化工进展 ›› 2025, Vol. 44 ›› Issue (4): 2057-2067.DOI: 10.16085/j.issn.1000-6613.2024-0525
收稿日期:2024-04-01
修回日期:2024-06-24
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
孙寒雪,李安
作者简介:蔡瑞芸(1999—),女,硕士研究生,研究方向为微纳孔功能材料。E-mail:2623320950@qq.com。
基金资助:
CAI Ruiyun(
), JIAO Rui, SUN Hanxue(
), LI An(
)
Received:2024-04-01
Revised:2024-06-24
Online:2025-04-25
Published:2025-05-07
Contact:
SUN Hanxue, LI An
摘要:
Janus有机多孔膜是一种具有相反两面性质或不对称结构的特殊膜材料。相较于单一有机多孔膜材料渗透性低、选择性差和易被污染等固有缺点,Janus有机多孔膜材料具有独特的传输行为和分离特性,可以有效克服以上缺点,因此受到极大关注。本文对近年来不对称浸润性Janus有机多孔膜的制备方法,包括不对称聚合法和单面改性法等进行了系统总结,详细介绍了不对称浸润性Janus有机多孔膜材料在膜分离、膜蒸馏、雾收集、单向导水织物、医疗等领域的应用,并对其存在的问题和未来的发展方向进行了总结与展望。
中图分类号:
蔡瑞芸, 焦芮, 孙寒雪, 李安. 不对称浸润性Janus有机多孔膜的设计、制备及应用[J]. 化工进展, 2025, 44(4): 2057-2067.
CAI Ruiyun, JIAO Rui, SUN Hanxue, LI An. Design, preparation and application of asymmetrically wettable Janus organic porous membrane[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2057-2067.
| 方法 | 技术 | 材料结构 | 制备过程 | 参考文献 |
|---|---|---|---|---|
| 不对称聚合 | 静电纺丝 | 双层 | 在聚丙烯(PP)非织造膜表面静电纺丝含有聚多巴胺(PDA)的聚丙烯腈(PAN)纳米纤维膜,形成疏水的PP内层和亲水的PAN外层 | [ |
| 真空过滤 | 双层 | 将芳纶纤维(ANF)在二甲基亚砜/氢氧化钾溶剂体系中去质子化,得到均匀分散的ANF,通过真空辅助过滤ANF分散体直接获得Janus ANF/MXene复合膜 | [ | |
| 单面改性 | 化学沉积 | 沿材料厚度互穿 | 将甘油/抑制剂(HQ)混合物作为支架内填充,再将聚四氟乙烯(PTFE)化学沉积到多孔介质表面,赋予亲水多孔基板不对称润湿性 | [ |
| 喷涂 | 双层 | 以低熔点聚乳酸(LMPLA)和聚乳酸(PLA)纤维为原料,以不同的针刺深度制备非织造布。经热压处理形成热粘接点,再用短氟烷基链聚合物和聚氨酯涂层溶液进行喷涂得到非织造功能化的Janus膜 | [ | |
| 紫外固化、飞秒激光 | 双层 | 采用飞秒激光得到前体,在紫外光下聚合、固化后剥去覆盖膜,得到以聚醋酸烯丙酯(PAAC)为亲水性层,聚二甲基硅氧烷(PDMS)为疏水性层的Janus水凝胶复合膜 | [ | |
| 真空等离子体聚合 | 双层 | 先将聚对二甲苯涂层沉积到PP基材一侧的孔隙中,且不填充孔隙,然后通过等离子体聚合生成功能化分子层 | [ |
表1 Janus膜的制备方法和工艺、膜结构及制备过程
| 方法 | 技术 | 材料结构 | 制备过程 | 参考文献 |
|---|---|---|---|---|
| 不对称聚合 | 静电纺丝 | 双层 | 在聚丙烯(PP)非织造膜表面静电纺丝含有聚多巴胺(PDA)的聚丙烯腈(PAN)纳米纤维膜,形成疏水的PP内层和亲水的PAN外层 | [ |
| 真空过滤 | 双层 | 将芳纶纤维(ANF)在二甲基亚砜/氢氧化钾溶剂体系中去质子化,得到均匀分散的ANF,通过真空辅助过滤ANF分散体直接获得Janus ANF/MXene复合膜 | [ | |
| 单面改性 | 化学沉积 | 沿材料厚度互穿 | 将甘油/抑制剂(HQ)混合物作为支架内填充,再将聚四氟乙烯(PTFE)化学沉积到多孔介质表面,赋予亲水多孔基板不对称润湿性 | [ |
| 喷涂 | 双层 | 以低熔点聚乳酸(LMPLA)和聚乳酸(PLA)纤维为原料,以不同的针刺深度制备非织造布。经热压处理形成热粘接点,再用短氟烷基链聚合物和聚氨酯涂层溶液进行喷涂得到非织造功能化的Janus膜 | [ | |
| 紫外固化、飞秒激光 | 双层 | 采用飞秒激光得到前体,在紫外光下聚合、固化后剥去覆盖膜,得到以聚醋酸烯丙酯(PAAC)为亲水性层,聚二甲基硅氧烷(PDMS)为疏水性层的Janus水凝胶复合膜 | [ | |
| 真空等离子体聚合 | 双层 | 先将聚对二甲苯涂层沉积到PP基材一侧的孔隙中,且不填充孔隙,然后通过等离子体聚合生成功能化分子层 | [ |
| 序号 | 应用领域 | 合成方法 | 工作机理 | 优点 | 参考文献 |
|---|---|---|---|---|---|
| 1 | 膜蒸馏 | 光引发化学气相沉积 | 通过单向紫外光照射,在疏水PTFE膜上沉积了亲水性聚甲基丙烯酸羟乙酯(PHEMA)层,使PTFE膜具有不对称的两面性质,用于高效膜蒸馏 | PHEMA涂层的Janus PTFE膜在盐包油水乳化膜蒸馏(MD)操作中,具有更高的水通量和更优异的防污性能 | [ |
| 2 | 个人制冷纺织品 | 静电纺丝、单侧亲水 等离子体 处理 | 经过单侧亲水等离子体处理实现聚氨酯(PU)基体的双面润湿性,从而诱导各向异性毛细力驱动的定向输水。分层设计结合了粒子和纤维的散射效率,覆盖了大部分太阳光波长范围,以提供最大的太阳反射率 | 与传统棉花相比,可增加织物在热源热量过度输入时的冷却能力,降低人体脱水和与热有关疾病的风险 | [ |
| 3 | 膜分离 | 静电纺丝 | 涂覆邻苯二酚和磷酰基乙酸三乙酯(TEPA)的复合膜使分离器与电极之间的界面相容性增强,用以促进Li+输运,优化电池性能 | 相较于PAN膜,得到的聚偏二氟乙烯-六氟丙烯(PAN/PVDF-HFP)复合隔膜具有更优的机械强度、电解质润湿性和更高的孔隙率,可使电池的倍率性能和循环稳定性明显提高 | [ |
| 4 | 医疗 | 静电纺丝 | 对比3种不同纤维膜在降低水接触角方面的差异,结果表明嵌合Janus纤维膜的水接触角下降快,可促进药物释放 | 可通过构建润湿性差异表面和添加亲水材料的方法改善嵌合Janus纤维膜的润湿性,使其发挥雾收集和湿度传感器等方面的潜力 | [ |
| 5 | 雾收集 | 光化学改性 | Janus膜通过拉伸由超快激光钻孔制成柔性PDMS片,调节雾收集率,实现可控雾收集 | 雾收集率可调,优于现有的基于刚性材料的方法,其不仅可用于雾收集,还可作为动态雾通量调节器 | [ |
表2 Janus膜的应用领域、合成方法、工作机理及优点
| 序号 | 应用领域 | 合成方法 | 工作机理 | 优点 | 参考文献 |
|---|---|---|---|---|---|
| 1 | 膜蒸馏 | 光引发化学气相沉积 | 通过单向紫外光照射,在疏水PTFE膜上沉积了亲水性聚甲基丙烯酸羟乙酯(PHEMA)层,使PTFE膜具有不对称的两面性质,用于高效膜蒸馏 | PHEMA涂层的Janus PTFE膜在盐包油水乳化膜蒸馏(MD)操作中,具有更高的水通量和更优异的防污性能 | [ |
| 2 | 个人制冷纺织品 | 静电纺丝、单侧亲水 等离子体 处理 | 经过单侧亲水等离子体处理实现聚氨酯(PU)基体的双面润湿性,从而诱导各向异性毛细力驱动的定向输水。分层设计结合了粒子和纤维的散射效率,覆盖了大部分太阳光波长范围,以提供最大的太阳反射率 | 与传统棉花相比,可增加织物在热源热量过度输入时的冷却能力,降低人体脱水和与热有关疾病的风险 | [ |
| 3 | 膜分离 | 静电纺丝 | 涂覆邻苯二酚和磷酰基乙酸三乙酯(TEPA)的复合膜使分离器与电极之间的界面相容性增强,用以促进Li+输运,优化电池性能 | 相较于PAN膜,得到的聚偏二氟乙烯-六氟丙烯(PAN/PVDF-HFP)复合隔膜具有更优的机械强度、电解质润湿性和更高的孔隙率,可使电池的倍率性能和循环稳定性明显提高 | [ |
| 4 | 医疗 | 静电纺丝 | 对比3种不同纤维膜在降低水接触角方面的差异,结果表明嵌合Janus纤维膜的水接触角下降快,可促进药物释放 | 可通过构建润湿性差异表面和添加亲水材料的方法改善嵌合Janus纤维膜的润湿性,使其发挥雾收集和湿度传感器等方面的潜力 | [ |
| 5 | 雾收集 | 光化学改性 | Janus膜通过拉伸由超快激光钻孔制成柔性PDMS片,调节雾收集率,实现可控雾收集 | 雾收集率可调,优于现有的基于刚性材料的方法,其不仅可用于雾收集,还可作为动态雾通量调节器 | [ |
| 1 | GUO Xinghua, LI Yang, ZHANG Meicheng, et al. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption[J]. Angewandte Chemie International Edition, 2020, 59(50): 22697-22705. |
| 2 | WU Lili, WANG Pitao, CHEN Xinguo, et al. Study of the preparation and electrochemical performance of porous carbon derived from hypercrosslinked polymers[J]. Carbon Letters, 2022, 32(3): 849-862. |
| 3 | CARNER Clayton A, CROFT Charles F, KOLEV Spas D, et al. Green solvents for the fabrication of polymer inclusion membranes (PIMs)[J]. Separation and Purification Technology, 2020, 239: 116486. |
| 4 | LUO Songhao, ZENG Zhuotong, WANG Han, et al. Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications[J]. Progress in Polymer Science, 2021, 115: 101374. |
| 5 | WANG Hongxia, DING Jie, DAI Liming, et al. Directional water-transfer through fabrics induced by asymmetric wettability[J]. Journal of Materials Chemistry, 2010, 20(37): 7938-7940. |
| 6 | LI Xiangnan, WANG Qiyu, ZHENG Lixiang, et al. Smart Janus textiles for biofluid management in wearable applications[J]. iScience, 2024, 27(3): 109318. |
| 7 | LI Kai, YANG Haocheng, XU Zhikang. Designing Janus two-dimensional porous materials for unidirectional transport: Principles, applications, and challenges[J]. ACS Applied Polymer Materials, 2024, 6(23): 14190-14203. |
| 8 | MENG Lijun, SHI Wei, LI Yang, et al. Janus membranes at the water-energy nexus: A critical review[J]. Advances in Colloid and Interface Science, 2023, 318: 102937. |
| 9 | ZHANG Songnan, HUANG Jianying, CHEN Zhong, et al. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications[J]. Small, 2017, 13(3): 1602992. |
| 10 | YAN Linlin, YANG Xiaobin, ZHANG Yanqiu, et al. Porous Janus materials with unique asymmetries and functionality[J]. Materials Today, 2021, 51: 626-647. |
| 11 | YANG Haocheng, HOU Jingwei, CHEN Vicki, et al. Janus membranes: Exploring duality for advanced separation[J]. Angewandte Chemie International Edition, 2016, 55(43): 13398-13407. |
| 12 | ZHANG Xiaojing, YU Nuo, REN Qian, et al. Janus nanofiber membranes with photothermal-enhanced biofluid drainage and sterilization for diabetic wounds[J]. Advanced Functional Materials, 2024, 34(24): 2315020. |
| 13 | ZHAO Yinghui, DENG Cong, YAN Bin, et al. One-step method for fabricating Janus aramid nanofiber/MXene nanocomposite films with improved joule heating and thermal camouflage properties[J]. ACS Applied Materials & Interfaces, 2023, 15(47): 55150-55162. |
| 14 | MOHAMMADI GHALENI Mahdi, TAVAKOLI Elham, BAVARIAN Mona, et al. Fabricating Janus membranes via physicochemical selective chemical vapor deposition[J]. AIChE Journal, 2020, 66(11): e17019. |
| 15 | ZHANG Yue, LI Tingting, SHIU Bing-Chiuan, et al. Processing and characterizations of short fluoroalkyl chain/polyurethane-polylactic acid/low melt polylactic acid Janus nonwoven medical covers using spray coating[J]. Progress in Organic Coatings, 2020, 147: 105736. |
| 16 | ZHANG Juan, LIU Bingrui, LIU Xiaoling, et al. Laser ablated Janus hydrogel composite membrane for draining excessive blood and biofluid around wounds[J]. Macromolecular Materials and Engineering, 2022, 307(8): 2200026. |
| 17 | RODRIGUES Lydia N, SIRKAR Kamalesh K, WEISBROD Kirk Ryan, et al. Porous hydrophobic-hydrophilic Janus membranes for nondispersive membrane solvent extraction[J]. Journal of Membrane Science, 2021, 637: 119633. |
| 18 | HOU Lanlan, LIU Jingchong, LI Dianming, et al. Electrospinning Janus nanofibrous membrane for unidirectional liquid penetration and its applications[J]. Chemical Research in Chinese Universities, 2021, 37(3): 337-354. |
| 19 | PORNEA Arni M, PUGUAN John Marc C, DEONIKAR Virendrakumar G, et al. Robust Janus nanocomposite membrane with opposing surface wettability for selective oil-water separation[J]. Separation and Purification Technology, 2020, 236: 116297. |
| 20 | YANG Xiuling, WANG Jingwen, GUO Hongtao, et al. Structural design toward functional materials by electrospinning: A review[J]. e-Polymers, 2020, 20(1): 682-712. |
| 21 | CHENG Chen, WEI Zhenzhen, GU Jiayi, et al. Rational design of Janus nanofibrous membranes with novel under-oil superhydrophilic/superhydrophobic asymmetric wettability for water-in-diesel emulsion separation[J]. Journal of Colloid and Interface Science, 2022, 606: 1563-1571. |
| 22 | WANG Yuehui, HUANG Jun, ZHANG Ye, et al. The design of PAN-based Janus membrane with adjustable asymmetric wettability in wastewater purification[J]. Materials, 2024, 17(2): 417. |
| 23 | LEE Sher Ling, THOMAS Joy, LIU Chengliang, et al. A greener approach to design Janus PVDF membrane with polyphenols using one-pot fabrication for emulsion separation[J]. Journal of Membrane Science, 2022, 656: 120616. |
| 24 | ZHAO Guangjin, HAN Wenjing, DONG Liangliang, et al. Sprayed separation membranes: A systematic review and prospective opportunities[J]. Green Energy & Environment, 2022, 7(6): 1143-1160. |
| 25 | ZUO Jihao, GU Yihang, WEI Chao, et al. Janus polyvinylidene fluoride membranes fabricated with thermally induced phase separation and spray-coating technique for the separations of both W/O and O/W emulsions[J]. Journal of Membrane Science, 2020, 595: 117475. |
| 26 | WEI Yangyang, GAO Xueli, XU Guorong, et al. Laminated graphene oxide and hydrotalcite membranes via alternating spray-deposition with stable desalting performance[J]. Desalination, 2024, 586: 117809. |
| 27 | SÖZ Çağla Koşak, TROSIEN Simon, BIESALSKI Markus. Janus interface materials: A critical review and comparative study[J]. ACS Materials Letters, 2020, 2(4): 336-357. |
| 28 | WANG Guojun, WU Baiheng, XU Zhikang, et al. Janus polymer membranes prepared by single-side polydopamine deposition for dye adsorption and fine bubble aeration[J]. Materials Chemistry Frontiers, 2019, 3(10): 2102-2109. |
| 29 | AN Young-Hyeon, YU Seung Jung, KIM In Seon, et al. Hydrogel functionalized Janus membrane for skin regeneration[J]. Advanced Healthcare Materials, 2017, 6(5): 1600795. |
| 30 | CHEW Nick Guan Pin, ZHAO Shanshan, MALDE Chandresh, et al. Superoleophobic surface modification for robust membrane distillation performance[J]. Journal of Membrane Science, 2017, 541: 162-173. |
| 31 | FIGOLI A, URSINO C, GALIANO F, et al. Innovative hydrophobic coating of perfluoropolyether (PFPE) on commercial hydrophilic membranes for DCMD application[J]. Journal of Membrane Science, 2017, 522: 192-201. |
| 32 | WU Zhipeng, YIN Kai, WU Junrui, et al. Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability[J]. Nanoscale, 2021, 13(4): 2209-2226. |
| 33 | TAN Jasmine Si Jia, WONG Chong Hui, CHEN Zhong. Janus particle preparation through UV-induced partial photodegradation of spin-coated particle films[J]. Langmuir, 2021, 37(27): 8167-8176. |
| 34 | LIN Yuqing, SALEM Mohamed S, ZHANG Lei, et al. Development of Janus membrane with controllable asymmetric wettability for highly-efficient oil/water emulsions separation[J]. Journal of Membrane Science, 2020, 606: 118141. |
| 35 | XIANG Bin, SUN Qing, ZHONG Qi, et al. Current research situation and future prospect of superwetting smart oil/water separation materials[J]. Journal of Materials Chemistry A, 2022, 10(38): 20190-20217. |
| 36 | CHANG Haiqing, LIU Baicang, ZHANG Zhewei, et al. A critical review of membrane wettability in membrane distillation from the perspective of interfacial interactions[J]. Environmental Science & Technology, 2021, 55(3): 1395-1418. |
| 37 | MEI Guoying, GUO Zhiguang. Special wettability materials inspired by multiorganisms for fog collection[J]. Advanced Materials Interfaces, 2022, 9(14): 2102484. |
| 38 | LIANG Weiwen, HE Wenyi, HUANG Rongkang, et al. Peritoneum-inspired Janus porous hydrogel with anti-deformation, anti-adhesion, and pro-healing characteristics for abdominal wall defect treatment[J]. Advanced Materials, 2022, 34(15): 2108992. |
| 39 | KIM Daehun, PARK Ahrumi, CHOI Yunyoung, et al. Facile fabrication of Janus membranes with antifouling properties for membrane distillation[J]. ACS Applied Polymer Materials, 2023, 5(10): 8474-8482. |
| 40 | MIAO Dongyang, CHENG Ningbo, WANG Xianfeng, et al. Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling[J]. Nano Letters, 2022, 22(2): 680-687. |
| 41 | GUO Mao, XIONG Jing, JIN Xuanyang, et al. Mussel stimulated modification of flexible Janus PAN/PVDF-HFP nanofiber hybrid membrane for advanced lithium-ion batteries separator[J]. Journal of Membrane Science, 2023, 675: 121533. |
| 42 | WANG Menglong, GE Ruiliang, ZHAO Ping, et al. Exploring wettability difference-driven wetting by utilizing electrospun chimeric Janus microfiber comprising cellulose acetate and polyvinylpyrrolidone[J]. Materials & Design, 2023, 226: 111652. |
| 43 | SU Yahui, CAI Shengwen, WU Tao, et al. Smart stretchable Janus membranes with tunable collection rate for fog harvesting[J]. Advanced Materials Interfaces, 2019, 6(22): 1901465. |
| 44 | YALCINKAYA Fatma, BOYRAZ Evren, MARYSKA Jiri, et al. A review on membrane technology and chemical surface modification for the oily wastewater treatment[J]. Materials, 2020, 13(2): 493. |
| 45 | ZHANG Ming, YANG Qingfeng, GAO Ming, et al. Fabrication of Janus cellulose nanocomposite membrane for various water/oil separation and selective one-way transmission[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106016. |
| 46 | WU Zhengfei, WANG Yi, DONG Liangliang, et al. PDA controllably-modified Janus membranes with high-permeability for oil/water separation[J]. Composites Communications, 2023, 40: 101574. |
| 47 | JU Jingge, HUANG Yuting, LIU Mengyao, et al. Construction of electrospinning Janus nanofiber membranes for efficient solar-driven membrane distillation[J]. Separation and Purification Technology, 2023, 305: 122348. |
| 48 | WANG Rui, YE Qisheng, WU Jiayi, et al. Janus membrane with bioinspired heterogeneous morphology for efficient fog harvesting[J]. ACS ES&T Engineering, 2021, 1(8): 1217-1226. |
| 49 | LEE Young-Ah Lucy, ZHANG Shiyi, LIN Jiaqi, et al. A Janus mucoadhesive and omniphobic device for gastrointestinal retention[J]. Advanced Healthcare Materials, 2016, 5(10): 1141-1146. |
| 50 | AFSARI Morteza, SHON Ho Kyong, TIJING Leonard D. Janus membranes for membrane distillation: Recent advances and challenges[J]. Advances in Colloid and Interface Science, 2021, 289: 102362. |
| 51 | JIA Yuandong, GUAN Kecheng, ZHANG Pengfei, et al. Asymmetric superwetting Janus structure for fouling- and scaling-resistant membrane distillation[J]. Journal of Membrane Science, 2022, 657: 120697. |
| 52 | Zihao WO, SU Yier, MA Hua, et al. A nc-titania modified cellulose Janus membrane for unidirectional water penetration and fog collection[J]. Journal of Alloys and Compounds, 2023, 968: 172207. |
| 53 | TANG Yang, YAN Jun, WANG Junjie, et al. MXene based flexible Janus nanofibrous membrane composite for unidirectional water transportation[J]. Composites Science and Technology, 2023, 239: 110032. |
| 54 | ZHANG Zhili, LI Jinbo, LI Xu, et al. Janus membranes with asymmetric cellular adhesion behaviors for regenerating eardrum perforation[J]. Journal of Materials Chemistry B, 2022, 10(14): 2719-2727. |
| 55 | CHOI Sejin, JEON Hyeonyeol, JANG Min, et al. Biodegradable, efficient, and breathable multi-use face mask filter[J]. Advanced Science, 2021, 8(6): 2003155. |
| 56 | CHEN Chao, SHI Luan, HUANG Zhouchen, et al. Microhole-arrayed PDMS with controllable wettability gradient by one-step femtosecond laser drilling for ultrafast underwater bubble unidirectional self-transport[J]. Advanced Materials Interfaces, 2019, 6(12): 1900297. |
| 57 | CHEN Yulan, LU Zhenzhen, LIU Qingxia. Janus membrane emulsification for facile preparation of hollow microspheres[J]. Journal of Membrane Science, 2019, 592: 117384. |
| [1] | 仲文雅, 俞汶佳, 谷艺明, 郭静, 樊博, 蔡志强. 生物合成安丝菌素的研究进展[J]. 化工进展, 2021, 40(2): 990-997. |
| [2] | 吴兴可,祁荃,卞婷婷,刘苏煜,谷艺明,郭静,蔡志强. 珍贵橙色束丝放线菌发酵产安丝菌素P-3的分离纯化工艺优化[J]. 化工进展, 2020, 39(3): 1122-1128. |
| [3] | 程荡, 陈芬儿. 连续流微反应技术在药物合成中的应用研究进展[J]. 化工进展, 2019, 38(01): 556-575. |
| [4] | 富敏霞, 祝铃钰, 贠军贤. 乳酸脱氢酶的分离纯化及其催化合成苯乳酸的研究进展[J]. 化工进展, 2018, 37(12): 4814-4820. |
| [5] | 王晓静, 魏琦峰, 任秀莲. 乙醇酸和聚乙醇酸的制备与分离研究进展[J]. 化工进展, 2018, 37(09): 3577-3584. |
| [6] | 张翔, 张彦昊, 刘孝永, 辛雪, 王易芬, 陈蕾蕾, 周庆新, 赵双枝. 产壳聚糖酶菌株ncps116发酵条件优化及其酶学性质[J]. 化工进展, 2018, 37(06): 2354-2363. |
| [7] | 张晓华, 姜岩, 岳希权, 张贤明. 生物表面活性剂驱油研究进展[J]. 化工进展, 2016, 35(07): 2033-2040. |
| [8] | 许旭旭1,毛 政2,吴 斌1,孙洪林1,何冰芳1. 高速逆流色谱法分离纯化内吗啡肽-1 [J]. 化工进展, 2011, 30(9): 2064-. |
| [9] | 周志明,邱 静,陈 枝,吾石华,张 峰. 对苯二酚生产中副产品硫酸锰的分离纯化 [J]. 化工进展, 2008, 27(1): 147-. |
| [10] | 羊 明,徐 岩,穆晓清,肖 荣. 一种新的高立体选择性羰基还原酶的性质及分离 [J]. 化工进展, 2006, 25(9): 1082-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |