化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5789-5799.DOI: 10.16085/j.issn.1000-6613.2024-1361
• 材料科学与技术 • 上一篇
收稿日期:2024-08-20
修回日期:2024-10-29
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
茹越
作者简介:高易(1996—),女,硕士研究生,研究方向为高分材料科学与工程。E-mail:gaoy.bjhy@sinopec.com。
基金资助:
GAO Yi(
), HU Chenxi, GUO Zhaoyan, RU Yue(
), QI Guicun, JIANG Chao
Received:2024-08-20
Revised:2024-10-29
Online:2025-10-25
Published:2025-11-10
Contact:
RU Yue
摘要:
相变储能材料(PCMs)是指利用自身相变潜热的释放或吸收,实现温度控制和热量储存的一类材料,具有诸多应用场景,然而PCMs存在易泄漏和导热性差的问题,封装是实现定型和强化传热的有效途径,微胶囊封装和多孔载体封装是目前较为常用的封装方式。本文梳理了微胶囊和多孔载体封装两种封装方式的结构特点和适用种类,介绍了喷雾干燥法、原位聚合法、复凝聚法、溶液-凝胶法、直接浸渍法、真空吸附法和原位组装封装技术的具体制备方式及其研究进展,并简述了纳米纤维封装和固-固PCMs封装的特点和进展,最后概括了形状稳定相变储能材料(SSPCMs)的评价内容和评价方法。不同封装技术在降低泄漏率、增加稳定性、提高导热性能和储能效率方面各有优劣,定型和强化传热仍是未来相变储能封装的发展重点,成本经济、工艺简单、储能密度高、相变温度适宜、环境友好型PCMs将具有更大的应用前景。
中图分类号:
高易, 胡晨曦, 郭照琰, 茹越, 戚桂村, 姜超. 相变储能材料封装技术研究进展[J]. 化工进展, 2025, 44(10): 5789-5799.
GAO Yi, HU Chenxi, GUO Zhaoyan, RU Yue, QI Guicun, JIANG Chao. Research progress on encapsulation technology of phase change materials[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5789-5799.
| 分类 | PCMs | 相变温度/℃ | 相变潜热/J·g-1 |
|---|---|---|---|
| 无机类 | |||
| 结晶水合盐 | CaCl2·6H2O | 29 | 190.8 |
| Na2SO4·10H2O | 32.4 | 241.0 | |
| Na2HPO4·12H2O | 35.0 | 256.6 | |
| CH3COONa·3H2O | 58.6 | 286.3 | |
| Ba(OH)2·8H2O | 78.0 | 278.0 | |
| Mg(NO3)2·6H2O | 89.9 | 167.0 | |
| 熔融盐 | NaNO3 | 306 | 182.0 |
| Li2CO3 | 732 | 509 | |
| KCl | 771 | 353 | |
| K2CO3 | 897 | 235.8 | |
| 单金属 | Zn | 419.5 | 103.1 |
| Mg | 651.0 | 376.8 | |
| Al | 660.2 | 395.4 | |
| 合金 | Al-4Mg-6Zn | 446.2~590.2 | 290.8 |
| Mg-25Cu-15Zn | 452.0 | 254.0 | |
| Zn-45Cu-6Mg | 703.0 | 176.0 | |
| 有机类 | |||
| 石蜡类 | 十二烷 | -12 | 216.0 |
| 十四烷 | 4.5~4.6 | 215.0 | |
| 正十六烷 | 18.0 | 210.0~238.0 | |
| 正十八烷 | 28.0 | 243.5 | |
| 正二十一烷 | 37.0~41.0 | 201.0 | |
| 非石蜡类 | 甲酸 | 7.80 | 247.0 |
| 硬脂酸丁酯 | 19.0 | 140.0 | |
| 聚乙二醇 | 35.5 | 265.0 | |
| PEF/2IPDI/BDO | 40.6 | 77.2 | |
| 十六酸 | 57.8 | 185.40 |
表1 常见固-液相变储能材料相变温度和相变潜热
| 分类 | PCMs | 相变温度/℃ | 相变潜热/J·g-1 |
|---|---|---|---|
| 无机类 | |||
| 结晶水合盐 | CaCl2·6H2O | 29 | 190.8 |
| Na2SO4·10H2O | 32.4 | 241.0 | |
| Na2HPO4·12H2O | 35.0 | 256.6 | |
| CH3COONa·3H2O | 58.6 | 286.3 | |
| Ba(OH)2·8H2O | 78.0 | 278.0 | |
| Mg(NO3)2·6H2O | 89.9 | 167.0 | |
| 熔融盐 | NaNO3 | 306 | 182.0 |
| Li2CO3 | 732 | 509 | |
| KCl | 771 | 353 | |
| K2CO3 | 897 | 235.8 | |
| 单金属 | Zn | 419.5 | 103.1 |
| Mg | 651.0 | 376.8 | |
| Al | 660.2 | 395.4 | |
| 合金 | Al-4Mg-6Zn | 446.2~590.2 | 290.8 |
| Mg-25Cu-15Zn | 452.0 | 254.0 | |
| Zn-45Cu-6Mg | 703.0 | 176.0 | |
| 有机类 | |||
| 石蜡类 | 十二烷 | -12 | 216.0 |
| 十四烷 | 4.5~4.6 | 215.0 | |
| 正十六烷 | 18.0 | 210.0~238.0 | |
| 正十八烷 | 28.0 | 243.5 | |
| 正二十一烷 | 37.0~41.0 | 201.0 | |
| 非石蜡类 | 甲酸 | 7.80 | 247.0 |
| 硬脂酸丁酯 | 19.0 | 140.0 | |
| 聚乙二醇 | 35.5 | 265.0 | |
| PEF/2IPDI/BDO | 40.6 | 77.2 | |
| 十六酸 | 57.8 | 185.40 |
| 封装方法 | 粒径范围/µm | 封装率% | 适用壳材料 | 适用PCM | 优势 | 劣势 |
|---|---|---|---|---|---|---|
| 喷雾干燥 | 0.1~5000 | 38~63 | LDPE/EVA 明胶/阿拉伯树胶 钛材料 | 石蜡 | 成本低 适用广泛 易规模化生产 | 易团聚 包覆不完善 |
| 复凝聚法 | 2~1000 | 6~68 | 明胶/阿拉伯树胶 SF/CHI | 石蜡 脂肪酸 | 适用广泛 粒径易调控 | 需要加入硬化剂 规模化生产困难 易团聚 |
| 溶液-凝胶法 | 0.2~20 | 30~87 | 二氧化硅 | 石蜡 | 热传导好 反应温度低 | 反应过程复杂 干燥过程易开裂 |
| 界面聚合法 | 0.5~1000 | 15~88 | PU 脲醛树脂 蜜胺树脂 | 石蜡 | 包封效率高 致密性良好 反应效率快 | 部分单体残留 |
| 悬浮聚合法 | 2~4000 | 7~75 | 聚酯 PMMA MMA/St | 石蜡 | 封装效率较高 粒径可控 工艺简单 | 部分单体残留 成本较高 壳材选择有限 |
| 乳液聚合法 | 0.05~5 | 14~67 | 聚酯 PMMA | 石蜡 | 反应条件温和 体系稳定性好 粒径均匀 | 部分单体残留 后处理过程复杂 乳液稳定性控制 |
表2 相变储能材料微胶囊封装方法对比
| 封装方法 | 粒径范围/µm | 封装率% | 适用壳材料 | 适用PCM | 优势 | 劣势 |
|---|---|---|---|---|---|---|
| 喷雾干燥 | 0.1~5000 | 38~63 | LDPE/EVA 明胶/阿拉伯树胶 钛材料 | 石蜡 | 成本低 适用广泛 易规模化生产 | 易团聚 包覆不完善 |
| 复凝聚法 | 2~1000 | 6~68 | 明胶/阿拉伯树胶 SF/CHI | 石蜡 脂肪酸 | 适用广泛 粒径易调控 | 需要加入硬化剂 规模化生产困难 易团聚 |
| 溶液-凝胶法 | 0.2~20 | 30~87 | 二氧化硅 | 石蜡 | 热传导好 反应温度低 | 反应过程复杂 干燥过程易开裂 |
| 界面聚合法 | 0.5~1000 | 15~88 | PU 脲醛树脂 蜜胺树脂 | 石蜡 | 包封效率高 致密性良好 反应效率快 | 部分单体残留 |
| 悬浮聚合法 | 2~4000 | 7~75 | 聚酯 PMMA MMA/St | 石蜡 | 封装效率较高 粒径可控 工艺简单 | 部分单体残留 成本较高 壳材选择有限 |
| 乳液聚合法 | 0.05~5 | 14~67 | 聚酯 PMMA | 石蜡 | 反应条件温和 体系稳定性好 粒径均匀 | 部分单体残留 后处理过程复杂 乳液稳定性控制 |
| [1] | DE LA RUE DU CAN Stephane, PUDLEINER David, PIELLI Katrina. Energy efficiency as a means to expand energy access: A Uganda roadmap[J]. Energy Policy, 2018, 120: 354-364. |
| [2] | CHU Steven, MAJUMDAR Arun. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
| [3] | CONGEDO Paolo Maria, BAGLIVO Cristina, CARRIERI Lorenzo. Application of an unconventional thermal and mechanical energy storage coupled with the air conditioning and domestic hot water systems of a residential building[J]. Energy and Buildings, 2020, 224: 110234. |
| [4] | Zvonimir ŠIMIĆ, Danijel TOPIĆ, Goran KNEŽEVIĆ, et al. Battery energy storage technologies overview[J]. International Journal of Electrical and Computer Engineering Systems, 2021, 12(1): 53-65. |
| [5] | AFTAB Waseem, HUANG Xinyu, WU Wenhao, et al. Nanoconfined phase change materials for thermal energy applications[J]. Energy & Environmental Science, 2018, 11(6): 1392-1424. |
| [6] | YU N, WANG R Z, LI T X, et al. Progress in sorption thermal energy storage[M]//Energy solutions to combat global warming. Cham: Springer International Publishing, 2016: 541-572. |
| [7] | HUANG Yongcai, STONEHOUSE Alex, ABEYKOON Chamil. Encapsulation methods for phase change materials—A critical review[J]. International Journal of Heat and Mass Transfer, 2023, 200: 123458. |
| [8] | RAAM DHEEP G, SREEKUMAR A. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials—A review[J]. Energy Conversion and Management, 2014, 83: 133-148. |
| [9] | WENG Keyu, XU Xinyue, CHEN Yuanyuan, et al. Development and applications of multifunctional microencapsulated PCMs: A comprehensive review[J]. Nano Energy, 2024, 122: 109308. |
| [10] | CHAUDHARI Soham Sharad, PATIL Niraj Govinda, MAHANWAR Prakash Anna. A review on microencapsulated phase change materials in building materials[J]. Journal of Coatings Technology and Research, 2024, 21(1): 173-198. |
| [11] | 周莹, 王双喜. 复合相变储能保温砂浆在日光温室中的应用效果[J]. 农业工程学报, 2017, 33(20): 190-196. |
| ZHOU Ying, WANG Shuangxi. Application effect of composite phase change energy storage thermal insulation mortar in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 190-196. | |
| [12] | JAYATHUNGA D S, KARUNATHILAKE H P, NARAYANA M, et al. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications—A review[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113904. |
| [13] | AKEIBER Hussein, NEJAT Payam, MAJID Muhd Zaimi Abd, et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1470-1497. |
| [14] | 陈云博, 朱翔宇, 李祥, 等. 相变调温纺织品制备方法的研究进展 [J]. 纺织学报, 2021, 42(1): 167-174. |
| CHEN Yunbo, ZHU Xiangyu, LI Xiang, et al. Recent advance in preparation of thermo-regulating textiles based on phase change materials[J]. Journal of Textile Research, 2021, 42(1): 167-174. | |
| [15] | HOSSAIN Md Tanvir, SHAHID Md Abdus, Md Yousuf ALI, et al. Fabrications, classifications, and environmental impact of PCM-incorporated textiles: Current state and future outlook[J]. ACS Omega, 2023, 8(48): 45164-45176. |
| [16] | 张贺磊, 方贤德, 赵颖杰. 相变储热材料及技术的研究进展[J]. 材料导报, 2014, 28(13): 26-32. |
| ZHANG Helei, FANG Xiande, ZHAO Yingjie. Progress in phase change materials and technologies[J]. Materials Review, 2014, 28(13): 26-32. | |
| [17] | LIN Yaxue, JIA Yuting, ALVA Guruprasad, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. |
| [18] | MAGENDRAN Suhanyaa S, KHAN Fahad Saleem Ahmed, MUBARAK N M, et al. Synthesis of organic phase change materials (PCM) for energy storage applications: A review[J]. Nano-Structures & Nano-Objects, 2019, 20: 100399. |
| [19] | 黄港, 邱玮, 黄伟颖, 等. 相变储能材料的研究与发展[J]. 材料科学与工艺, 2022, 30(3): 80-96. |
| HUANG Gang, QIU Wei, HUANG Weiying, et al. Research and development of phase change energy storage materials[J]. Materials Science and Technology, 2022, 30(3): 80-96. | |
| [20] | ATINAFU Dimberu G, Yong Sik OK, Harn Wei KUA, et al. Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry[J]. Applied Thermal Engineering, 2020, 181: 115960. |
| [21] | YU Kunyang, LIU Yushi, YANG Yingzi. Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties[J]. Applied Energy, 2021, 292: 116845. |
| [22] | 刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430. |
| LIU Wei, LI Zhenming, LIU Mingyang, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430. | |
| [23] | SHARMA Atul, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
| [24] | SUN Mingyang, LIU Tong, SHA Haonan, et al. A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications[J]. Journal of Energy Storage, 2023, 68: 107713. |
| [25] | 周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383. |
| ZHOU Sili, ZHANG Zhengguo, FANG Xiaoming. Research progress of solid-solid phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383. | |
| [26] | LIU Lu, ZHANG Yuang, ZHANG Shufen, et al. Advanced phase change materials from natural perspectives: Structural design and functional applications[J]. Advanced Science, 2023, 10(22): 2207652. |
| [27] | UMAIR Malik Muhammad, ZHANG Yuang, IQBAL Kashif, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review[J]. Applied Energy, 2019, 235: 846-873. |
| [28] | PASARKAR Neeraj P, YADAV Mukesh, MAHANWAR Prakash A. A review on the micro-encapsulation of phase change materials: Classification, study of synthesis technique and their applications[J]. Journal of Polymer Research, 2022, 30(1): 13. |
| [29] | XU Yue, FLEISCHER Amy S, FENG Gang. Reinforcement and shape stabilization of phase-change material via graphene oxide aerogel[J]. Carbon, 2017, 114: 334-346. |
| [30] | WANG Weilong, YANG Xiaoxi, FANG Yutang, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage[J]. Applied Energy, 2009, 86(9): 1479-1483. |
| [31] | ZENG J L, CAO Z, YANG D W, et al. Thermal conductivity enhancement of Ag nanowires on an organic phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385-389. |
| [32] | SHAHID Usman BIN, ABDALA Ahmed. A critical review of phase change material composite performance through Figure-of-Merit analysis: Graphene vs Boron Nitride[J]. Energy Storage Materials, 2021, 34: 365-387. |
| [33] | MARSKE Felix, DASLER Joe, HAUPT Caroline, et al. Influence of surfactants and organic polymers on monolithic shape-stabilized phase change materials synthesized via Sol-gel route[J]. Journal of Energy Storage, 2022, 49: 104127. |
| [34] | Gökhan HEKIMOĞLU, SARI Ahmet, Önal YUNUS, et al. Utilization of waste apricot kernel shell derived-activated carbon as carrier framework for effective shape-stabilization and thermal conductivity enhancement of organic phase change materials used for thermal energy storage[J]. Powder Technology, 2022, 401: 117291. |
| [35] | 高迪, 王树刚, 才晓旭, 等. 相变微胶囊的制备及其在微通道的应用进展[J]. 化工进展, 2021, 40(9): 5180-5194. |
| GAO Di, WANG Shugang, CAI Xiaoxu, et al. Preparation of microencapsulated phase change material and its application in microchannels: A review[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5180-5194. | |
| [36] | GHOSH Swapan Kumar. Functional Coatings and Microencapsulation: A General Perspective [M]. Functional Coatings. 2006: 1-28. |
| [37] | GHUFRAN Muhammad, HUITINK David. Synthesis of nano-size paraffin/silica-based encapsulated phase change materials of high encapsulation ratio via Sol-gel method[J]. Journal of Materials Science, 2023, 58(18): 7673-7689. |
| [38] | 张琦, 刘重阳, 宋俊, 等. 微胶囊相变储能材料的合成及其应用研究进展[J]. 储能科学与技术, 2023, 12(4): 1110-1130. |
| ZHANG Qi, LIU Chongyang, SONG Jun, et al. Progress in synthesis and application of microcapsule phase-change materials[J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130. | |
| [39] | JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 531-542. |
| [40] | 朱建平, 侯欢欢, 田梦迪, 等. 相变微胶囊制备方法研究进展[J]. 化工新型材料, 2016, 44(8): 1-3. |
| ZHU Jianping, HOU Huanhuan, TIAN Mengdi, et al. Research progress on the preparation of phase change material microcapsule[J]. New Chemical Materials, 2016, 44(8): 1-3. | |
| [41] | 王嘉炜, 王迎国. 微胶囊的制备方法研究进展[J]. 纳米技术, 2022, 12(2): 19-25. |
| WANG Jiawei, WANG Yingguo, Progress in preparation methods of microcapsules[J]. Hans Journal of Nanotechnology, 2022, 12(2): 19-25. | |
| [42] | ARSHAD Adeel, JABBAL Mark, YAN Yuying, et al. The micro-/ nano-PCMs for thermal energy storage systems: A state of art review[J]. International Journal of Energy Research, 2019, 43(11): 5572-5620. |
| [43] | ASSADPOUR Elham, JAFARI Seid Mahdi. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules[J]. Annual Review of Food Science and Technology, 2019, 10: 103-131. |
| [44] | METHAAPANON Rungthiwa, KORNBONGKOTMAS Saran, ATABOONWONGSE Chutiwat, et al. Microencapsulation of n-octadecane and methyl palmitate phase change materials in silica by spray drying process[J]. Powder Technology, 2020, 361: 910-916. |
| [45] | MUSTAPHA Abdullah Naseer, ZHANG Yan, ZHANG Zhibing, et al. A systematic study on the reaction mechanisms for the microencapsulation of a volatile phase change material (PCM) via one-step in situ polymerisation[J]. Chemical Engineering Science, 2022, 252: 117497. |
| [46] | SHI Jian, WU Xiaolin, SUN Rong, et al. Nano-encapsulated phase change materials prepared by one-step interfacial polymerization for thermal energy storage[J]. Materials Chemistry and Physics, 2019, 231: 244-251. |
| [47] | YAN Jiahui, RUAN Li, HU Dechao, et al. Microencapsulation of phase change materials with a soy oil-based polyurethane shell via Pickering emulsion polymerization[J]. ACS Applied Energy Materials, 2023, 6(12): 6814-6825. |
| [48] | CHAKRABARTY Arindam, TERAMOTO Yoshikuni. Scalable Pickering stabilization to design cellulose nanofiber-wrapped block copolymer microspheres for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4623-4632. |
| [49] | ZHANG Zhe, ZHANG Zhen, CHANG Tian, et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in-situ polymerization[J]. Chemical Engineering Journal, 2022, 428: 131164. |
| [50] | TIAN Yuti, LIU Yong, ZHANG Li, et al. Preparation and characterization of gelatin-sodium alginate/paraffin phase change microcapsules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124216. |
| [51] | PETHURAJAN Vignesh, SURESH Sivan, MOJIRI Ahmad, et al. Microencapsulation of nitrate salt for solar thermal energy storage-synthesis, characterisation and heat transfer study[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110308. |
| [52] | ALEHOSSEINI Elham, JAFARI Seid Mahdi. Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management[J]. Advances in Colloid and Interface Science, 2020, 283: 102226. |
| [53] | 黄志国, 孙志高. 蓄热用纳米相变微胶囊制备与性能[J]. 化工进展, 2023, 42(11): 5842-5851. |
| HUANG Zhiguo, SUN Zhigao. Preparation and properties of nano phase change microcapsules for heat storage[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5842-5851. | |
| [54] | MOGHADDAM Meghdad Kamali, MORTAZAVI Sayed Majid, KHAYMIAN Taghi. Micro/nano-encapsulation of a phase change material by coaxial electrospray method[J]. Iranian Polymer Journal, 2015, 24(9): 759-774. |
| [55] | KONUKLU Yeliz, OSTRY Milan, PAKSOY Halime O, et al. Review on using microencapsulated phase change materials (PCM) in building applications[J]. Energy and Buildings, 2015, 106: 134-155. |
| [56] | ERREBAI Farid Boudali, CHIKH Salah, DERRADJI Lotfi, et al. Optimum mass percentage of microencapsulated PCM mixed with gypsum for improved latent heat storage[J]. Journal of Energy Storage, 2021, 33: 101910. |
| [57] | FIGUEIREDO António, LAPA José, VICENTE Romeu, et al. Mechanical and thermal characterization of concrete with incorporation of microencapsulated PCM for applications in thermally activated slabs[J]. Construction and Building Materials, 2016, 112: 639-647. |
| [58] | LIU K, YUAN Z F, ZHAO H X, et al. Properties and applications of shape-stabilized phase change energy storage materials based on porous material support—A review[J]. Materials Today Sustainability, 2023, 21: 100336. |
| [59] | ZHANG Shuai, FENG Daili, SHI Lei, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. |
| [60] | DU Peixing, WANG Meng, ZHONG Xiaochen, et al. Anisotropic porous skeleton for efficient thermal energy storage and enhanced heat transfer: Experiments and numerical models[J]. Journal of Energy Storage, 2022, 56: 106021. |
| [61] | 王成君, 苏琼, 段志英, 等. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494. |
| WANG Chengjun, SU Qiong, DUAN Zhiying, et al. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494. | |
| [62] | Trung Huu BUI, NGUYEN Giang Tien. Enhanced thermal energy storage of n-octadecane-impregnated mesoporous silica as a novel shape-stabilized phase change material[J]. ACS Omega, 2022, 7(14): 12222-12230. |
| [63] | YUN Beom Yeol, CHOI Ji Yong, KIM Young Uk, et al. Evaluation of shape-stabilized phase-change materials using calcium carbonate-based starfish microporous materials for thermal energy storage[J]. Applied Thermal Engineering, 2024, 241: 122267. |
| [64] | KUMAR Prabhat, THOMAS Shijo, SOBHAN C B, et al. Activated carbon foam composite derived from PEG400/Terminalia Catappa as form stable PCM for sub-zero cold energy storage[J]. Journal of Cleaner Production, 2024, 434: 139993. |
| [65] | ZHANG Haiquan, LIU Zijing, Junping MAI, et al. Super-elastic smart phase change material (SPCM) for thermal energy storage[J]. Chemical Engineering Journal, 2021, 411: 128482. |
| [66] | LI Wei, GAO Chongjie, HOU Aolin, et al. One-pot in situ synthesis of expandable graphite-encapsulated paraffin composites for thermal energy storage[J]. Chemical Engineering Journal, 2024, 481: 148541. |
| [67] | HUANG Zhupin, WANG Changhong, ZHOU Li, et al. Thermal conductivity enhancement and shape stability of phase-change materials using high-strength 3D graphene skeleton[J]. Surfaces and Interfaces, 2021, 26: 101338. |
| [68] | ZHANG Jingfan, ZHU Tao, LAN Fujie, et al. Constructing a novel porous skeleton based on polycarbonate/expandable graphite for phase change materials with improved flame retardancy and shape stability[J]. Journal of Energy Storage, 2024, 81: 110334. |
| [69] | ZHAO C Y. Review on thermal transport in high porosity cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3618-3632. |
| [70] | CHEN Kang, GUO Liejin, WANG Hui. A review on thermal application of metal foam[J]. Science China Technological Sciences, 2020, 63(12): 2469-2490. |
| [71] | HU Lei, ZHANG Li, CUI Wei, et al. Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage: Materials, fabrication and applications[J]. Journal of Materials Science & Technology, 2025, 210: 204-226. |
| [72] | WU Songze, ZHOU Yang, GAO Wen, et al. Preparation and properties of shape-stable phase change material with enhanced thermal conductivity based on SiC porous ceramic carrier made of iron tailings[J]. Applied Energy, 2024, 355: 122256. |
| [73] | BIDIYASAR Rahul, KUMAR Rohitash, JAKHAR Narendra. A critical review of polymer support-based shape-stabilized phase change materials for thermal energy storage applications[J]. Energy Storage, 2024, 6(4): e639. |
| [74] | YAO Yuan, ZHANG Xiaohong, GUO Zhaoyan, et al. Preparation and application of recyclable polymer aerogels from styrene-maleic anhydride alternating copolymers[J]. Chemical Engineering Journal, 2023, 455: 140363. |
| [75] | LIU Zhenjie, CHEN Dong, ZHANG Jinfang, et al. Self-stabilized precipitation polymerization and its application[J]. Research, 2018, 2018: 9370490. |
| [76] | GUO Zhaoyan, RU Yue, SONG Wenbo, et al. Water-soluble polymers with strong photoluminescence through an eco-friendly and low-cost route[J]. Macromolecular Rapid Communications, 2017, 38(14): 1700099. |
| [77] | HU Chenxi, GUO Zhaoyan, RU Yue, et al. A new family of photoluminescent polymers with dual chromophores[J]. Macromolecular Rapid Communications, 2018, 39(10): 1800035. |
| [78] | 胡晨曦, 张晓红, 乔金樑. 水热法制备非共轭聚集诱导发光聚合物及其在Fe3+检测中的应用[J]. 高分子学报, 2021, 52(3): 281-286. |
| HU Chenxi, ZHANG Xiaohong, QIAO Jinliang. Non-conjugated AIE polymers prepared by hydrothermal reaction and its application in Fe3+ detection[J]. Acta Polymerica Sinica, 2021, 52(3): 281-286. | |
| [79] | 郭照琰, 高易, 茹越, 等. 马来酰胺酸-醋酸乙烯酯交替共聚物的光致发光性能及荧光水凝胶的制备[J]. 高分子学报, 2024, 55(9): 1155-1164. |
| GUO Zhaoyan, GAO Yi, RU Yue, et al. The Photoluminescent Properties of Poly(maleamic acid-alt-vinyl acetate) and Construction of Fluorescent Hydrogel[J]. Acta Polymerica Sinica, 2024, 55(9): 1155-1164. | |
| [80] | 郭照琰, 茹越, 胡晨曦, 等. 马来酸酐/马来酰亚胺共聚物及衍生物的光致发光研究进展[J]. 高分子学报, 2024, 55(10): 1265-1279. |
| GUO Zhaoyan, RU Yue, HU Chenxi, et al. Research progress on photoluminescence of maleic anhydride/maleimide copolymers and derivatives[J]. Acta Polymerica Sinica, 2024, 55(10): 1265-1279. | |
| [81] | 雷晖, 陈志军, 王学子, 等. 影响多孔定型相变储能材料性能的因素分析[J]. 上海第二工业大学学报, 2024, 41(2): 119-127. |
| LEI Hui, CHEN Zhijun, WANG Xuezi, et al. Analysis of factors affecting the performance of porous shaped phase change energy storage materials[J]. Journal of Shanghai Polytechnic University, 2024, 41(2): 119-127. | |
| [82] | ZHANG Dexin, ZHU Chuanyong, HUANG Binghuan, et al. Thermal behaviors and performance of phase change materials embedded in sparse porous skeleton structure for thermal energy storage[J]. Journal of Energy Storage, 2023, 62: 106849. |
| [83] | YANG Kai, VENKATARAMAN Mohanapriya, ZHANG Xiuling, et al. Incorporation of organic PCMs into textiles[J]. Journal of Materials Science, 2022, 57(2): 798-847. |
| [84] | 陆源, 郇昌梦, 齐帅, 等. 静电纺丝用于制备有机相变储热纤维的研究进展[J]. 新能源进展, 2018, 6(5): 439-447. |
| LU Yuan, HUAN Changmeng, QI Shuai, et al. Review on organic phase change materials based fibers for thermal energy storage via electrospinning technique[J]. Advances in New and Renewable Energy, 2018, 6(5): 439-447. | |
| [85] | Andrés SUÁREZ-GARCÍA, ARCE Elena, ALFORD Laura, et al. Electrospun composite fibers containing organic phase change materials for thermo-regulation: Trends[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113648. |
| [86] | PATEL Dev, WEI Wanying, SINGH Harmann, et al. Efficient and secure encapsulation of a natural phase change material in nanofibers using coaxial electrospinning for sustainable thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(31): 11570-11579. |
| [87] | JIA Yifan, LIAO Guoxing, WU Yang, et al. Investigating the effect of crystallizability and glass transition temperature of supporting materials for preparing high enthalpy electrospun poly(lactic acid)/poly(ethylene glycol) phase change fibers[J]. Solar Energy Materials and Solar Cells, 2023, 256: 112322. |
| [88] | ZHI Maoyong, YUE Shan, ZHENG Lingling, et al. Recent developments in solid-solid phase change materials for thermal energy storage applications[J]. Journal of Energy Storage, 2024, 89: 111570. |
| [89] | WANG Chenyang, GENG Xin, CHEN Jing, et al. Multiple H-bonding cross-linked supramolecular solid-solid phase change materials for thermal energy storage and management[J]. Advanced Materials, 2024, 36(11): 2309723. |
| [90] | LI Shengwei, HE Lunhua, LU Huaile, et al. Ultrahigh-performance solid-solid phase change material for efficient, high-temperature thermal energy storage[J]. Acta Materialia, 2023, 249: 118852. |
| [91] | ZHANG Huan, XU Changlu, FANG Guiyin. Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: A review[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111747. |
| [92] | SHARAR Darin J, LEFF Asher C, WILSON Adam A, et al. High-capacity high-power thermal energy storage using solid-solid martensitic transformations[J]. Applied Thermal Engineering, 2021, 187: 116490. |
| [1] | 张文静, 黄致新, 李士腾, 邓帅, 李双俊. 生物质碳气凝胶CO2吸附剂研究进展[J]. 化工进展, 2025, 44(9): 5018-5032. |
| [2] | 李卡, 夏宇轩, 吴晓琴, 易兰, 罗浩. 双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟[J]. 化工进展, 2025, 44(8): 4381-4393. |
| [3] | 戴贵龙, 王孝宇, 皇甫江飞, 龚凌诸. 孔隙尺度下Laguerre Voronoi开孔泡沫的对流传热特性[J]. 化工进展, 2025, 44(8): 4394-4407. |
| [4] | 李浩东, 沈胜强, 陈亮. 氨氢燃烧余热利用耦合氨裂解制氢过程数值模拟[J]. 化工进展, 2025, 44(8): 4443-4453. |
| [5] | 杨心柳, 刘强, 曹倩, 崔岳铭, 方朝合. 储层渗流对单地热井同轴换热器取热特性的影响[J]. 化工进展, 2025, 44(7): 3860-3868. |
| [6] | 陈东健, 孙雨倩, 银凤翔. FeNi3-Fe3O4/CN催化剂的制备及其电催化析氧性能[J]. 化工进展, 2025, 44(7): 3928-3937. |
| [7] | 刘文龙, 马秀清, 李长金, 何东洋, 高觊兴, 张杨, 李满意, 杨卫民, 李好义. LDPE/PEW熔喷超细纤维及其非织造布性能[J]. 化工进展, 2025, 44(7): 4032-4038. |
| [8] | 俸三喆, 匡唐清, 柳和生, 杨帆, 陈灏. 弹头直径对短玻纤增强聚丙烯水驱动弹头辅助共注塑管件的质量影响[J]. 化工进展, 2025, 44(7): 4061-4069. |
| [9] | 甄箫斐, 杨特勃, 董缇, 齐永豪, 刘佳. 多孔介质强化水合物储气性能研究进展[J]. 化工进展, 2025, 44(6): 3413-3431. |
| [10] | 武亚丽, 张效林, 高丽敏, 黄茂财, 蔡斌, 张继兵. 秸秆粉/纤维资源化利用技术进展[J]. 化工进展, 2025, 44(6): 3509-3523. |
| [11] | 王林艳, 周平德, 张一铎, 刘钰溪, 郝明正, 梁玉蓉. 高导热氮化硼/天然橡胶纳米复合材料的制备与性能[J]. 化工进展, 2025, 44(6): 3541-3549. |
| [12] | 孙燕, 陈马超, 田娜, 谢晓阳, 李晓玲, 何皎洁, 赵晓红. 基于β-环糊精的TFC正渗透膜原位构筑及抗污染性能[J]. 化工进展, 2025, 44(6): 3671-3682. |
| [13] | 戴贵龙, 刘益硕, 穆龙坤, 龚凌褚. 凹腔多孔介质吸热器耦合传热模型性能优化[J]. 化工进展, 2025, 44(6): 3258-3270. |
| [14] | 李佩燚, 孙波龙, 刘瑞岩, 周歆尧, 刘瑞林, 胡园园, 徐功涛, 李新平. 海藻酸钠/二氧化钛复合多孔材料的制备及油水分离应用[J]. 化工进展, 2025, 44(6): 3053-3061. |
| [15] | 刘启予, 刘伟峰, 邱学青. 基于界面相容性强化的木质素/高分子复合材料构筑策略[J]. 化工进展, 2025, 44(5): 2733-2745. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |