放量、制备能耗高 | 高碳排放量 | 高污染 | 高能耗 |
| 应用领域 | 储能电极、土壤改良等 | 电子器件、催化剂等 | 催化剂载体等 | 橡胶填充剂、颜料等 | 航空航天结构材料等 |
| 生物质来源 | 催化剂 | 反应 | 活性 | 电解液 | 参考文献 |
|---|---|---|---|---|---|
| 木质素藻类 | 负载钌的硫掺杂生物碳气凝胶(P-Ru/SC-2) | HER | η10(119.6mV) | 1mol/L KOH | [ |
| 竹子 | 负载铂的氮掺杂多孔碳(Pt@BFPC) | HER | η10(14.6mV) | 0.5mol/L H₂SO₄ | [ |
| 木耳 | 负载Mo2C的氮掺杂生物碳(Mo2C@N-CAN) | HER | η10(82mV) | 0.5mol/L H₂SO₄ | [ |
| 木耳 | Mo2C@N-CAN | HER | η10(100mV) | 1mol/L KOH | [ |
| 木耳 | Mo2C@N-CAN | HER | η10(359mV) | 1mol/L中性磷酸盐缓冲溶液(PBS) | [ |
| 动物骨头 | N、P和Ca共掺杂生物碳(PBC-800) | HER | η10(162mV) | 0.5mol/L H₂SO₄ | [ |
| 牛粪 | 600℃热解牛粪衍生碳(EGCM6) | HER | η10(550mV) | 1mol/L H₂SO₄ | [ |
| 辣椒 | 镍基辣椒衍生的碳纳米复合材料(Chilli-Ni 800) | HER | η10(410mV) | 1mol/L KOH | [ |
| 玉米秸秆 | Mo2C原位嵌入玉米秸秆衍生碳纳米复合材料[Mo2C/B(CIP)] | HER | η10(48mV) | 0.5mol/L H₂SO₄ | [ |
| 棉布 | 镍基棉布衍生的碳纳米复合材料(NiP@C) | HER | η100(23.5mV) | 1mol/L KOH | [ |
| 西瓜皮 | 西瓜皮衍生的钴基纳米复合材料(CCW-700) | HER | η10(111mV) | 1mol/L KOH | [ |
| 棕榈叶鞘 | 封装钴的棕榈叶鞘衍生碳(Co-0.15@ARC) | HER | η10(172mV) | 1mol/L KOH | [ |
| 稻壳 | 生物质稻壳衍生石墨烯(RH-CG) | HER | η10(9mV) | 0.5mol/L H₂SO₄ | [ |
| 椰壳 | 负载铜钴合金的椰壳衍生碳(Cu7Co/C) | HER | η10(134mV) | 1mol/L KOH | [ |
表3 生物质衍生碳基电催化剂
| 生物质来源 | 催化剂 | 反应 | 活性 | 电解液 | 参考文献 |
|---|---|---|---|---|---|
| 木质素藻类 | 负载钌的硫掺杂生物碳气凝胶(P-Ru/SC-2) | HER | η10(119.6mV) | 1mol/L KOH | [ |
| 竹子 | 负载铂的氮掺杂多孔碳(Pt@BFPC) | HER | η10(14.6mV) | 0.5mol/L H₂SO₄ | [ |
| 木耳 | 负载Mo2C的氮掺杂生物碳(Mo2C@N-CAN) | HER | η10(82mV) | 0.5mol/L H₂SO₄ | [ |
| 木耳 | Mo2C@N-CAN | HER | η10(100mV) | 1mol/L KOH | [ |
| 木耳 | Mo2C@N-CAN | HER | η10(359mV) | 1mol/L中性磷酸盐缓冲溶液(PBS) | [ |
| 动物骨头 | N、P和Ca共掺杂生物碳(PBC-800) | HER | η10(162mV) | 0.5mol/L H₂SO₄ | [ |
| 牛粪 | 600℃热解牛粪衍生碳(EGCM6) | HER | η10(550mV) | 1mol/L H₂SO₄ | [ |
| 辣椒 | 镍基辣椒衍生的碳纳米复合材料(Chilli-Ni 800) | HER | η10(410mV) | 1mol/L KOH | [ |
| 玉米秸秆 | Mo2C原位嵌入玉米秸秆衍生碳纳米复合材料[Mo2C/B(CIP)] | HER | η10(48mV) | 0.5mol/L H₂SO₄ | [ |
| 棉布 | 镍基棉布衍生的碳纳米复合材料(NiP@C) | HER | η100(23.5mV) | 1mol/L KOH | [ |
| 西瓜皮 | 西瓜皮衍生的钴基纳米复合材料(CCW-700) | HER | η10(111mV) | 1mol/L KOH | [ |
| 棕榈叶鞘 | 封装钴的棕榈叶鞘衍生碳(Co-0.15@ARC) | HER | η10(172mV) | 1mol/L KOH | [ |
| 稻壳 | 生物质稻壳衍生石墨烯(RH-CG) | HER | η10(9mV) | 0.5mol/L H₂SO₄ | [ |
| 椰壳 | 负载铜钴合金的椰壳衍生碳(Cu7Co/C) | HER | η10(134mV) | 1mol/L KOH | [ |
| 生物质来源 | 复合电极材料 | 应用 | 电化学性能 | 比表面积/m²·g-1 | 参考文献 |
|---|---|---|---|---|---|
| 香蕉皮 | 磷酸处理的香蕉皮衍生碳材料(BP-H3PO4) | 锌离子混合超级电容器 | 0.1A/g电流密度下比容量为73.98mAh/g | 218.3 | [ |
| 花生壳 | SnO2@KBC-CNTs | 超级电容器 | 0.5A/g电流密度下比电容达198.62F/g | 158.69 | [ |
| 橡子 | 橡子衍生碳材料(ACORN-900H) | 钠离子电池 | 10mA/g电流密度下可逆容量310mAh/g | 594.2 | [ |
| 悬铃木果 | WTs | 钾离子电池 | 0.1A/g下循环100次容量达193.3mAh/g | 315.9 | [ |
| 羧甲基纤维素 | 铁基羧甲基纤维素衍生碳材料(FeNPC) | 锌空气电池 | 开路电压1.45V,最大功率密度149mW/cm2 | 1235.0 | [ |
| 大肠杆菌 | 负载Fe2P/Co2P异质结的氮磷共掺杂多孔碳(Fe2P/Co2P@C-900) | 锌空气电池 | 215mA/cm²电流密度下,最大功率密度为155mW/cm² | 660.3 | [ |
| 咖啡 | 铁基咖啡衍生碳材料(Fe3C/Fe-N x -C) | 锌空气电池 | 开路电压1.41V,最大功率密度81mW/cm² | 370.0 | [ |
| 真菌 | 负载MoS2真菌衍生碳材料(MoS2/FC-40) | 锂离子电池 | 0.2A/g下放电容量1067.5mAh/g | — | [ |
| 小麦秸秆 | Ni3S2/Co9S8/WSCC | 锂离子电池 | 1C下300次循环容量535.8mAh/g | 92.1 | [ |
| 藻类 | Si@NiO/Ni@GAM | 锂离子电池 | 1A/g下1000次循环后可逆容量1245.12mAh/g | 176.5 | [ |
| 松针 | 松针衍生碳材料/商业乙炔黑(CPNs/AB) | 锂离子电池 | 0.5C下可逆容量192.3mAh/g | 365.0 | [ |
表4 生物质碳基电极材料
| 生物质来源 | 复合电极材料 | 应用 | 电化学性能 | 比表面积/m²·g-1 | 参考文献 |
|---|---|---|---|---|---|
| 香蕉皮 | 磷酸处理的香蕉皮衍生碳材料(BP-H3PO4) | 锌离子混合超级电容器 | 0.1A/g电流密度下比容量为73.98mAh/g | 218.3 | [ |
| 花生壳 | SnO2@KBC-CNTs | 超级电容器 | 0.5A/g电流密度下比电容达198.62F/g | 158.69 | [ |
| 橡子 | 橡子衍生碳材料(ACORN-900H) | 钠离子电池 | 10mA/g电流密度下可逆容量310mAh/g | 594.2 | [ |
| 悬铃木果 | WTs | 钾离子电池 | 0.1A/g下循环100次容量达193.3mAh/g | 315.9 | [ |
| 羧甲基纤维素 | 铁基羧甲基纤维素衍生碳材料(FeNPC) | 锌空气电池 | 开路电压1.45V,最大功率密度149mW/cm2 | 1235.0 | [ |
| 大肠杆菌 | 负载Fe2P/Co2P异质结的氮磷共掺杂多孔碳(Fe2P/Co2P@C-900) | 锌空气电池 | 215mA/cm²电流密度下,最大功率密度为155mW/cm² | 660.3 | [ |
| 咖啡 | 铁基咖啡衍生碳材料(Fe3C/Fe-N x -C) | 锌空气电池 | 开路电压1.41V,最大功率密度81mW/cm² | 370.0 | [ |
| 真菌 | 负载MoS2真菌衍生碳材料(MoS2/FC-40) | 锂离子电池 | 0.2A/g下放电容量1067.5mAh/g | — | [ |
| 小麦秸秆 | Ni3S2/Co9S8/WSCC | 锂离子电池 | 1C下300次循环容量535.8mAh/g | 92.1 | [ |
| 藻类 | Si@NiO/Ni@GAM | 锂离子电池 | 1A/g下1000次循环后可逆容量1245.12mAh/g | 176.5 | [ |
| 松针 | 松针衍生碳材料/商业乙炔黑(CPNs/AB) | 锂离子电池 | 0.5C下可逆容量192.3mAh/g | 365.0 | [ |
| 企业 | 技术路线 | 产业化进度 | 产能 |
|---|---|---|---|
| 可乐丽 | 生物质:椰壳 | 已量产 | 2000t/a |
| 佰思格 | 生物质:淀粉、蔗糖、椰壳 | 已量产 | 2000t/a |
| 贝特瑞 | 生物质:椰壳、甘蔗; 化石燃料:沥青 | 已量产 | 已建设两条产线,分别为年产400t的中试线及年产3000t的量产线 |
| 杉杉科技 | 生物质:椰壳; 树脂基:酚醛树脂 | 已量产 | 千吨级 |
| 圣泉股份 | 生物质:秸秆 树脂基 | 已量产 | 已建成万吨级硬碳负极产线,大庆生产线的硬碳前体年产能可达150000t |
| 钠能时代 | 生物质:芦苇 | 中试 | 1000t/a |
| 翔丰华 | 生物质:软木 树脂类 | 送样 | 达产业化基本条件 |
| 元力股份 | 生物质:毛竹 | 送样和小批量供应阶段 | 总规划50000t,2024年具备产能1500t(中试线) |
| 多氟多 | 生物质:核桃壳 | — | 焦作基地产能300t/a |
| 传艺科技 | 生物质:椰壳 | — | 规划产能40000t/a |
| 中科星城 | 生物质:树脂类 | — | 拥有研发基础和技术储备 |
表5 主要硬碳负极材料企业[108]
| 企业 | 技术路线 | 产业化进度 | 产能 |
|---|---|---|---|
| 可乐丽 | 生物质:椰壳 | 已量产 | 2000t/a |
| 佰思格 | 生物质:淀粉、蔗糖、椰壳 | 已量产 | 2000t/a |
| 贝特瑞 | 生物质:椰壳、甘蔗; 化石燃料:沥青 | 已量产 | 已建设两条产线,分别为年产400t的中试线及年产3000t的量产线 |
| 杉杉科技 | 生物质:椰壳; 树脂基:酚醛树脂 | 已量产 | 千吨级 |
| 圣泉股份 | 生物质:秸秆 树脂基 | 已量产 | 已建成万吨级硬碳负极产线,大庆生产线的硬碳前体年产能可达150000t |
| 钠能时代 | 生物质:芦苇 | 中试 | 1000t/a |
| 翔丰华 | 生物质:软木 树脂类 | 送样 | 达产业化基本条件 |
| 元力股份 | 生物质:毛竹 | 送样和小批量供应阶段 | 总规划50000t,2024年具备产能1500t(中试线) |
| 多氟多 | 生物质:核桃壳 | — | 焦作基地产能300t/a |
| 传艺科技 | 生物质:椰壳 | — | 规划产能40000t/a |
| 中科星城 | 生物质:树脂类 | — | 拥有研发基础和技术储备 |
| [1] | TANG Jing, XIAO Xiao, HAN Mengqi, et al. China’s sustainable energy transition path to low-carbon renewable infrastructure manufacturing under green trade barriers[J]. Sustainability, 2024, 16(8): 3387. |
| [2] | 国家能源局. 2024年全国电力工业统计数据[R/OL]. (2025-01-21) [2025-09-12]. . |
| [3] | WANG Jixuan, WEN Yujing, WU Kegui, et al. Optimization study of wind, solar, hydro and hydrogen storage based on improved multi-objective particle swarm optimization[J]. Journal of Energy Storage, 2024, 93: 112298. |
| [4] | GUAN Daqin, WANG Bowen, ZHANG Jiguang, et al. Hydrogen society: From present to future[J]. Energy & Environmental Science, 2023, 16(11): 4926-4943. |
| [5] | CAO Dong, ZHANG Zhirong, CUI Yahui, et al. Frontispiece: One-step approach for constructing high-density single-atom catalysts toward overall water splitting at industrial current densities[J]. Angewandte Chemie International Edition, 2023, 62(9): e202380961. |
| [6] | KHAN Muhammad Imran, AL-GHAMDI Sami G. Hydrogen economy for sustainable development in GCC countries: A SWOT analysis considering current situation, challenges, and prospects[J]. International Journal of Hydrogen Energy, 2023, 48(28): 10315-10344. |
| [7] | Moe Thiri ZUN, MCLELLAN Benjamin Craig. Cost projection of global green hydrogen production scenarios[J]. Hydrogen, 2023, 4(4): 932-960. |
| [8] | 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11. |
| JI Xu, ZHOU Buxiang, HE Ge, et al. Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced Engineering Sciences, 2022, 54(5): 1-11. | |
| [9] | FENG Weihang, ZHANG Wei, LIN Quanying, et al. Metal-support interactions of 2D carbon-based heterogeneous catalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2024, 12(30): 18866-18878. |
| [10] | ZHAI Lingling, SHE Xiaojie, ZHUANG Lyuchao, et al. Modulating built-In electric field via variable oxygen affinity for robust hydrogen evolution reaction in neutral media[J]. Angewandte Chemie International Edition, 2022, 61(14): e202116057. |
| [11] | CAO Zhenbao, LI Pengzhang, GUAN Huan, et al. CoFe2O4 nanoparticles encapsulated in rGO by the facile impregnation method as an efficient bifunctional electrocatalyst for alkaline water splitting[J]. International Journal of Hydrogen Energy, 2024, 95: 156-164. |
| [12] | SHEIKH Zulfqar ALI, VIKRAMAN Dhanasekaran, KIM Honggyun, et al. Introduction of MgFeO3 nanoparticles on the WS2@CNT composite structures to enhance the bi-functional overall water splitting reactions[J]. Renewable Energy, 2025, 242: 122418. |
| [13] | LUO Qiaomei, Yuanjiang LYU, ZHANG Peng, et al. Interface engineering of hollow Janus-structured NiCoP/P-MoS2 heterojunction as self-supported electrode enables boosted alkaline hydrogen evolution reaction[J]. Journal of Colloid and Interface Science, 2025, 684: 668-677. |
| [14] | 刘静, 林琳, 张健, 等. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
| LIU Jing, LIN Lin, ZHANG Jian, et al. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. | |
| [15] | 刘晓婷, 张金灿, 陈恒, 等. 超洁净石墨烯薄膜的制备方法[J]. 物理化学学报, 2022, 38(1): 58-72. |
| LIU Xiaoting, ZHANG Jincan, CHEN Heng, et al. Synthesis of superclean graphene[J]. Acta Physico-Chimica Sinica, 2022, 38(1): 58-72. | |
| [16] | LIU Wujun, JIANG Hong, YU Hanqing. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22): 12251-12285. |
| [17] | KANT BHATIA Shashi, PALAI Akshaya K, KUMAR Amit, et al. Trends in renewable energy production employing biomass-based biochar[J]. Bioresource Technology, 2021, 340: 125644. |
| [18] | YUAN Xiangzhou, CAO Yang, LI Jie, et al. Recent advancements and challenges in emerging applications of biochar-based catalysts[J]. Biotechnology Advances, 2023, 67: 108181. |
| [19] | GUPTA Aayush, KUMAR Amit, JAIDKA Sachin, et al. Graphene oxide from biomass waste: A pathway to electrochemical hydrogen production and capacitive applications[J]. Physica B: Condensed Matter, 2025, 698: 416765. |
| [20] | VARMA Rajender S. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6458-6470. |
| [21] | GAO Qiang, XIE Zhengzheng, SHANG Xiaohong, et al. In situ composite of biomass derived carbon/porous carbon nitride and its enhanced performance in solar-driven photocatalytic hydrogen evolution reaction[J]. Solar Energy, 2024, 283: 113019. |
| [22] | ENIS KARAHAN H, JI Mengdi, PINILLA José Luis, et al. Biomass-derived nanocarbon materials for biological applications: Challenges and prospects[J]. Journal of Materials Chemistry B, 2020, 8(42): 9668-9678. |
| [23] | BAI Yulin, ZHANG Chenchen, RONG Feng, et al. Biomass-derived carbon materials for electrochemical energy storage[J]. Chemistry, 2024, 30(23): e202304157. |
| [24] | 汪杰, 刘建国. 生物炭改性在催化应用上的研究[J]. 功能材料, 2023, 54(6): 6034-6042. |
| WANG Jie, LIU Jianguo. Study on catalytic application of biochar modification[J]. Journal of Functional Materials, 2023, 54(6): 6034-6042. | |
| [25] | XIE Lijing, TANG Cheng, SONG Mingxin, et al. Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: A review[J]. Journal of Energy Chemistry, 2022, 72: 554-569. |
| [26] | 张学民, 贺冠宇, 尹绍奇, 等. 多孔生物质碳材料的制备及其在超级电容器中的应用研究进展[J]. 过程工程学报, 2024, 24(2): 127-138. |
| ZHANG Xuemin, HE Guanyu, YIN Shaoqi, et al. Research progress in the preparation of porous biomass carbon materials and their applications in supercapacitors[J]. The Chinese Journal of Process Engineering, 2024, 24(2): 127-138. | |
| [27] | ZHANG Yu, ZHANG Xiuxiu, ZHOU Zhenxing, et al. A review of the conversion of wood biomass into high-performance bulk biochar: Pretreatment, modification, characterization, and wastewater application[J]. Separation and Purification Technology, 2025, 361: 131448. |
| [28] | KUMAR Tinku, ANSARI Suhel Aneesh, SAWARKAR Riya, et al. Bamboo biochar: A multifunctional material for environmental sustainability[J]. Biomass Conversion and Biorefinery, 2025. . |
| [29] | CRUZ-REINA Luis J, FONSECA-BERMÚDEZ Óscar Javier, FLÓREZ-ROJAS Juan Sebastián, et al. Pyrolysis-derived activated carbon from Colombian cashew (Anacardium occidentale) nut shell for valorization in phenol adsorption[J]. Adsorption, 2024, 31(1): 17. |
| [30] | ADENIYI Adewale George, IWUOZOR Kingsley O, EMENIKE Ebuka Chizitere, et al. Leaf-based biochar: A review of thermochemical conversion techniques and properties[J]. Journal of Analytical and Applied Pyrolysis, 2024, 177: 106352. |
| [31] | GEETHA T, SMITHA John K, SEBASTIAN Manju, et al. Synthesis and characterization of nano iron oxide biochar composite for efficient removal of crystal violet from water[J]. Heliyon, 2024, 10(21): e39450. |
| [32] | JIANG Jinyuan, HE Changjun, SONG Haoyang, et al. Treatment of pyrolytic eco-toilet waste: Characterization of feces-based biochar produced from different temperatures and their effects on urine properties and fractions[J]. Water, Air, & Soil Pollution, 2023, 234(2): 115. |
| [33] | SONG Jinzhi, LI Yun, WANG Yang, et al. Preparing biochars from cow hair waste produced in a tannery for dye wastewater treatment[J]. Materials, 2021, 14(7): 1690. |
| [34] | LIU Shanjian, ZHANG Guanshuai, BI Dongmei, et al. Effect of pyrolysis conditions on the preparation of nitrogen-containing chemicals and nitrogen-doped carbon from cock feathers: Nitrogen migration and transformation[J]. Energy, 2025, 315: 134328. |
| [35] | LAILA Ume, HUDA Mishkat UL, SHAKOOR Isha, et al. A novel method for the enhancement of sunflower growth from animal bones and chicken feathers[J]. Plants, 2024, 13(17): 2534. |
| [36] | 张晓龙, 杨倩楠, 陈静, 等. 乡村振兴战略背景下生物质废弃物生态产业化利用途径探讨[J]. 安徽农业科学, 2023, 51(23): 59-64. |
| ZHANG Xiaolong, YANG Qiannan, CHEN Jing, et al. Discussion on the ecological industrialization of biomass waste under the background of rural revitalization strategy[J]. Journal of Anhui Agricultural Sciences, 2023, 51(23): 59-64. | |
| [37] | 农业农村部. 对十四届全国人大一次会议第6904号建议的答复[EB/OL]. (2023-07-28) [2025-01-05]. . |
| Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Reply to recommendation No. 6904 of the first session of the 14th national people’s congress[EB/OL]. (2023-07-28) [2025-01-05]. . | |
| [38] | JIA Yaqi, LI He, HE Xiaole, et al. Effect of biochar from municipal solid waste on mechanical and freeze-thaw properties of concrete[J]. Construction and Building Materials, 2023, 368: 130374. |
| [39] | HUNG Chang-Mao, CHEN Chiu-Wen, HUANG Chin-Pao, et al. Effects of pyrolysis conditions and heteroatom modification on the polycyclic aromatic hydrocarbons profile of biochar prepared from sorghum distillery residues[J]. Bioresource Technology, 2023, 384: 129295. |
| [40] | HALLER Henrik, PALADINO Gabriela, DUPAUL Gabriel, et al. Polluted lignocellulose-bearing sediments as a resource for marketable goods—A review of potential technologies for biochemical and thermochemical processing and remediation[J]. Clean Technologies and Environmental Policy, 2023, 25(2): 409-425. |
| [41] | 国家统计局. 中国统计年鉴-2023[EB/OL]. (2023-09-01) [2025-02-13]. . |
| National Bureau of Statistics. China statistical yearbook—2023[EB/OL]. (2023-09-01) [2025-02-13]. . | |
| [42] | WANG Kainan, HOU Jinju, ZHANG Shudong, et al. Preparation of a new biochar-based microbial fertilizer: Nutrient release patterns and synergistic mechanisms to improve soil fertility[J]. Science of the Total Environment, 2023, 860: 160478. |
| [43] | 刘思远, 潘剑, 单明, 等. 双碳目标下中国生物质资源定量评估及能源替代研究[J]. 环境生态学, 2024, 6(11): 37-42, 126. |
| LIU Siyuan, PAN Jian, SHAN Ming, et al. Quantitative assessment and energy substitution of biomass resources in China under the carbon peaking and carbon neutrality goals[J]. Environmental Ecology, 2024, 6(11): 37-42, 126. | |
| [44] | KRYSANOVA Kristina, KRYLOVA Alla, ZAICHENKO Victor. Properties of biochar obtained by hydrothermal carbonization and torrefaction of peat[J]. Fuel, 2019, 256: 115929. |
| [45] | MUEMA Faith Mawia, RICHARDSON Yohan, KEITA Amadou, et al. An interdisciplinary overview on biochar production engineering and its agronomic applications[J]. Biomass and Bioenergy, 2024, 190: 107416. |
| [46] | 安青, 陈德珍, 钦佩, 等. 生物炭活化技术及生物炭催化剂的研究进展[J]. 中国环境科学, 2021, 41(10): 4720-4735. |
| AN Qing, CHEN Dezhen, QIN Pei, et al. Research progress of biochar activation technology and biochar catalyst[J]. China Environmental Science, 2021, 41(10): 4720-4735. | |
| [47] | XI Jingen, LI Hui, XI Jiamin, et al. Preparation of high porosity biochar materials by template method: A review[J]. Environmental Science and Pollution Research International, 2020, 27(17): 20675-20684. |
| [48] | ZHANG Yaning, FAN Sichen, LIU Tao, et al. A review of biochar prepared by microwave-assisted pyrolysis of organic wastes[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101873. |
| [49] | 彭昌盛, 魏茜茜, 赵婷婷, 等. 太阳能热解技术制备生物炭的研究进展[J]. 现代化工, 2022, 42(2): 61-67. |
| PENG Changsheng, WEI Xixi, ZHAO Tingting, et al. Advances in production of biochar by solar pyrolysis technology[J]. Modern Chemical Industry, 2022, 42(2): 61-67. | |
| [50] | XU Xingjie, ZHANG Mengdi, QI Chao, et al. Laser-induced carbonization technology towards biomass-derived carbon materials: Mechanism, preparation and application[J]. Green Chemistry, 2025, 27(4): 959-981. |
| [51] | ZHU Xiefei, SUN Mingzhe, ZHU Xinzhe, et al. Molten salt shielded pyrolysis of biomass waste: Development of hierarchical biochar, salt recovery, CO2 adsorption[J]. Fuel, 2023, 334: 126565. |
| [52] | ZHU Xiangdong, LIN Litao, PANG Mingyue, et al. Continuous and low-carbon production of biomass flash graphene[J]. Nature Communications, 2024, 15(1): 3218. |
| [53] | LIMA Ravi Moreno Araujo Pinheiro, DOS REIS Glaydson Simões, THYREL Mikael, et al. Facile synthesis of sustainable biomass-derived porous biochars as promising electrode materials for high-performance supercapacitor applications[J]. Nanomaterials, 2022, 12(5): 866. |
| [54] | ZHANG Chen, ZHANG Duoyong, ZHANG Xinqi, et al. Core-membrane microstructured amine-modified mesoporous biochar templated via ZnCl2/KCl for CO2 capture[J]. Frontiers in Energy, 2024, 18(6): 863-874. |
| [55] | YANG Yuxuan, SUN Chen, HUANG Qunxing, et al. Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar: Application in VOCs removal[J]. Chemosphere, 2022, 291: 132702. |
| [56] | WANG Shizong, WANG Jianlong. Comparison of Fenton-like catalytic activity of biochar by in situ and ex-situ nitrogen doping: Role of carbon quantum dots[J]. Chemosphere, 2024, 364: 143000. |
| [57] | 曾湘楚, 莫镇榕, 银秀菊, 等. N、S共掺杂磁性生物炭对水体Cu(Ⅱ)和四环素的协同吸附机制[J]. 化工进展, 2024, 43(12): 7004-7017. |
| ZENG Xiangchu, MO Zhenrong, YIN Xiuju, et al. Synergistic adsorption mechanism of aqueous Cu(Ⅱ) and TC by N and S Co-doped biochar[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7004-7017. | |
| [58] | HUANG Peng, ZHANG Peng, WANG Cuiping, et al. P-doped biochar regulates nZVI nanocracks formation for superefficient persulfate activation[J]. Journal of Hazardous Materials, 2023, 450: 130999. |
| [59] | KHEDULKAR Akhil Pradiprao, YU Wanju, DANG Van Dien, et al. Boosting supercapacitor performance with a cobalt hydroxide in situ preparation orange peel biochar flower-like composite[J]. Journal of Energy Storage, 2024, 81: 110302. |
| [60] | LIU Zhaoyang, ZHANG Peng, WEI Zixuan, et al. Porous Fe-doped graphitized biochar: An innovative approach for co-removing per-/ polyfluoroalkyl substances with different chain lengths from natural waters and wastewater[J]. Chemical Engineering Journal, 2023, 476: 146888. |
| [61] | WU Haoyang, ZHAO Qianqian, JIANG Shan, et al. Research advances in doped carbon electrocatalysts derived from biomass[J]. Chemical Engineering Journal, 2025, 505: 159694. |
| [62] | Yee Wen YAP, MAHMED Norsuria, NORIZAN Mohd Natashah, et al. Recent advances in synthesis of graphite from agricultural bio-waste material: A review[J]. Materials, 2023, 16(9): 3601. |
| [63] | HAGHIGHI POUDEH Leila, BERKTAS Ilayda, Hafiz Qasim ALI, et al. Toward next-generation carbon-based materials derived from waste and biomass for high-performance energy applications[J]. Energy Technology, 2020, 8(12): 2000714. |
| [64] | 王子郡, 黄菁华, 麦建军, 等. 外源有机物料性质对黑土农田土壤微生物碳组分的影响[J]. 植物营养与肥料学报, 2024, 30(5):980-995. |
| WANG Zijun, HUANG Jinghua, Jianjun MAI, et al. Effects of organic material properties on microbial carbon fractions in black soil farmland[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(5): 980-995. | |
| [65] | MA Zhongzheng, DUAN Yi, DENG Yongqi, et al. Deep eutectic solvent assisted preparation of cellulose nanofibers and graphene composite films for supercapacitors[J]. RSC Sustainability, 2023, 1(4): 1006-1015. |
| [66] | ZHANG Chengyu, NDAYISENGA Fabrice, WANG Cong, et al. Electronic configuration of carbon regulated by Mo2C clusters encapsulated in nitrogen self-doped biochar for efficient hydrogen evolution reaction[J]. Chemical Engineering Journal, 2025, 505: 159709. |
| [67] | SUN Yuxuan, SUN Peihao, JIA Jixiu, et al. Machine learning in clarifying complex relationships: Biochar preparation procedures and capacitance characteristics[J]. Chemical Engineering Journal, 2024, 485: 149975. |
| [68] | PRABU Natarajan, SARAVANAN Raaju Sundhar Arul, KESAVAN Thangaian, et al. An efficient palm waste derived hierarchical porous carbon for electrocatalytic hydrogen evolution reaction[J]. Carbon, 2019, 152: 188-197. |
| [69] | LIN Xuliang, LIU Jianglin, QIU Xueqing, et al. Ru-FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting[J]. Angewandte Chemie International Edition, 2023, 62(33): e202306333. |
| [70] | ZHANG Xiaoyun, ZHU Shifan, SONG Lili, et al. NiS gradient distribution on arrayed porous carbonized grapefruit peel for water splitting[J]. Nanoscale, 2023, 15(8): 3764-3771. |
| [71] | WU Guangxing, ZHANG Huan, ZHANG Xiuqiang, et al. Converting biomass tar into N-doped biochar: A promising anode material for enhanced sodium-ion batteries[J]. Journal of Analytical and Applied Pyrolysis, 2025, 188: 107051. |
| [72] | LI Di, LI Zengyong, CHEN Zhongxin, et al. Wood-derived, monolithic chainmail electrocatalyst for biomass-assisted hydrogen production[J]. Advanced Energy Materials, 2023, 13(24): 2300427. |
| [73] | SALIMI P, VERCRUYSSE W, CHAUQUE S, et al. Lithium-metal-free sulfur batteries with biochar and steam-activated biochar-based anodes from spent common ivy[J]. Energy & Environmental Materials, 2024, 7(6): e12758. |
| [74] | LI Pengfei, CHENG Zhongfa, CHAI Wei, et al. Anchored Ru clusters on a lignin/algae carbon aerogel as an efficient bifunctional catalyst for water splitting[J]. New Journal of Chemistry, 2024, 48(21): 9856-9861. |
| [75] | WU Naiteng, HE Wenjing, SHI Shicheng, et al. Bamboo fiber-derived carbon support for the immobilization of Pt nanoparticles to enhance hydrogen evolution reaction[J]. Journal of Colloid and Interface Science, 2025, 684: 658-667. |
| [76] | KANG Qiaoling, LI Mengyuan, WANG Zengrui, et al. Agaric-derived N-doped carbon nanorod arrays@nanosheet networks coupled with molybdenum carbide nanoparticles as highly efficient pH-universal hydrogen evolution electrocatalysts[J]. Nanoscale, 2020, 12(8): 5159-5169. |
| [77] | DENG Lifang, ZHANG Yuyuan, WANG Yazhuo, et al. In situ N-, P- and Ca-codoped biochar derived from animal bones to boost the electrocatalytic hydrogen evolution reaction[J]. Resources, Conservation and Recycling, 2021, 170: 105568. |
| [78] | MONTEIRO Michael D S, DOS SANTOS Marcos V Q, DOS S DE ALMEIDA Wandson, et al. Cattle manure biochar-based electrode applied in electrocatalytic low-carbon hydrogen evolution reactions[J]. Materials Chemistry and Physics, 2025, 333: 130351. |
| [79] | DONGRE S Sumanth, ZUCCANTE Giovanni, MUHYUDDIN Mohsin, et al. Innovative biochar-based electrocatalysts from chilli plants and fruits for sustainable oxygen reduction and hydrogen evolution reactions[J]. Electrochimica Acta, 2025, 517: 145763. |
| [80] | LI Hongru, ZHEN Feng, QIAN Xin, et al. Study of efficient catalytic electrode for hydrogen evolution reaction from seawater based on low tortuosity corn straw cellulose biochar/Mo2C with porous channels[J]. International Journal of Biological Macromolecules, 2024, 254: 127993. |
| [81] | 陈健鑫, 盛楠, 朱春宇, 等. 生物质碳负载镍基纳米颗粒及其电解水析氢性能[J]. 储能科学与技术, 2022, 11(5): 1350-1357. |
| CHEN Jianxin, SHENG Nan, ZHU Chunyu, et al. Study on nickel-based nanoparticles supported by biomass carbon for electrocatalytic hydrogen evolution[J]. Energy Storage Science and Technology, 2022, 11(5): 1350-1357. | |
| [82] | YANG Zhou, YANG Runmiao, DONG Guanxiu, et al. Biochar nanocomposite derived from watermelon peels for electrocatalytic hydrogen production[J]. ACS Omega, 2021, 6(3): 2066-2073. |
| [83] | ZHOU Yajuan, LUO Yuanzheng, LI Qingyang, et al. Cobalt nanoparticles encapsulated in the biomass-derived carbon: An efficient and bifunctional electrocatalyst for overall water splitting[J]. Energy & Fuels, 2024, 38(16): 15560-15570. |
| [84] | SEKAR Sankar, AQUEEL AHMED Abu Talha, Dae Hyun SIM, et al. Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks[J]. International Journal of Hydrogen Energy, 2022, 47(95): 40317-40326. |
| [85] | CHEN Yali, ZHAO Cuijiao, WANG Shuyu, et al. Bridging sustainability and catalytic efficiency: Cu7Co alloy-decorated biomass-derived carbon as a highly efficient electrocatalyst for hydrogen generation[J]. New Journal of Chemistry, 2024, 48(27): 12166-12173. |
| [86] | YAN Chunxia, YANG Yaqi, WEI Jie, et al. N self-doped multifunctional chitosan biochar-based microsphere with heterogeneous interfaces for self-powered supercapacitors to drive overall water splitting[J]. Biochar, 2023, 5(1): 90. |
| [87] | HUANG Yuming, ZHOU Wei, XIE Liang, et al. Self-sacrificing and self-supporting biomass carbon anode-assisted water electrolysis for low-cost hydrogen production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(47): e2316352121. |
| [88] | GAUTAM Manisha, PATODIA Tarun, GUPTA Vinay, et al. Synthesis of high surface area activated carbon from banana peels biomass for zinc-ion hybrid super-capacitor[J]. Journal of Energy Storage, 2024, 102: 114088. |
| [89] | WANG Yujie, WANG Hui, JI Jiangtao, et al. Hydrothermal synthesis and electrochemical properties of Sn-based peanut shell biochar electrode materials[J]. RSC Advances, 2024, 14(9): 6298-6309. |
| [90] | MEDINA Alejandro, RUBIO Saúl, LAVELA Pedro, et al. From acorn to microporous carbon for sustainable sodium-ion battery[J]. Journal of Electroanalytical Chemistry, 2025, 980: 118988. |
| [91] | HAO Jiaxing, YE Mingyuan, VIJAYA KUMAR SAROJA Ajay Piriya, et al. Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage[J]. Nanotechnology, 2025, 36(12): 125701. |
| [92] | GUO Pengpeng, QADIR Abrar, XU Chao, et al. Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N3P configuration for efficient oxygen reduction reaction[J]. Green Energy & Environment, 2025, 10(5): 1064-1072. |
| [93] | HUANG Kang, HU Jiapeng, CAO Jicun, et al. Biomass-templated strategy to synthesize Fe2P/Co2P heterojunction bifunctional electrocatalyst for high performance flexible zinc-air batteries[J]. Science China Chemistry, 2025, 68(7): 3056-3063. |
| [94] | PEERA Shaik Gouse, KIM Seung-Won, ASHMATH Shaik, et al. Sustainable Fe3C/Fe-N x -C cathode catalyst from biomass for an oxygen reduction reaction in alkaline electrolytes and zinc-air battery application[J]. Inorganics, 2025, 13(5): 143. |
| [95] | ZHOU Kangjie, ZHONG Guixiang, LI Jie, et al. Preparation of MoS2/fungus carbon composite and its lithium-ions storage performance[J]. Solid State Ionics, 2025, 420: 116785. |
| [96] | YU Kaifeng, GONG Yanan, HUI A O, et al. Ni3S2/Co9S8 heterojunction decorated wheat straw cellulose carbon for lithium-ion battery anode material[J]. Ionics, 2025, 31(5): 4073-4081. |
| [97] | SANG Jingjing, SUN Chuxiao, ZHENG Heya, et al. Algae-derived gel carbon framework encapsulating Si@NiO/Ni quantum dots to construct high-speed electron transport channels for lithium-ion battery anodes[J]. Journal of Energy Storage, 2025, 120: 116338. |
| [98] | GE Hao, XIU Zhonghai, XIE Longhui, et al. Modified conductive additives based on pine needle-derived biomass carbon for high-performance lithium-ion batteries[J]. Biomass and Bioenergy, 2025, 200: 108008. |
| [99] | NGUYEN Van-Toan, CHO Kanghee, CHOI Yujin, et al. Biomass-derived materials for energy storage and electrocatalysis: Recent advances and future perspectives[J]. Biochar, 2024, 6(1): 96. |
| [100] | 麻秀芬, 邢献军, 江康, 等. 一种新型粉末生物质燃烧炉进料设备: CN118564940A[P]. 2024-08-30. |
| MA Xiufen, XING Xianjun, JIANG Kang, et al. Novel powder biomass combustion furnace feeding equipment: CN118564940A[P]. 2024-08-30. | |
| [101] | 吴长锋. 从亿万年到半小时[N/OL]. 科技日报, 2024-08-05 [2025-01-21]. . |
| WU Changfeng. From billions of years to half an hour[N/OL]. Science and Technology Daily, 2024-08-05 [2025-01-21]. . | |
| [102] | 吴创之, 赵增立, 郑舜鹏. 一种非对称结构的内循环生物质流化床气化炉: CN1597846[P]. 2005-03-23. |
| WU Chuangzhi, ZHAO Zengli, ZHENG Shunpeng. Asymmetric structure internal circulation biomass fluidized bed gasifier: CN20041 0051078.2[P]. 2005-03-23. | |
| [103] | 陈文威, 郎林, 刘华财, 等. 一种组合的两段式生物质炭化装置: CN118006353A[P]. 2024-05-10. |
| CHEN Wenwei, LANG Lin, LIU Huacai, et al. Combined two-section biomass carbonization device: CN118006353A[P]. 2024-05-10. | |
| [104] | 于爱丽, 时圣玉, 牛晓璐, 等. 一种生物质热解炭出料装置: CN222348948U[P]. 2025-01-14. |
| YU Aili, SHI Shengyu, NIU Xiaolu, et al. Biomass pyrolytic carbon discharging device: CN222348948U[P]. 2025-01-14. | |
| [105] | 官忠明, 颜佳婷, 刘远鹏, 等. 一种铅碳电池用生物质石墨化多孔炭的制备方法及铅碳电池: CN119612512A[P]. 2025-03-14. |
| GUAN Zhongming, YAN Jiating, LIU Yuanpeng, et al. Preparation method of biomass graphitized porous carbon for lead-carbon battery and lead-carbon battery: CN119612512A[P]. 2025-03-14. | |
| [106] | 张永志, 陈立, 赵方州, 等. 一种石墨化可控生物质碳电池负极材料及其制备方法: CN118619244A[P]. 2024-09-10. |
| ZHANG Yongzhi, CHEN Li, ZHAO Fangzhou, et al. Graphitized controllable biomass carbon battery negative electrode material and preparation method thereof: CN118619244A[P]. 2024-09-10. | |
| [107] | 敖新玲, 洪斯凡, 刘荣江. 一种复合负极及应用其的锂离子电池: CN119673948A[P]. 2025-03-21. |
| AO Xinling, HONG Sifan, LIU Rongjiang. Composite negative electrode and lithium ion battery using same: CN119673948A[P]. 2025-03-21. | |
| [108] | 高工产业研究院(GGII). 2025 年中国钠离子电池负极材料市场调研分析报告[R]. 深圳:高工产业研究院,2024. |
| Gaogong Industrial Research Institute (GGII). 2025 China sodium-ion battery anode materials market research and analysis report[R].Shenzhen: Gaogong Industry Institute, 2024. | |
| [109] | JIA Shuang, ZHANG Bo, GAO Jiawei, et al. Biomass-derived hard carbon anodes: From structural engineering to industrial sodium-ion battery applications[J]. Energy Storage Materials, 2025, 80: 104420. |
| [110] | OSMAN Ahmed I, FARGHALI Mohamed, IHARA Ikko, et al. Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: A review[J]. Environmental Chemistry Letters, 2023, 21(3): 1419-1476. |
| [111] | LI Mengyang, PANG Boyi, DAI Suwei, et al. Sustainable biomass-derived carbon aerogels for energy storage applications[J]. Chemical Engineering Journal, 2024, 499: 156693. |
| [112] | PENG Mi, GE Yuzhen, GAO Rui, et al. Thermal catalytic reforming for hydrogen production with zero CO2 emission[J]. Science, 2025, 387(6735): 769-775. |
| [113] | 工业和信息化部, 发展改革委, 财政部, 生态环境部, 农业农村部, 市场监管总局. 工业和信息化部等六部门关于印发加快非粮生物基材料创新发展三年行动方案的通知[EB/OL]. (2023-01-09) [2025-04-13]. . |
| Ministry of Industry and Information Technology of the People’s Republic of China, National Development and Reform Commission, Ministry of Finance of the People’s Republic of China, Ministry of Ecological Environment of the People’s Republic of China, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, State Administration for Market Regulation. Notice of the Ministry of Industry and Information Technology and other six departments on issuing a three-year action plan to accelerate the innovative development of non-grain bio-based materials[EB/OL]. (2023-01-09) [2025-04-13]. . |
| [1] | 甘玉凤, 陈静然, 周志华, 潘春荣, 张大千, 钟骏薇. 石蜡基复合相变材料及其在储能系统中的应用[J]. 化工进展, 2025, 44(S1): 277-287. |
| [2] | 胡亮, 张开悦, 高波, 张志彬, 刘状, 付海洋, 唐一巧, 杨媛媛. 石墨烯及其功能化石墨烯材料在储能领域中的应用[J]. 化工进展, 2025, 44(9): 5055-5074. |
| [3] | 杨嘉聪, 程光旭, 贾彤华, 姜召. 煤制甲醇与绿氢高效耦合新工艺模拟及技术经济分析[J]. 化工进展, 2025, 44(8): 4657-4668. |
| [4] | 杨森, 薛姿杰, 王彧斐, 赵亮, 徐春明. 基于绿氢的化工低碳转型与研究现状[J]. 化工进展, 2025, 44(6): 3288-3304. |
| [5] | 孙仲顺, 刘根, 程春昱, 李美昕, 杨宪坛, 吴志强, 杨伯伦. 生物质热化学转化制备绿氢研究进展[J]. 化工进展, 2025, 44(5): 2667-2682. |
| [6] | 金少青, 范雪研, 唐智谋, 王衍力, 王达锐, 孙洪敏, 杨为民. 基于钛硅分子筛催化的绿色氧化技术进展[J]. 化工进展, 2025, 44(5): 2907-2918. |
| [7] | 高建刚, 姜亚鹏, 包宝青, 王书琦, 崔书明. 绿氢转化制绿色甲醇与绿氨[J]. 化工进展, 2025, 44(4): 1987-1997. |
| [8] | 高易, 胡晨曦, 郭照琰, 茹越, 戚桂村, 姜超. 相变储能材料封装技术研究进展[J]. 化工进展, 2025, 44(10): 5789-5799. |
| [9] | 马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456. |
| [10] | 尹少武, 黄若萧, 昝晓君, 童莉葛, 刘传平, 王立. 基于CPCM正六边形砖的蓄热储能系统设计与蓄放热模拟[J]. 化工进展, 2024, 43(S1): 243-254. |
| [11] | 屈芸, 成丽媛, 代国亮, 王刚, 郭羽晴, 孙洁. PAN/MXene同轴纤维电极的制备及性能[J]. 化工进展, 2024, 43(9): 5113-5122. |
| [12] | 孙启超, 聂美华, 伍联营, 胡仰栋. 风光储一体化水电联产系统的优化设计及调度[J]. 化工进展, 2024, 43(9): 4882-4891. |
| [13] | 梁西妹, 费华, 李元林, 雍帆, 郭梦倩, 周嘉宏. 月桂酸基二元低共融储能材料的制备及热性能[J]. 化工进展, 2024, 43(6): 3256-3267. |
| [14] | 黄晟, 杨振丽, 李振宇. 氢产业链发展的路径分析[J]. 化工进展, 2024, 43(2): 882-893. |
| [15] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |