化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3671-3682.DOI: 10.16085/j.issn.1000-6613.2024-2066
• 资源与环境化工 • 上一篇
孙燕1(
), 陈马超1, 田娜2, 谢晓阳1, 李晓玲1, 何皎洁1, 赵晓红1
收稿日期:2024-12-19
修回日期:2025-02-26
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
孙燕
作者简介:孙燕(1991—),女,博士,讲师,研究方向为膜法水处理理论与技术。E-mail:sunyan2021@chd.edu.cn。
基金资助:
SUN Yan1(
), CHEN Machao1, TIAN Na2, XIE Xiaoyang1, LI Xiaoling1, HE Jiaojie1, ZHAO Xiaohong1
Received:2024-12-19
Revised:2025-02-26
Online:2025-06-25
Published:2025-07-09
Contact:
SUN Yan
摘要:
采用在水相中引入添加剂调控界面聚合过程的方法对聚酰胺薄膜复合材料(TFC)的活性层进行原位改性,以突破渗透性与选择性之间的“trade-off”效应以及提升膜的抗污染性能。首先,通过相转化制备聚砜(PSF)支撑层,在此基础上通过在界面聚合中掺入水相添加剂β-环糊精(β-CD)原位构筑TFC-β-CD改性正渗透膜。β-CD外部存在亲水性羟基基团,可与酰氯基团进行界面聚合产生聚酯结构而被牢固保留在膜中,并且其携带的纳米空腔结构是一种高效传质通道,使其在提升膜水通量的同时保持高截留率。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和原子力显微镜(AFM)分析了改性前后的膜表面结构、组成和粗糙度,利用错流式实验装置考察了膜的传质性能和结构参数,并探究了膜的抗有机污染性能和膜污染可逆性。结果表明:TFC-β-CD(1.5)改性膜的水接触角由(62.6±1.52)°下降至(44.9±0.52)°,亲水性显著提升,且粗糙度降低。在有机污染实验中,与TFC膜相比,当3种特征污染物的原料液不含Ca2+时,TFC-β-CD改性膜的通量恢复率在90%以上,当原料液含Ca2+时,TFC-β-CD改性膜的不可逆污染程度较轻,具有较好的抗污染性能。
中图分类号:
孙燕, 陈马超, 田娜, 谢晓阳, 李晓玲, 何皎洁, 赵晓红. 基于β-环糊精的TFC正渗透膜原位构筑及抗污染性能[J]. 化工进展, 2025, 44(6): 3671-3682.
SUN Yan, CHEN Machao, TIAN Na, XIE Xiaoyang, LI Xiaoling, HE Jiaojie, ZHAO Xiaohong. Research on in-situ construction of TFC forward osmosis membrane by β-cyclodextrin and its antifouling performance[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3671-3682.
| 平均孔径/nm | 截留分子量/kDa | 孔隙率/% | 透水性/L·m-2·Pa-1·h-1 | 接触角/(°) | 膜厚度/μm |
|---|---|---|---|---|---|
| 13.46±0.49 | 239.57±1.64 | 72.9±1.0 | (275±40)×10-5 | 80.5±3.5 | 50±4 |
表1 支撑层的基本特性[29]
| 平均孔径/nm | 截留分子量/kDa | 孔隙率/% | 透水性/L·m-2·Pa-1·h-1 | 接触角/(°) | 膜厚度/μm |
|---|---|---|---|---|---|
| 13.46±0.49 | 239.57±1.64 | 72.9±1.0 | (275±40)×10-5 | 80.5±3.5 | 50±4 |
| 序号 | 膜名称 | 水相 | 有机相 | |||
|---|---|---|---|---|---|---|
| MPD质量分数/% | β-CD质量分数/% | TEA质量分数/% | CSA质量分数/% | TMC质量分数/% | ||
| 1 | TFC | 3.4 | — | — | — | 0.15 |
| 2 | TFC-β-CD(0.5) | 3.4 | 0.5 | 1 | 0.43 | 0.15 |
| 3 | TFC-β-CD(1.0) | 3.4 | 1.0 | 1 | 0.43 | 0.15 |
| 4 | TFC-β-CD(1.5) | 3.4 | 1.5 | 1 | 0.43 | 0.15 |
| 5 | TFC-β-CD(2.0) | 3.4 | 2.0 | 1 | 0.43 | 0.15 |
表2 不同浓度β-CD界面聚合反应单体溶液的组成
| 序号 | 膜名称 | 水相 | 有机相 | |||
|---|---|---|---|---|---|---|
| MPD质量分数/% | β-CD质量分数/% | TEA质量分数/% | CSA质量分数/% | TMC质量分数/% | ||
| 1 | TFC | 3.4 | — | — | — | 0.15 |
| 2 | TFC-β-CD(0.5) | 3.4 | 0.5 | 1 | 0.43 | 0.15 |
| 3 | TFC-β-CD(1.0) | 3.4 | 1.0 | 1 | 0.43 | 0.15 |
| 4 | TFC-β-CD(1.5) | 3.4 | 1.5 | 1 | 0.43 | 0.15 |
| 5 | TFC-β-CD(2.0) | 3.4 | 2.0 | 1 | 0.43 | 0.15 |
| 阶段 | 运行 模式 | 运行 时长 | 错流 速率 | 原料液 (1L) | 汲取液 (2L) |
|---|---|---|---|---|---|
| 1 | 活性层朝向原料液(AL-FS) | 1h | 8cm/s | 去离子水 | 0.5mol/LNaCl溶液 |
| 2 | 1mol/LNaCl溶液 | ||||
| 3 | 1.5mol/LNaCl溶液 | ||||
| 4 | 2mol/LNaCl溶液 |
表3 传质系数和结构参数测定的运行条件
| 阶段 | 运行 模式 | 运行 时长 | 错流 速率 | 原料液 (1L) | 汲取液 (2L) |
|---|---|---|---|---|---|
| 1 | 活性层朝向原料液(AL-FS) | 1h | 8cm/s | 去离子水 | 0.5mol/LNaCl溶液 |
| 2 | 1mol/LNaCl溶液 | ||||
| 3 | 1.5mol/LNaCl溶液 | ||||
| 4 | 2mol/LNaCl溶液 |
| [1] | DSILVA WINFRED RUFUSS D, KAPOOR V, ARULVEL S, et al. Advances in forward osmosis (FO) technology for enhanced efficiency and output: A critical review[J]. Journal of Cleaner Production, 2022, 356: 131769. |
| [2] | THARAYIL Jeevan Mathew, CHINNAIYAN Prakash, JOHN Daphne Mary, et al. Environmental sustainability of FO membrane separation applications—Bibliometric analysis and state-of-the-art review[J]. Results in Engineering, 2024, 21: 101677. |
| [3] | CHANG ZHEN Hong, Jing Yao SUM, LAU Woei Jye, et al. Current state-of-the-art of non-reverse osmosis-like forward osmosis technology[J]. Journal of Membrane Science, 2024, 711: 123209. |
| [4] | WANG Jianlong, LIU Xiaojing. Forward osmosis technology for water treatment: Recent advances and future perspectives[J]. Journal of Cleaner Production, 2021, 280: 124354. |
| [5] | ABOUNAHIA Nada, IBRAR Ibrar, KAZWINI Tayma, et al. Desalination by the forward osmosis: Advancement and challenges[J]. Science of the Total Environment, 2023, 886: 163901. |
| [6] | JAFARINEJAD Shahryar. Forward osmosis membrane technology for nutrient removal/recovery from wastewater: Recent advances, proposed designs, and future directions[J]. Chemosphere, 2021, 263: 128116. |
| [7] | 朱腾义, 曹再植. 正渗透-膜蒸馏耦合工艺在高难度废水处理中的应用研究进展[J]. 化工进展, 2021, 40(11): 5894-5906. |
| ZHU Tengyi, CAO Zaizhi. Application research progress of forward osmosis-membrane distillation coupling process in the treatment of highly difficult wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5894-5906. | |
| [8] | RAHMAN Sumaita Nawar, SALEEM Haleema, ZAIDI Syed Javaid. Progress in membranes for pressure retarded osmosis application[J]. Desalination, 2023, 549: 116347. |
| [9] | BLANDIN Gaetan, FERRARI Federico, LESAGE Geoffroy, et al. Forward osmosis as concentration process: Review of opportunities and challenges[J]. Membranes, 2020, 10(10): 284. |
| [10] | Keng Siang GOH, CHEN Yunfeng, Daniel Yee Fan NG, et al. Organic solvent forward osmosis membranes for pharmaceutical concentration[J]. Journal of Membrane Science, 2022, 642: 119965. |
| [11] | ZHU Linwei, DING Chun, ZHU Tengyang, et al. A review on the forward osmosis applications and fouling control strategies for wastewater treatment[J]. Frontiers of Chemical Science and Engineering, 2022, 16(5): 661-680. |
| [12] | FARAHBAKHSH Javad, GOLGOLI Mitra, KHIADANI Mehdi, et al. Recent advances in surface tailoring of thin film forward osmosis membranes: A review[J]. Chemosphere, 2024, 346: 140493. |
| [13] | IBRAHEEM Bakr M, AANI Saif AL, ALSARAYREH Alanood A, et al. Forward osmosis membrane: Review of fabrication, modification, challenges and potential[J]. Membranes, 2023, 13(4): 379. |
| [14] | TIAN Miao, MA Tao, Kunli GOH, et al. Forward osmosis membranes: The significant roles of selective layer[J]. Membranes, 2022, 12(10): 955. |
| [15] | KAHRIZI Mohammad, GONZALES Ralph Rolly, KONG Lingxue, et al. Significant roles of substrate properties in forward osmosis membrane performance: A review[J]. Desalination, 2022, 528: 115615. |
| [16] | 赵珍珍, 郑喜, 王雪琪, 等. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
| ZHAO Zhenzhen, ZHENG Xi, WANG Xueqi, et al. Research progress on microporous supporting substrate of polyamide composite membrane[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1917-1933. | |
| [17] | 张赛晖, 李校阳, 高慧, 等. 制备聚酰胺复合膜中界面聚合反应添加剂研究进展[J]. 化工进展, 2022, 41(9): 4884-4894. |
| ZHANG Saihui, LI Xiaoyang, GAO Hui, et al. Recent progress in additives in interfacial polymerization for the preparation of polyamide composite membrane[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4884-4894. | |
| [18] | KANAGARAJ Palsamy, SHANMUGARAJA Masilamani, RANA Dipak, et al. Development of high performance thin-film (nano) composite membranes for forward osmosis desalination applications—A review [J]. Materials Science and Engineering: B, 2024, 299: 116966. |
| [19] | JAIN Harshita, GARG Manoj Chandra. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review[J]. Environmental Technology & Innovation, 2021, 23: 101561. |
| [20] | LI Xu, WANG Zhi, HAN Xianglei, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review[J]. Journal of Membrane Science, 2021, 640: 119765. |
| [21] | LIAO Zhipeng, ZHU Junyong, LI Xin, et al. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review[J]. Separation and Purification Technology, 2021, 266: 118567. |
| [22] | HAY Man Saung Hnin Soe, Phyo Darli MAW, LOFTSSON Thorsteinn, et al. A current overview of cyclodextrin-based nanocarriers for enhanced antifungal delivery[J]. Pharmaceuticals, 2022, 15(12): 1447. |
| [23] | 孙燕, 冯倩颖, 谢晓阳, 等. 基于环糊精构筑薄膜复合膜的研究进展[J]. 化工进展, 2024, 43(8): 4464-4476. |
| SUN Yan, FENG Qianying, XIE Xiaoyang, et al. Research progress on the cyclodextrin-based thin film composite membranes[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4464-4476. | |
| [24] | ZHU Bo, SHAO Ruiqi, LI Nan, et al. Progress of cyclodextrin based-membranes in water treatment: Special 3D bowl-like structure to achieve excellent separation[J]. Chemical Engineering Journal, 2022, 449: 137013. |
| [25] | TANG Yongjian, SHEN Bingjie, HUANG Benqing, et al. High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin[J]. Separation and Purification Technology, 2019, 227: 115718. |
| [26] | YU Zongxue, PAN Yang, HE Yi, et al. Preparation of a novel anti-fouling β-cyclodextrin-PVDF membrane[J]. RSC Advances, 2015, 5(63): 51364-51370. |
| [27] | YASSARI Mehrasa, SHAKERI Alireza. Nature based forward osmosis membranes: A novel approach for improved anti-fouling properties of thin film composite membranes[J]. Chemical Engineering Research and Design, 2022, 184: 137-151. |
| [28] | JEON Sungkwon, PARK Chan Hyung, SHIN Seung Su, et al. Fabrication and structural tailoring of reverse osmosis membranes using β-cyclodextrin-cored star polymers[J]. Journal of Membrane Science, 2020, 611: 118415. |
| [29] | 郝秀娟. Ca2+原位改性对TFC正渗透膜污染的控制效能与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| HAO Xiujuan. Research on controlling efficiency and mechanism of tfc forward osmosis membrane fouling by Ca2+ in-situ modification[D]. Harbin: Harbin Institute of Technology, 2020. | |
| [30] | 刘婷丽. 相转化法制备聚合物滤膜的大数据研究[D]. 合肥: 中国科学技术大学, 2022. |
| LIU Tingli. A big data study of polymeric filtration membranes prepared by phase inversion method[D]. Hefei: University of Science and Technology of China, 2022. | |
| [31] | TIRAFERRI Alberto, Ngai Yin YIP, STRAUB Anthony P, et al. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes[J]. Journal of Membrane Science, 2013, 444: 523-538. |
| [32] | WU Xing, FANG Fang, ZHANG Bifeng, et al. Biogenic silver nanoparticles-modified forward osmosis membranes with mitigated internal concentration polarization and enhanced antibacterial properties[J]. NPJ Clean Water, 2022, 5: 41. |
| [33] | ZHAO Haiyang, QIU Shi, WU Liguang, et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. Journal of Membrane Science, 2014, 450: 249-256. |
| [34] | TANG Chuyang Y, KWON Young-Nam, LECKIE James O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes[J]. Desalination, 2009, 242(1/2/3): 149-167. |
| [35] | REN Dan, Jet Ing Ngie YEO, LIU Tianyin, et al. Time-dependent FTIR microscopy for mechanism investigations and kinetic measurements in interfacial polymerisation: A microporous polymer film study[J]. Polymer Chemistry, 2019, 10(22): 2769-2773. |
| [36] | JIANG Zhiwei, KARAN Santanu, LIVINGSTON Andrew G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis[J]. Advanced Materials, 2018, 30(15): e1705973. |
| [37] | PENG Shaoyin, WANG Zhenbei, QI Fei, et al. Novel insights into the interaction reactive components and synergistic fouling mechanisms of ultrafiltration by natural organic matter fractions and Kaolin[J]. Environmental Research, 2022, 212: 113285. |
| [38] | ESFAHANI Milad Rabbani, AKTIJ Sadegh Aghapour, DABAGHIAN Zoheir, et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications[J]. Separation and Purification Technology, 2019, 213: 465-499. |
| [39] | HAO Xiujuan, GAO Shanshan, TIAN Jiayu, et al. Calcium-carboxyl intrabridging during interfacial polymerization: A novel strategy to improve antifouling performance of thin film composite membranes[J]. Environmental Science & Technology, 2019, 53(8): 4371-4379. |
| [40] | GHORBANI Farnaz, SHAKERI Alireza, VAFAEI Mohammad ALI, et al. Polyoxometalate-cored supramolecular star polymers as a novel crosslinker for graphene oxide-based forward osmosis membranes: Anti-fouling, super hydrophilic and high water permeable[J]. Separation and Purification Technology, 2021, 267:118578. |
| [41] | BAGHERZADEH Mojtaba, BAYRAMI Arshad, SHEKARI Zahra, et al. High-performance thin-film nanocomposite (TFN) forward osmosis (FO) membranes incorporated with porous hydrophobic-core/hydrophilic-shell nanoparticles[J]. Desalination, 2021, 515: 115181. |
| [42] | EGHBALAZAR Tala, SHAKERI Alireza. High-Performance thin-film nanocomposite forward osmosis membranes modified with poly(dopamine) coated UiO66-(COOH)2 [J]. Separation and Purification Technology, 2021, 277: 119438. |
| [1] | 余子昱, 陈晓飞, 侯春光, 岳殿鹤, 彭跃莲, 安全福. 渗透汽化和真空膜蒸馏在氨基甲酸酯脱水中的比较[J]. 化工进展, 2025, 44(6): 3247-3257. |
| [2] | 张磊, 张新儒, 王永洪, 李晋平, 刘春波. 二维纳米材料混合基质膜在渗透汽化有机物分离的研究进展[J]. 化工进展, 2025, 44(6): 3324-3335. |
| [3] | 周美梅, 何家慧, 向婉婷, 尚佳欣, 魏心语, 孙蜜蜜, 邹伟, 罗平平. 电纺PVA/SiO2纳米纤维负载A-TiO2/BiOBr增强可见光催化活性[J]. 化工进展, 2025, 44(6): 3084-3092. |
| [4] | 邹志鹏, 潘全旺, 赵陈, 沈海涛, 丛梅, 赵基钢. 流体在光滑圆条上的降膜流动分析[J]. 化工进展, 2025, 44(6): 3405-3412. |
| [5] | 淳良, 廖子成, 王国强, 肖遥, 霍金鹏, 刘东. PV/T驱动转轮除湿耦合真空膜除湿冷却系统的性能评价[J]. 化工进展, 2025, 44(6): 3457-3467. |
| [6] | 张敏, 赵娅敏, 张沛春, 张斌, 齐燕姣, 张宏, 陈丽华. 基于蓝莓花青素的CS/SA智能指示复合凝胶膜的制备及性能[J]. 化工进展, 2025, 44(6): 3550-3560. |
| [7] | 付沅峰, 范振忠, 臧鑫, 仝其雷, 刘金刚. 超亲水水下超疏油复合不锈钢网的制备及在油水分离中的应用[J]. 化工进展, 2025, 44(6): 3659-3670. |
| [8] | 顾晟燊, 郭猛, 任秀秀, 潘阳, 靳栋梁, 钟璟. 微孔有机硅膜在CO2分离中的研究进展[J]. 化工进展, 2025, 44(5): 2846-2855. |
| [9] | 罗伊雯, 赵亮, 张宇豪, 刘东阳, 高金森, 徐春明. 轻烃分离材料和机理的研究进展[J]. 化工进展, 2025, 44(5): 2938-2954. |
| [10] | 丁阿静, 周巧巧, 顾学红. 膜反应器中杨木催化气化制清洁合成气[J]. 化工进展, 2025, 44(5): 2716-2723. |
| [11] | 郑业, 何永清, 焦凤, 李欢. 倾斜壁面上液膜的流动不稳定性与烧干机制探究[J]. 化工进展, 2025, 44(4): 1876-1887. |
| [12] | 丁红兵, 柴旭天, 王世伟, 宋鑫宇, 孙宏军. 单液滴与多液滴撞击流动液膜的实验探究[J]. 化工进展, 2025, 44(4): 1888-1897. |
| [13] | 蔡瑞芸, 焦芮, 孙寒雪, 李安. 不对称浸润性Janus有机多孔膜的设计、制备及应用[J]. 化工进展, 2025, 44(4): 2057-2067. |
| [14] | 朱方龙, 冯倩倩. 红外透过型尼龙多孔膜的制备及光热性能[J]. 化工进展, 2025, 44(4): 2215-2224. |
| [15] | 薛立新, 董永平, 陈梦瑶, 高从堦. 十二烷基硫酸钠(SDS)和强碱(NaOH)对聚酰胺复合纳滤膜的协同调控机理[J]. 化工进展, 2025, 44(4): 2225-2237. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |