化工进展 ›› 2025, Vol. 44 ›› Issue (4): 2068-2080.DOI: 10.16085/j.issn.1000-6613.2024-0526
岳磊1(
), 栗培龙1,2, 丁湛3,4,5(
), 夏雷1, 安琳玉3,4,5
收稿日期:2024-04-01
修回日期:2024-06-04
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
丁湛
作者简介:岳磊(1997—),男,博士研究生,研究方向为高性能环保型道路材料。E-mail:yuelei@chd.edu.cn。
基金资助:
YUE Lei1(
), LI Peilong1,2, DING Zhan3,4,5(
), XIA Lei1, AN Linyu3,4,5
Received:2024-04-01
Revised:2024-06-04
Online:2025-04-25
Published:2025-05-07
Contact:
DING Zhan
摘要:
沥青再生剂与老化沥青界面的扩散行为是影响废旧沥青路面的热再生效率、工艺水平以及服役性能的重要因素。本文系统综述了再生剂在老化沥青中扩散状态的模拟方法,包括浸泡法、分层萃取技术、表面润湿法、示踪技术和分子动力学模拟方法,对比分析了现有研究方法的优缺点,在此基础上归纳了不同扩散时程状态的表征方法及评价参数,讨论了各种评价方法的特点及适用性,并展望了沥青再生剂扩散行为表征方法的研究方向。基于表面润湿法获取的扩散试样有其独特的扩散状态表征方法和指标,适用于评价再生剂润湿老化沥青界面的特性、即时扩散速率;示踪技术能够捕捉扩散试样的切片混溶性状;浸泡法、分层萃取技术的扩散性状表征方法更加多元;采用计入热力学参数的分子动力学模拟与扩散试验相结合的方法是研究沥青再生剂扩散行为、驱动力机制的主要途径。未来应加强对沥青再生剂沿沥青膜表面的横向扩散行为的研究,计入再生剂与老化沥青的多种接触模式,建立考虑时温衰减效应的扩散动力学模型,为科学确定热再生沥青路面工艺参数提供理论依据和参考。
中图分类号:
岳磊, 栗培龙, 丁湛, 夏雷, 安琳玉. 沥青再生剂扩散行为表征方法研究进展[J]. 化工进展, 2025, 44(4): 2068-2080.
YUE Lei, LI Peilong, DING Zhan, XIA Lei, AN Linyu. Research progress on characterization methods of diffusion behavior of asphalt rejuvenators[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2068-2080.
| 种类 | 相对密度 | 黏度/Pa·s | 60℃运动黏度/mm2·s-1 | 参考文献 |
|---|---|---|---|---|
| 基质沥青 | 1.017(25℃) | 0.80(135℃) | — | [ |
| 回收沥青 | 1.012(15℃) | 1574(60℃) | — | [ |
| 石油基再生剂 | 0.932(15℃) | 2.41(60℃) | — | [ |
| 废机油再生剂 | 0.970(25℃) | — | 75.91×10-6 | [ |
| 生物油 | 0.940(15℃) | 0.074(60℃) | — | [ |
| 生物基再生剂 | 0.938(15℃) | — | 103 | [ |
表1 石油沥青与再生剂的主要技术指标
| 种类 | 相对密度 | 黏度/Pa·s | 60℃运动黏度/mm2·s-1 | 参考文献 |
|---|---|---|---|---|
| 基质沥青 | 1.017(25℃) | 0.80(135℃) | — | [ |
| 回收沥青 | 1.012(15℃) | 1574(60℃) | — | [ |
| 石油基再生剂 | 0.932(15℃) | 2.41(60℃) | — | [ |
| 废机油再生剂 | 0.970(25℃) | — | 75.91×10-6 | [ |
| 生物油 | 0.940(15℃) | 0.074(60℃) | — | [ |
| 生物基再生剂 | 0.938(15℃) | — | 103 | [ |
| 制样容器 | 分层截取间距/mm | 段数 | 扩散时间/min | 扩散温度/℃ | 参考文献 |
|---|---|---|---|---|---|
| 玻璃试管 | 100① | 3 | 60、120、180、240、300、360、600 | 130、140、150、160、170、180 | [ |
| 针入度模具 | — | 1 | 20、60、120、180、240 | 100 | [ |
| 动态剪切流变仪(DSR) 扩散模具 | — | 1 | 240 | 100 | [ |
| 铝管 | 30① | 3 | 10 | 135 | [ |
| 玻璃试管 | 30② | 1 | 30、60、120、180、240 | 130 | [ |
| 铝管 | 20② | 4 | 2880、5760、11520 | 160 | [ |
| 试管 | 10① | 3 | 60、120、180、240 | 140、150、160、170 | [ |
| 软化点模具 | — | 1 | 60、120、180、240 | 5、60、100 | [ |
表2 浸泡法扩散模拟试验参数
| 制样容器 | 分层截取间距/mm | 段数 | 扩散时间/min | 扩散温度/℃ | 参考文献 |
|---|---|---|---|---|---|
| 玻璃试管 | 100① | 3 | 60、120、180、240、300、360、600 | 130、140、150、160、170、180 | [ |
| 针入度模具 | — | 1 | 20、60、120、180、240 | 100 | [ |
| 动态剪切流变仪(DSR) 扩散模具 | — | 1 | 240 | 100 | [ |
| 铝管 | 30① | 3 | 10 | 135 | [ |
| 玻璃试管 | 30② | 1 | 30、60、120、180、240 | 130 | [ |
| 铝管 | 20② | 4 | 2880、5760、11520 | 160 | [ |
| 试管 | 10① | 3 | 60、120、180、240 | 140、150、160、170 | [ |
| 软化点模具 | — | 1 | 60、120、180、240 | 5、60、100 | [ |
| 评价方法 | 优点 | 缺点 |
|---|---|---|
| 浸泡法 | 扩散容器多样,制样简易,操作简单 | 样品数量与扩散容器有关,试验离散性较大 |
| 分层萃取技术 | 考虑了实际再生条件,如集料表观特性、机械拌和工艺 | 受萃取剂、RAP材料特性影响大 |
| 表面润湿法 | 适用于模拟再生剂在老化沥青接触面的即时扩散状态,测量快速 | 仪器需配备温控功能,考察的影响因素较少 |
| 示踪技术 | 利用特殊标记物追踪再生剂的扩散 | 易受示踪剂性质影响 |
| 分子动力学模拟 | 设置温度、时长等参数模拟再生剂组分和沥青代表性分子之间的扩散行为 | 再生剂、老化沥青分子模型的建立和扩散模型的选取均会影响扩散状态的模拟精度 |
表3 沥青再生剂扩散状态模拟方法对比分析
| 评价方法 | 优点 | 缺点 |
|---|---|---|
| 浸泡法 | 扩散容器多样,制样简易,操作简单 | 样品数量与扩散容器有关,试验离散性较大 |
| 分层萃取技术 | 考虑了实际再生条件,如集料表观特性、机械拌和工艺 | 受萃取剂、RAP材料特性影响大 |
| 表面润湿法 | 适用于模拟再生剂在老化沥青接触面的即时扩散状态,测量快速 | 仪器需配备温控功能,考察的影响因素较少 |
| 示踪技术 | 利用特殊标记物追踪再生剂的扩散 | 易受示踪剂性质影响 |
| 分子动力学模拟 | 设置温度、时长等参数模拟再生剂组分和沥青代表性分子之间的扩散行为 | 再生剂、老化沥青分子模型的建立和扩散模型的选取均会影响扩散状态的模拟精度 |
| 方法 | 评价指标 | 特点 |
|---|---|---|
| 扩散系数法 | 均方位移、扩散系数 | 直接衡量再生剂在老化沥青某一界面的扩散速度,计算公式较多 |
| 性能指标法 | 针入度、延度、软化点、黏度、润湿功、润湿速度和润湿时间表面能参数;流变学参数 | 样品需求量较大,测试精度受测试仪器、人为主观因素影响较大,具有一定局限性,难以反映再生剂在老化沥青中的扩散过程 |
| 化学分析法 | 分子尺寸及分布、组分比例、特征官能团指数 | 样品需求量较少,受测试环境、人为因素影响较小,对仪器设备要求较高 |
| 可视化图像法 | 灰度值、表面粗糙度、峰面积比和平均面积 | 直观显示某一扩散状态下再生剂在老化沥青中的分布位置,试验成本较高,制样、试验操作较复杂 |
表4 混溶程度评价方法综合分析
| 方法 | 评价指标 | 特点 |
|---|---|---|
| 扩散系数法 | 均方位移、扩散系数 | 直接衡量再生剂在老化沥青某一界面的扩散速度,计算公式较多 |
| 性能指标法 | 针入度、延度、软化点、黏度、润湿功、润湿速度和润湿时间表面能参数;流变学参数 | 样品需求量较大,测试精度受测试仪器、人为主观因素影响较大,具有一定局限性,难以反映再生剂在老化沥青中的扩散过程 |
| 化学分析法 | 分子尺寸及分布、组分比例、特征官能团指数 | 样品需求量较少,受测试环境、人为因素影响较小,对仪器设备要求较高 |
| 可视化图像法 | 灰度值、表面粗糙度、峰面积比和平均面积 | 直观显示某一扩散状态下再生剂在老化沥青中的分布位置,试验成本较高,制样、试验操作较复杂 |
| 1 | ZAUMANIS Martins, MALLICK Rajib B, FRANK Robert. 100% recycled hot mix asphalt: A review and analysis[J]. Resources, Conservation and Recycling, 2014, 92: 230-245. |
| 2 | 徐金枝, 郝培文, 郭晓刚, 等. 厂拌热再生沥青混合料组成设计方法综述[J]. 中国公路学报, 2021, 34(10): 72-88. |
| XU Jinzhi, HAO Peiwen, GUO Xiaogang, et al. Review of mix design method of hot in-plant recycled asphalt mixture[J]. China Journal of Highway and Transport, 2021, 34(10): 72-88. | |
| 3 | NAVARO Julien, BRUNEAU Denis, DROUADAINE Ivan, et al. Observation and evaluation of the degree of blending of reclaimed asphalt concretes using microscopy image analysis[J]. Construction and Building Materials, 2012, 37: 135-143. |
| 4 | BEHNOOD Ali, SHAH Ayesha, MCDANIEL Rebecca S, et al. High-temperature properties of asphalt binders: Comparison of multiple stress creep recovery and performance grading systems[J]. Transportation Research Record: Journal of the Transportation Research Board, 2016, 2574(1): 131-143. |
| 5 | LOISE Valeria, CAPUTO Paolino, PORTO Michele, et al. A review on bitumen rejuvenation: Mechanisms, materials, methods and perspectives[J]. Applied Sciences, 2019, 9(20): 4316. |
| 6 | ZHAO Sheng, NAHAR Sayeda N, SCHMETS Alexander J M, et al. Investigation on the microstructure of recycled asphalt shingle binder and its blending with virgin bitumen[J]. Road Materials and Pavement Design, 2015, 16(sup1): 21-38. |
| 7 | VASSAUX S, GAUDEFROY V, BOULANGÉ L, et al. Study of remobilization phenomena at reclaimed asphalt binder/virgin binder interphases for recycled asphalt mixtures using novel microscopic methodologies[J]. Construction and Building Materials, 2018, 165: 846-858. |
| 8 | LOISE Valeria, CALANDRA Pietro, Abraham A ABE, et al. Additives on aged bitumens: What probe to distinguish between rejuvenating and fluxing effects?[J]. Journal of Molecular Liquids, 2021, 339: 116742. |
| 9 | ZAUMANIS Martins, MALLICK Rajib B, FRANK Robert. Determining optimum rejuvenator dose for asphalt recycling based on superpave performance grade specifications[J]. Construction and Building Materials, 2014, 69: 159-166. |
| 10 | ABDEL RAOUF Mohamed, WILLIAMS Christopher R. General rheological properties of fractionated switchgrass bio-oil as a pavement material[J]. Road Materials and Pavement Design, 2010, 11(sup1): 325-353. |
| 11 | ZHANG Ran, YOU Zhanping, WANG Hainian, et al. The impact of bio-oil as rejuvenator for aged asphalt binder[J]. Construction and Building Materials, 2019, 196: 134-143. |
| 12 | ZHANG Zhengqi, FANG Ying, YANG Jianhua, et al. A comprehensive review of bio-oil, bio-binder and bio-asphalt materials: Their source, composition, preparation and performance[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(2): 151-166. |
| 13 | PRADHAN Sujit Kumar, SAHOO Umesh Chandra. Performance assessment of aged binder rejuvenated with Polanga oil[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(6): 608-620. |
| 14 | 岳磊, 丁湛, 蒋修明, 等. 木质材料液化及其制备生物沥青研究综述[J]. 应用化工, 2023, 52(3): 810-814. |
| YUE Lei, DING Zhan, JIANG Xiuming, et al. Review on liquefaction of wood materials and preparation of bio-asphalt[J]. Applied Chemical Industry, 2023, 52(3): 810-814. | |
| 15 | DING Zhan, JIANG Xiuming, LI Huifeng, et al. Influences of waste-utilizing rejuvenator on properties of recycled asphalt binders[J]. Journal of Materials in Civil Engineering, 2023, 35(1): 04022387. |
| 16 | ZHANG Xiaorui, NING Yunfeng, ZHOU Xinxing, et al. Quantifying the rejuvenation effects of soybean-oil on aged asphalt-binder using molecular dynamics simulations[J]. Journal of Cleaner Production, 2021, 317: 128375. |
| 17 | AHMED Rayhan B, HOSSAIN Kamal. Waste cooking oil as an asphalt rejuvenator: A state-of-the-art review[J]. Construction and Building Materials, 2020, 230: 116985. |
| 18 | CUCINIELLO Giacomo, MALLEGNI Norma, CAPPELLO Miriam, et al. Classification and selection of exhausted oils for rejuvenating bituminous blends[J]. Construction and Building Materials, 2021, 278: 122387. |
| 19 | ZAUMANIS Martins, CAVALLI Maria Chiara, POULIKAKOS Lily D. Effect of rejuvenator addition location in plant on mechanical and chemical properties of RAP binder[J]. International Journal of Pavement Engineering, 2020, 21(4): 507-515. |
| 20 | KARLSSON R, ISACSSON U. Laboratory studies of diffusion in bitumen using markers[J]. Journal of Materials Science, 2003, 38(13): 2835-2844. |
| 21 | REN Shisong, LIU Xueyan, ERKENS Sandra. Unraveling the critical indicators for evaluating the high-temperature performance of rejuvenator-aged bitumen blends[J]. Case Studies in Construction Materials, 2023, 19: e02522. |
| 22 | XU Meng, ZHANG Yuzhen. Study of rejuvenators dynamic diffusion behavior into aged asphalt and its effects[J]. Construction and Building Materials, 2020, 261: 120673. |
| 23 | 李萍, 慕博博, 念腾飞, 等. 红外光谱(FTIR)和荧光显微镜(FM)表征再生剂在老化沥青中的扩散行为[J]. 材料科学与工程学报, 2022, 40(5): 767-773, 784. |
| LI Ping, MU Bobo, NIAN Tengfei, et al. Characterization the diffusion behavior of regenerant in aged asphalt by FTIR and FM[J]. Journal of Materials Science and Engineering, 2022, 40(5): 767-773, 784. | |
| 24 | 罗浩原, 黄晓明. 废油再生沥青二次老化后的性能与组分变化[J]. 中国公路学报, 2021, 34(10): 98-110. |
| LUO Haoyuan, HUANG Xiaoming. Research on change of performance and component of recycled oil regenerated asphalt during secondary aging[J]. China Journal of Highway and Transport, 2021, 34(10): 98-110. | |
| 25 | Songtao LYU, LIU Jing, PENG Xinghai, et al. Rheological and microscopic characteristics of bio-oil recycled asphalt[J]. Journal of Cleaner Production, 2021, 295: 126449. |
| 26 | LI Bo, LIU Wanying, Xueli NAN, et al. Development of rejuvenator using waste vegetable oil and its influence on pavement performance of asphalt binder under ultraviolet aging[J]. Case Studies in Construction Materials, 2023, 18: e01964. |
| 27 | 徐金枝, 张滨焌, 张德鹏. 基于再生剂/新沥青扩散行为的老化沥青再生规律[J]. 硅酸盐通报, 2021, 40(12): 4187-4196. |
| XU Jinzhi, ZHANG Binjun, ZHANG Depeng. Recycling law of aged asphalt based on diffusion behavior of rejuvenator/virgin asphalt[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 4187-4196. | |
| 28 | MA Tao, HUANG Xiaoming, ZHAO Yongli, et al. Evaluation of the diffusion and distribution of the rejuvenator for hot asphalt recycling[J]. Construction and Building Materials, 2015, 98: 530-536. |
| 29 | YANG Peixing, DONG Fuqiang, YU Xin, et al. Molecular study on diffusion behavior and performance recovery of aged asphalt binder containing functional rejuvenators[J]. Construction and Building Materials, 2023, 407: 133536. |
| 30 | LI Mingchen, LIU Liping, XING Chengwei, et al. Influence of rejuvenator preheating temperature and recycled mixture’s curing time on performance of hot recycled mixtures[J]. Construction and Building Materials, 2021, 295: 123616. |
| 31 | REN Shisong, LIU Xueyan, GAO Yangming, et al. Molecular dynamics simulation and experimental validation on the interfacial diffusion behaviors of rejuvenators in aged bitumen[J]. Materials & Design, 2023, 226: 111619. |
| 32 | 肖庆一, 张萌骐, 张靖洁. 再生剂渗透再生机理及其影响因素研究[J]. 河北工业大学学报, 2017, 46(4): 85-91. |
| XIAO Qingyi, ZHANG Mengqi, ZHANG Jingjie. Study on the mechanism and influence factors of rejuvenator penetration regeneration[J]. Journal of Hebei University of Technology, 2017, 46(4): 85-91. | |
| 33 | 祁文洋, 李立寒, 黄毅. 沥青再生剂扩散程度评价与影响因素研究[J]. 建筑材料学报, 2014, 17(6): 1020-1024. |
| QI Wenyang, LI Lihan, HUANG Yi. Study on the evaluation of regenerant diffusion in aged bitumen and its influencing factors[J]. Journal of Building Materials, 2014, 17(6): 1020-1024. | |
| 34 | WANG Fusong, ZHANG Lei, YAN Boxiang, et al. Diffusion mechanism of rejuvenator and its effects on the physical and rheological performance of aged asphalt binder[J]. Materials, 2019, 12(24): 4130. |
| 35 | BOWERS Benjamin F, HUANG Baoshan, SHU Xiang, et al. Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR[J]. Construction and Building Materials, 2014, 50: 517-523. |
| 36 | BOWERS Benjamin F, HUANG Baoshan, HE Qiang, et al. Investigation of sequential dissolution of asphalt binder in common solvents by FTIR and binder fractionation[J]. Journal of Materials in Civil Engineering, 2015, 27(8): 04014233. |
| 37 | ZHAO Sheng, HUANG Baoshan, SHU Xiang, et al. Quantitative evaluation of blending and diffusion in high RAP and RAS mixtures[J]. Materials & Design, 2016, 89: 1161-1170. |
| 38 | Gonzalo VALDÉS, Félix PÉREZ-JIMÉNEZ, Rodrigo MIRÓ, et al. Experimental study of recycled asphalt mixtures with high percentages of reclaimed asphalt pavement (RAP)[J]. Construction and Building Materials, 2011, 25(3): 1289-1297. |
| 39 | 郭鹏, 鲁承慧, 谢凤章, 等. 微观尺度下温拌再生混合料新-旧沥青界面融合特性[J]. 中国公路学报, 2021, 34(10): 89-97. |
| GUO Peng, LU Chenghui, XIE Fengzhang, et al. Study on interfacial fusion characteristics of virgin and aged asphalt of warm mix recycled mixture at micro scale[J]. China Journal of Highway and Transport, 2021, 34(10): 89-97. | |
| 40 | XU Jinzhi, HAO Peiwen, ZHANG Depeng, et al. Investigation of reclaimed asphalt pavement blending efficiency based on micro-mechanical properties of layered asphalt binders[J]. Construction and Building Materials, 2018, 163: 390-401. |
| 41 | 宋金华, 杨涛. 再生剂在老化沥青中浸润机理及影响因素研究[J]. 公路工程, 2018, 43(5): 226-231. |
| SONG Jinhua, YANG Tao. Study on diffusion mechanism and influencing factors of recycling agent in aging asphalt[J]. Highway Engineering, 2018, 43(5): 226-231. | |
| 42 | 丁皓. 再生剂-老化沥青的润湿作用与新旧沥青的融合特性研究[D]. 扬州: 扬州大学, 2022. |
| DING Hao. Research on the wetting effect of rejuvenator and aged asphalt and the fusion characteristics of new and aged asphalt[D]. Yangzhou: Yangzhou University, 2022. | |
| 43 | 况栋梁, 刘文昌, 张阳, 等. 基于表面润湿理论的再生剂-老化沥青界面扩散行为评价[J]. 中国公路学报, 2020, 33(7): 58-67. |
| KUANG Dongliang, LIU Wenchang, ZHANG Yang, et al. Evaluation of interface diffusion behavior between rejuvenator and aged asphalt based on surface wettability theory[J]. China Journal of Highway and Transport, 2020, 33(7): 58-67. | |
| 44 | 毛昱, 李萍, 念腾飞, 等. 再生剂在老化沥青中扩散行为的量化分析[J]. 华南理工大学学报(自然科学版), 2021, 49(2): 79-87. |
| MAO Yu, LI Ping, NIAN Tengfei, et al. Quantitative analysis of the diffusion behavior of rejuvenator in aged asphalt[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(2): 79-87. | |
| 45 | 徐萌. 再生剂在老化沥青中扩散的研究[D]. 青岛: 中国石油大学(华东), 2010. |
| XU Meng. Study of rejuvenators diffusion into aged asphalts[D]. Qingdao: China University of Petroleum (East China), 2010. | |
| 46 | ZHANG Xiaorui, HAN Chao, ZHOU Xinxing, et al. Characterizing the diffusion and rheological properties of aged asphalt binder rejuvenated with bio-oil based on molecular dynamic simulations and laboratory experimentations[J]. Molecules, 2021, 26(23): 7080. |
| 47 | LI Derek D, GREENFIELD Michael L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. |
| 48 | QU Xin, LIU Quan, GUO Meng, et al. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective[J]. Construction and Building Materials, 2018, 187: 718-729. |
| 49 | DING Yongjie, HUANG Baoshan, SHU Xiang, et al. Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders[J]. Fuel, 2016, 174: 267-273. |
| 50 | CUI Bingyan, GU Xingyu, HU Dongliang, et al. A multiphysics evaluation of the rejuvenator effects on aged asphalt using molecular dynamics simulations[J]. Journal of Cleaner Production, 2020, 259: 120629. |
| 51 | WANG Jiaqing, LI Qiang, LU Yang, et al. Effect of waste-oil regenerant on diffusion and fusion behaviors of asphalt recycling using molecular dynamics simulation[J]. Construction and Building Materials, 2022, 343: 128043. |
| 52 | XIAO Yue, LI Chao, WAN Miao, et al. Study of the diffusion of rejuvenators and its effect on aged bitumen binder[J]. Applied Sciences, 2017, 7(4): 397. |
| 53 | DING Heyang, WANG Hainian, QU Xin, et al. Towards an understanding of diffusion mechanism of bio-rejuvenators in aged asphalt binder through molecular dynamics simulation[J]. Journal of Cleaner Production, 2021, 299: 126927. |
| 54 | XU Guangji, WANG Hao. Diffusion and interaction mechanism of rejuvenating agent with virgin and recycled asphalt binder: A molecular dynamics study[J]. Molecular Simulation, 2018, 44(17): 1433-1443. |
| 55 | YU Qingxin, LIU Junyun, XIA Hongxiang. Analysis of influence of surfactant on the properties of diluted asphalt mixtures[J]. Case Studies in Construction Materials, 2022, 17: e01335. |
| 56 | KUANG Dongliang, JIAO Yuan, YE Zhou, et al. Diffusibility enhancement of rejuvenator by epoxidized soybean oil and its influence on the performance of recycled hot mix asphalt mixtures[J]. Materials, 2018, 11(5): 833. |
| 57 | CONG Peiliang, HAO Hongjie, ZHANG Yihan, et al. Investigation of diffusion of rejuvenator in aged asphalt[J]. International Journal of Pavement Research and Technology, 2016, 9(4): 280-288. |
| 58 | 陈龙, 支鹏飞, 李晋, 等. 新旧沥青界面融合实测与耗散粒子动力学模拟[J]. 山东大学学报(工学版), 2022, 52(3): 61-69, 79. |
| CHEN Long, ZHI Pengfei, LI Jin, et al. Measurement and dissipative particle dynamics simulation of interface diffusion between virgin and aged asphalt[J]. Journal of Shandong University (Engineering Science), 2022, 52(3): 61-69, 79. | |
| 59 | 陈龙, 何兆益, 陈宏斌, 等. 新-旧沥青界面再生流变特征及分子动力学模拟研究[J]. 中国公路学报, 2019, 32(3): 25-33. |
| CHEN Long, HE Zhaoyi, CHEN Hongbin, et al. Rheological characteristics and molecular dynamics simulation of interface regeneration between virgin and aged asphalts[J]. China Journal of Highway and Transport, 2019, 32(3): 25-33. | |
| 60 | FANG Ying, ZHANG Zhengqi, ZHANG Hongjiang, et al. Analysis of wetting behavior and its influencing factors of rejuvenator/old asphalt interface based on surface wetting theory[J]. Construction and Building Materials, 2022, 314: 125674. |
| 61 | 刘璐, 崔亚楠, 崔树宇. 再生剂在老化沥青中扩散行为的多尺度研究[J]. 长沙理工大学学报(自然科学版), 2023, 20(5): 84-93. |
| LIU Lu, CUI Yanan, CUI Shuyu. Multi-scale study on the diffusion behavior of regenerant in aged asphalt[J]. Journal of Changsha University of Science & Technology (Natural Science), 2023, 20(5): 84-93. | |
| 62 | ZHAO Sheng, BOWERS Benjamin, HUANG Baoshan, et al. Characterizing rheological properties of binder and blending efficiency of asphalt paving mixtures containing RAS through GPC[J]. Journal of Materials in Civil Engineering, 2014, 26(5): 941-946. |
| 63 | TANG Naipeng, Quan LYU, HUANG Weidong, et al. Chemical and rheological evaluation of aging characteristics of terminal blend rubberized asphalt binder[J]. Construction and Building Materials, 2019, 205: 87-96. |
| 64 | 赵可成, 王予红, 陈宇, 等. 再生剂对沥青相对分子质量和尺寸分布的作用[J]. 建筑材料学报, 2020, 23(5): 1130-1136. |
| ZHAO Kecheng, WANG Yuhong, CHEN Yu, et al. Effects of rejuvenators on relative molecular mass and size distribution of asphalt binders[J]. Journal of Building Materials, 2020, 23(5): 1130-1136. | |
| 65 | XIAO Yue, YAN Boxiang, ZHANG Xiaoshan, et al. Study the diffusion characteristics of rejuvenator oil in aged asphalt binder by image thresholding and GC-MS tracer analysis[J]. Construction and Building Materials, 2020, 249: 118782. |
| 66 | KARLSSON Robert, ISACSSON Ulf. Application of FTIR-ATR to characterization of bitumen rejuvenator diffusion[J]. Journal of Materials in Civil Engineering, 2003, 15(2): 157-165. |
| 67 | LI Zuzhong, Chunguang FA, ZHAO Hongyan, et al. Investigation on evolution of bitumen composition and micro-structure during aging[J]. Construction and Building Materials, 2020, 244: 118322. |
| 68 | CHEN Meizhu, LENG Binbin, WU Shaopeng, et al. Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders[J]. Construction and Building Materials, 2014, 66: 286-298. |
| 69 | ZHU Chongzheng, ZHANG Henglong, ZHANG Dongmei, et al. Influence of base asphalt and SBS modifier on the weathering aging behaviors of SBS modified asphalt[J]. Journal of Materials in Civil Engineering, 2018, 30(3): 04017306. |
| 70 | 毛昱. 再生剂在老化沥青中扩散行为及再生效果评价[D]. 兰州: 兰州理工大学, 2021. |
| MAO Yu. Diffusion behavior and regeneration effect evaluation of rejuvenator in aged asphalt[D]. Lanzhou: Lanzhou University of Technology, 2021. | |
| 71 | GUO Meng, TAN Yiqiu, LUO Daisong, et al. Effect of recycling agents on rheological and micromechanical properties of SBS-modified asphalt binders[J]. Advances in Materials Science and Engineering, 2018, 2018(1): 5482368. |
| 72 | FANG Ying, ZHANG Zhengqi, SHI Jierong, et al. Insights into permeability of rejuvenator in old asphalt based on permeation theory: Permeation behaviors and micro characteristics[J]. Construction and Building Materials, 2022, 325: 126765. |
| 73 | FISCHER H, STADLER H, ERINA N. Quantitative temperature-depending mapping of mechanical properties of bitumen at the nanoscale using the AFM operated with peakforce tapping™ mode[J]. Journal of Microscopy, 2013, 250(3): 210-217. |
| 74 | SUN Bin, ZHOU Xinxing. Diffusion and rheological properties of asphalt modified by bio-oil regenerant derived from waste wood[J]. Journal of Materials in Civil Engineering, 2018, 30(2): 04017274. |
| [1] | 史雪薇, 谭超, 董峰. 油气水三相流多模式超声测试信号分析与流型辨识[J]. 化工进展, 2025, 44(4): 1834-1848. |
| [2] | 孙铭聪, 覃晴, 王彦晗, 赵宁, 闫晓丽. 基于集成学习的垂直管环状流界面波速预测模型[J]. 化工进展, 2025, 44(4): 1849-1858. |
| [3] | 薛立新, 董永平, 陈梦瑶, 高从堦. 十二烷基硫酸钠(SDS)和强碱(NaOH)对聚酰胺复合纳滤膜的协同调控机理[J]. 化工进展, 2025, 44(4): 2225-2237. |
| [4] | 白中良, 李萍, 王晖, 李伟, 张强, 李宁. 基于响应曲面法的沥青再生剂配比设计以及抗老化性能[J]. 化工进展, 2025, 44(3): 1607-1618. |
| [5] | 李家豪, 范海明, 魏志毅, 程思远. 纳米材料在低渗透油藏中的研究进展及展望[J]. 化工进展, 2025, 44(3): 1485-1495. |
| [6] | 陈可欣, 李熙, 常福城, 武萧衣, 娄嘉诚, 李会雄. 螺旋管内水-水蒸气两相流压降及流型转变特性[J]. 化工进展, 2025, 44(2): 613-624. |
| [7] | 林梅, 雷雨, 李萍, 张强. 石墨烯/橡胶复合改性沥青-集料界面黏附性能及机理[J]. 化工进展, 2025, 44(2): 991-1002. |
| [8] | 王雪莉, 杨卫亚, 张会成, 王少军, 凌凤香. 金属有机框架(MOF)基混合基质膜界面改性方法及其气体分离性能[J]. 化工进展, 2025, 44(2): 928-940. |
| [9] | 张晓方, 甘汶, 纪之骄, 许明, 李初福, 何广利. 电化学氮还原合成氨电解质利用现状与调控策略[J]. 化工进展, 2025, 44(2): 809-819. |
| [10] | 薛立新, 涂龙斗, 李士洋, 郑晨晨, 蔡达健, 高从堦. 包含原位生长ZIF-L粒子的PEI基高效染料脱盐混合基质纳滤膜[J]. 化工进展, 2024, 43(S1): 431-442. |
| [11] | 梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062. |
| [12] | 李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048. |
| [13] | 刘芳, 刘海霞, 魏云霞, 马明广. 凹凸棒/琼脂复合气凝胶的制备及太阳能界面蒸发性能[J]. 化工进展, 2024, 43(9): 5329-5338. |
| [14] | 李子寒, 舒建成, 曹文星, 杨慧敏, 陈梦君. 菱锰矿浸出前后理化特性及界面水化行为变化规律[J]. 化工进展, 2024, 43(9): 5320-5328. |
| [15] | 张蕾, 杜红英, 冯文浩, 郭军康. 基于二维光热材料的界面太阳能光热蒸发系统优化[J]. 化工进展, 2024, 43(8): 4571-4586. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |