化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4571-4586.DOI: 10.16085/j.issn.1000-6613.2023-1092
• 资源与环境化工 • 上一篇
收稿日期:
2023-06-30
修回日期:
2023-09-05
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
张蕾
作者简介:
张蕾(1991—),女,硕士生导师,研究方向为纳米技术及膜分离。E-mail:zhanglei0954@126.com。
基金资助:
ZHANG Lei(), DU Hongying, FENG Wenhao, GUO Junkang
Received:
2023-06-30
Revised:
2023-09-05
Online:
2024-08-15
Published:
2024-09-02
Contact:
ZHANG Lei
摘要:
海水淡化是缓解全球淡水资源匮乏的重要途径,但传统的海水淡化技术存在高成本、高能耗、低效率的问题。利用太阳能作为唯一能源输入的界面太阳能光热蒸发技术(interfacial solar steam generation,ISSG)因其低成本、可持续、高效率的优势引起了人们极大的关注,ISSG在气-液界面通过高效光热转化将水分子蒸发冷凝收集得到淡水。本文介绍了近年来利用二维光热材料设计的界面太阳能吸收器结构的演变,重点分析了膜(涂层)-气凝胶-水凝胶(泡沫)的发展历程,指出基于水凝胶(泡沫)的光热蒸发系统具有高效热定位、高效光热转换、高效抗盐沉积、快速输水和水活化的独特优势。在此基础上,对ISSG的发展前景及挑战进行了总结,提出了开发自动调节蒸发速率、蒸汽温度的新型智能蒸发系统,并将其与能源、农业、工业等领域互联的新策略,旨在启发从实验室到实际大规模太阳能驱动清洁水生产的光热蒸发系统的科学设计及工程应用。
中图分类号:
张蕾, 杜红英, 冯文浩, 郭军康. 基于二维光热材料的界面太阳能光热蒸发系统优化[J]. 化工进展, 2024, 43(8): 4571-4586.
ZHANG Lei, DU Hongying, FENG Wenhao, GUO Junkang. Optimization of interfacial solar photothermal evaporation system based on two-dimensional photothermal materials[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4571-4586.
蒸发体形态 | 光热材料 | 光强/kW·m-2 | 蒸发速率/kg·m-2·h-1 | 能量转换效率/% | 参考文献 |
---|---|---|---|---|---|
膜(涂层) | 氧化石墨烯 | 1 | 1.45 | 78 | [ |
碳纳米管 | 1 | 1.37 | 87.4 | [ | |
石墨烯 | 1 | 1.62 | 86.5 | [ | |
还原氧化石墨烯 | 1 | 1.14 | 89.2 | [ | |
2层二硫化钼 | 1 | 1.68±0.08 | 83.8 | [ | |
疏水碳化钛 | 1 | 1.31 | 71 | [ | |
仿生蛇皮碳化钛 | 1 | 1.33 | 86.7 | [ | |
镍-MOFs | 1 | 2.07 | 91.5 | [ | |
PVDF/二硫化钨 | 3 | 4.15 | 94.2 | [ | |
CB/PMMA-PAN | 1 | 1.3 | 72 | [ | |
二氧化钛 | 1 | 1.13 | 70.9 | [ | |
单壁碳纳米管-二硫化钼 | 5 | 6.6 | 91.5 | [ | |
气凝胶 | 二硫化钼 | 1 | 1.27 | 88.0 | [ |
1.5 | 1.95 | 90.5 | |||
2.0 | 2.64 | 92.1 | |||
3.0 | 4.05 | 95.3 | |||
PC@PDA-C | 1 | 2.13 | 94.5 | [ | |
玉米秸秆/石墨烯 | 1 | 2.71 | 85 | [ | |
N掺杂玉米秸秆石墨烯 | 1 | 3.22 | 95 | ||
N掺杂环形石墨烯 | 1 | 2.53 | 90.3 | [ | |
纳米Au-PVA | 1 | 2.7 | 79.3 | [ | |
C-PVA | 1 | 2.1 | 89.8 | [ | |
水凝胶 | HHEs | 1 | 3.2 | 90 | [ |
h-LAH | 1 | 3.6 | 92 | [ | |
SMoS2-PH | 1 | 3.297 | 93.4 | [ | |
Ti3C2T x MXene/rGO | 1 | 3.62 | 91 | [ | |
HNG | 1 | 3.2 | 94 | [ | |
SPJH | 1 | 4.18 | 95 | [ | |
IPNG | 1 | 3.9 | 92 | [ | |
COF/GO | 1 | 3.69 | 92 | [ | |
BBH-L | 1 | 4.37 | 98.2 | [ |
表1 不同蒸发体材料的水蒸发速率和光热转换效率
蒸发体形态 | 光热材料 | 光强/kW·m-2 | 蒸发速率/kg·m-2·h-1 | 能量转换效率/% | 参考文献 |
---|---|---|---|---|---|
膜(涂层) | 氧化石墨烯 | 1 | 1.45 | 78 | [ |
碳纳米管 | 1 | 1.37 | 87.4 | [ | |
石墨烯 | 1 | 1.62 | 86.5 | [ | |
还原氧化石墨烯 | 1 | 1.14 | 89.2 | [ | |
2层二硫化钼 | 1 | 1.68±0.08 | 83.8 | [ | |
疏水碳化钛 | 1 | 1.31 | 71 | [ | |
仿生蛇皮碳化钛 | 1 | 1.33 | 86.7 | [ | |
镍-MOFs | 1 | 2.07 | 91.5 | [ | |
PVDF/二硫化钨 | 3 | 4.15 | 94.2 | [ | |
CB/PMMA-PAN | 1 | 1.3 | 72 | [ | |
二氧化钛 | 1 | 1.13 | 70.9 | [ | |
单壁碳纳米管-二硫化钼 | 5 | 6.6 | 91.5 | [ | |
气凝胶 | 二硫化钼 | 1 | 1.27 | 88.0 | [ |
1.5 | 1.95 | 90.5 | |||
2.0 | 2.64 | 92.1 | |||
3.0 | 4.05 | 95.3 | |||
PC@PDA-C | 1 | 2.13 | 94.5 | [ | |
玉米秸秆/石墨烯 | 1 | 2.71 | 85 | [ | |
N掺杂玉米秸秆石墨烯 | 1 | 3.22 | 95 | ||
N掺杂环形石墨烯 | 1 | 2.53 | 90.3 | [ | |
纳米Au-PVA | 1 | 2.7 | 79.3 | [ | |
C-PVA | 1 | 2.1 | 89.8 | [ | |
水凝胶 | HHEs | 1 | 3.2 | 90 | [ |
h-LAH | 1 | 3.6 | 92 | [ | |
SMoS2-PH | 1 | 3.297 | 93.4 | [ | |
Ti3C2T x MXene/rGO | 1 | 3.62 | 91 | [ | |
HNG | 1 | 3.2 | 94 | [ | |
SPJH | 1 | 4.18 | 95 | [ | |
IPNG | 1 | 3.9 | 92 | [ | |
COF/GO | 1 | 3.69 | 92 | [ | |
BBH-L | 1 | 4.37 | 98.2 | [ |
1 | QIN Yue, MUELLER Nathaniel D, SIEBERT Stefan, et al. Flexibility and intensity of global water use[J]. Nature Sustainability, 2019, 2(6): 515-523. |
2 | MAUTER Meagan S, FISKE Peter S. Desalination for a circular water economy[J]. Energy & Environmental Science, 2020, 13(10): 3180-3184. |
3 | YANG Peihua, LIU Kang, CHEN Qian, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science, 2017, 10(9): 1923-1927. |
4 | ZHAO Liyuan, TIAN Jing, LIU Yangkaixi, et al. A novel floatable composite hydrogel for solar evaporation enhancement[J]. Environmental Science: Water Research & Technology, 2020, 6(1): 221-230. |
5 | DESHMUKH Akshay, Chanhee BOO, KARANIKOLA Vasiliki, et al. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges[J]. Energy & Environmental Science, 2018, 11(5): 1177-1196. |
6 | ULIANA Adam A, Ngoc T BUI, KAMCEV Jovan, et al. Ion-capture electrodialysis using multifunctional adsorptive membranes[J]. Science, 2021, 372(6539): 296-299. |
7 | WANG Xueyang, LI Xiuqiang, LIU Guoliang, et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator[J]. Angewandte Chemie, 2019, 58(35): 12054-12058. |
8 | Taikan OKI, KANAE Shinjiro. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072. |
9 | WU Xuan, ROBSON Max Edward, PHELPS Jack Leslie, et al. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J]. Nano Energy, 2019, 56: 708-715. |
10 | CHEN Meiling, WU Yufeng, SONG Weixing, et al. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation[J]. Nanoscale, 2018, 10(13): 6186-6193. |
11 | CHEN Chaoji, KUANG Yudi, HU Liangbing. Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3): 683-718. |
12 | Young-Shin JUN, WU Xuanhao, GHIM Deoukchen, et al. Photothermal membrane water treatment for two worlds[J]. Accounts of Chemical Research, 2019, 52(5): 1215-1225. |
13 | GUEYMARD Christian A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models[J]. Solar Energy, 2004, 76(4): 423-453. |
14 | ZHU Lin, SUN Lei, ZHANG Hong, et al. Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination[J]. Nano Energy, 2019, 57: 842-850. |
15 | SHI Chenjing, LIU Zijie, TIAN Zhen, et al. Fabrication of 3D MXene@graphene hydrogel with high ion accessibility via Al-induced self-assembly and reduction for high-performance supercapacitors[J]. Electrochimica Acta, 2023, 464: 142892-142899. |
16 | YANG He, SUN Yinghui, PENG Meiwen, et al. Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity[J]. ACS Nano, 2022, 16(2): 2511-2520. |
17 | WILSON Higgins M, Hyeong Woo LIM, LEE Sang Joon. Highly efficient and salt-rejecting poly(vinyl alcohol) hydrogels with excellent mechanical strength for solar desalination[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 47800-47809. |
18 | LI Renyuan, ZHANG Lianbin, SHI Le, et al. MXene Ti3C2: An effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): 3752-3759. |
19 | MUSTAKEEM Mustakeem, EL-DEMELLAWI Jehad K, OBAID M, et al. MXene-coated membranes for autonomous solar-driven desalination[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5265-5274. |
20 | XU Chengjian, GAO Mengyue, YU Xiaoxiao, et al. Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation[J]. Nano-Micro Letters, 2023, 15(1): 64-82. |
21 | ZHANG He, LUO Wenmei, DU Yuping, et al. The g-C3N4 decorated carbon aerogel with integrated solar steam generation and photocatalysis for effective desalination and water purification[J]. Desalination, 2023, 564: 116821-116830. |
22 | LIN Xuliang, WANG Ping, HONG Ruitong, et al. Fully lignocellulosic biomass‐based double‐layered porous hydrogel for efficient solar steam generation[J]. Advanced Functional Materials, 2022, 32(51): 2209262-2209273. |
23 | HE Nan, YANG Yongfang, WANG Haonan, et al. Ion-transfer engineering via Janus hydrogels enables ultrahigh performance and salt-resistant solar desalination[J]. Advanced Materials, 2023, 35(24): 2300189. |
24 | LIU Pan, HU Yibo, LI Xiaoying, et al. Enhanced solar evaporation using a scalable MoS2-Based hydrogel for highly efficient solar desalination[J]. Angewandte Chemie, 2022, 61(37): e202208587. |
25 | ZHAO Jianqiu, YANG Yawei, YANG Chenhui, et al. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination[J]. Journal of Materials Chemistry A, 2018, 6(33): 16196-16204. |
26 | CHEN Rong, WANG Xun, GAN Qimao, et al. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection[J]. Journal of Materials Chemistry A, 2019, 7(18): 11177-11185. |
27 | ZHENG Siyu, ZHOU Jiahui, SI Mengjie, et al. A molecularly engineered zwitterionic hydrogel with strengthened anti-polyelectrolyte effect: From high-rate solar desalination to efficient electricity generation[J]. Advanced Functional Materials, 2023, 33(43): 2303272. |
28 | WANG Xuechun, ZHANG Linjiang, ZHENG Dan, et al. A polyelectrolyte hydrogel coated loofah sponge evaporator based on Donnan effect for highly efficient solar-driven desalination[J]. Chemical Engineering Journal, 2023, 462: 142265-142275. |
29 | WANG Zhongyi, ZHU Yingjie, CHEN Yuqiao, et al. Bioinspired aerogel with vertically ordered channels and low water evaporation enthalpy for high‐efficiency salt‐rejecting solar seawater desalination and wastewater purification[J]. Small, 2023, 19(19): 2206917. |
30 | LEI Chuxin, PARK Jungjoon, GUAN Weixin, et al. Biomimetically assembled sponge‐like hydrogels for efficient solar water purification[J]. Advanced Functional Materials, 2023, 33(38): 2303883. |
31 | LI Lin, HE Nan, JIANG Bo, et al. Highly salt‐resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization[J]. Advanced Functional Materials, 2021, 31(43): 2104380. |
32 | XU Zhenyuan, ZHANG Lenan, ZHAO Lin, et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still[J]. Energy & Environmental Science, 2020, 13(3): 830-839. |
33 | TANG Jiebin, ZHENG Tao, SONG Zhaoping, et al. Realization of low latent heat of a solar evaporator via regulating the water state in wood channels[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18504-18511. |
34 | XU Zhourui, LI Zida, JIANG Yihang, et al. Recent advances in solar-driven evaporation systems[J]. Journal of Materials Chemistry A, 2020, 8(48): 25571-25600. |
35 | ZHANG Panpan, LI Jing, Lingxiao LYU, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano, 2017, 11(5): 5087-5093. |
36 | GUO Ankang, MING Xin, FU Yang, et al. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29958-29964. |
37 | ZHANG Lei, MU Li, ZHOU Qixing, et al. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination[J]. Water Research, 2020, 170: 115367-115377. |
38 | LI Kerui, CHANG Ting‐Hsiang, LI Zhipeng, et al. Biomimetic MXene textures with enhanced light‐to‐heat conversion for solar steam generation and wearable thermal management[J]. Advanced Energy Materials, 2019, 9(34): 1901687. |
39 | YU Yaolun, CHEN Sai, JIA Yi, et al. Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification[J]. Carbon, 2020, 169: 134-141. |
40 | SU Yiru, LIU Lang, GAO Xuechao, et al. A high-efficient and salt-rejecting 2D film for photothermal evaporation[J]. iScience, 2023: 107347-107359. |
41 | YANG Xiangdong, YANG Yanbing, FU Linna, et al. An ultrathin flexible 2D membrane based on single‐walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials, 2018, 28(3): 1704505-1704514. |
42 | GHIDIU Michael, LUKATSKAYA Maria R, ZHAO Mengqiang, et al. Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
43 | ZHA Xiangjun, ZHAO Xing, PU Junhong, et al. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36589-36597. |
44 | WEI Zechang, CAI Chenyang, HUANG Yangze, et al. Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation[J]. Nano Energy, 2021, 86: 106138-106152. |
45 | MENG Xiangyu, YANG Jianhui, RAMAKRISHNA Seeram, et al. Gradient vertical channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(12): 4955-4965. |
46 | LIU Zhiwu, QING Renkun, XIE Anquan, et al. Self-contained janus aerogel with antifouling and salt-rejecting properties for stable solar evaporation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18829-18837. |
47 | LI Wei, TIAN Xiaohan, LI Xiaofeng, et al. Ultrahigh solar steam generation rate of a vertically aligned reduced graphene oxide foam realized by dynamic compression[J]. Journal of Materials Chemistry A, 2021, 9(26): 14859-14867. |
48 | KONG Yan, DAN Hongbing, KONG Wenjia, et al. Self-floating maize straw/graphene aerogel synthesis based on microbubble and ice crystal templates for efficient solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A, 2020, 8(46): 24734-24742. |
49 | ZHANG Lei, HU Xiangang, ZHOU Qixing. Sunlight-assisted tailoring of surface nanostructures on single-layer graphene nanosheets for highly efficient cation capture and high-flux desalination[J]. Carbon, 2020, 161: 674-684. |
50 | CAO Pei, ZHAO Liming, ZHANG Jian, et al. Gradient heating effect modulated by hydrophobic/hydrophilic carbon nanotube network structures for ultrafast solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19109-19116. |
51 | ZHANG Chaofan, YUAN Baohua, LIANG Ying, et al. Solar vapor generator: A natural all-in-one 3D system derived from cattail[J]. Solar Energy Materials and Solar Cells, 2021, 227: 111127-111136. |
52 | WANG Qingmiao, GUO Qijing, JIA Feifei, et al. Facile preparation of three-dimensional MoS2 aerogels for highly efficient solar desalination[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32673-32680. |
53 | FERREIRA-NETO Elias P, ULLAH Sajjad, SILVA Thais C A DA, et al. Bacterial nanocellulose/MoS2 hybrid aerogels as bifunctional adsorbent/photocatalyst membranes for in-flow water decontamination[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41627-41643. |
54 | ZHANG Qi, YI Gang, FU Ze, et al. Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance[J]. ACS Nano, 2019, 13(11): 13196-13207. |
55 | HAN Xinhong, DING Shaoqiu, FAN Liwu, et al. Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators[J]. Journal of Materials Chemistry A, 2021, 9(34): 18614-18622. |
56 | ZHAO Xing, PENG Limei, TANG Chunyan, et al. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels[J]. Materials Horizons, 2020, 7(3): 855-865. |
57 | ZHANG Lei, DU Hongying, WANG Jiayuan, et al. Gas foaming guided fabrication of hydrogel beads with controlled phase and porous structure for durable and highly efficient solar-powered water purification[J]. Chemical Engineering Journal, 2023, 473: 145338-145349. |
58 | AHMED Enas M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. |
59 | SHIRSATH Sachin R, PATIL Anup P, PATIL Rohit, et al. Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with Kaolin clay: A comparative study[J]. Ultrasonics Sonochemistry, 2013, 20(3): 914-923. |
60 | LI Zhiyong, SU Yunlan, XIE Baoquan, et al. A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped[J]. Journal of Materials Chemistry B, 2015, 3(9): 1769-1778. |
61 | YANG Jun, GONG Cheng, SHI Fukuan, et al. High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: Role of chain architecture on hydrogel properties[J]. The Journal of Physical Chemistry B, 2012, 116(39): 12038-12047. |
62 | ZHAO Fei, ZHOU Xingyi, SHI Ye, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology, 2018, 13(6): 489-495. |
63 | ZHOU Xingyi, ZHAO Fei, GUO Youhong, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances, 2019, 5(6): eaaw5484-eaaw5492. |
64 | ZHOU Xingyi, GUO Youhong, ZHAO Fei, et al. Topology‐controlled hydration of polymer network in hydrogels for solar‐driven wastewater treatment[J]. Advanced Materials, 2020, 32(52): e2007012. |
65 | LU Yi, FAN Deqi, WANG Yida, et al. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation[J]. ACS Nano, 2021, 15(6): 10366-10376. |
66 | HONG Seunghyun, SHI Yusuf, LI Renyuan, et al. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28517-28524. |
67 | WANG Xu, LIU Qingchang, WU Siyao, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials, 2019, 31(19): e1807716. |
68 | MA Cheng, LIU Qiaoling, PENG Qianqian, et al. Biomimetic hybridization of Janus-like graphene oxide into hierarchical porous hydrogels for improved mechanical properties and efficient solar desalination devices[J]. ACS Nano, 2021, 15(12): 19877-19887. |
69 | LIU Xinghang, CHEN Feixiang, LI Yuankai, et al. 3D hydrogel evaporator with vertical radiant vessels breaking the trade‐off between thermal localization and salt resistance for solar desalination of high-salinity[J]. Advanced Materials, 2022, 34(36): e2203137. |
70 | LIU Xiaojie, TIAN Yanpei, WU Yanzi, et al. Seawater desalination derived entirely from ocean biomass[J]. Journal of Materials Chemistry A, 2021, 9(39): 22313-22324. |
71 | TIAN Yanpei, LIU Xiaojie, XU Shilin, et al. Recyclable and efficient ocean biomass-derived hydrogel photothermal evaporator for thermally-localized solar desalination[J]. Desalination, 2022, 523: 115449-115459. |
72 | ZHANG He, LI Xiaoke, ZHENG Size, et al. The coral‐inspired steam evaporator for efficient solar desalination via porous and thermal insulation bionic design[J]. SmartMat, 2023, 4(6): e1175-e1187. |
73 | SHI Yusuf, ZHANG Chenlin, LI Renyuan, et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology, 2018, 52(20): 11822-11830. |
74 | LU Yi, FAN Deqi, XU Haolan, et al. Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification[J]. Solar RRL, 2020, 4(9): 2000232-20000244. |
75 | SONG Xiaoying, SONG Hucheng, WANG Sheng, et al. Enhancement of solar vapor generation by a 3D hierarchical heat trapping structure[J]. Journal of Materials Chemistry A, 2019, 7(46): 26496-26503. |
76 | LI Xiuqiang, XU Weichao, TANG Mingyao, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953-13958. |
77 | HE Panpan, HAO Liang, LIU Ning, et al. Controllable synthesis of sea urchin-like carbon from metal-organic frameworks for advanced solar vapor generators[J]. Chemical Engineering Journal, 2021, 423: 130268-130280. |
78 | WEI Na, LI Zhenkui, LI Qi, et al. Scalable and low-cost fabrication of hydrophobic PVDF/WS2 porous membrane for highly efficient solar steam generation[J]. Journal of Colloid and Interface Science, 2021, 588: 369-377. |
79 | XU Weichao, HU Xiaozhen, ZHUANG Shendong, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884-1702891. |
80 | ZHU Guilian, XU Jijian, ZHAO Wenli, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31716-31721. |
81 | LIU Ye, LIU Huijie, XIONG Jian, et al. Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation[J]. Chemical Engineering Journal, 2022, 427: 131539-131548. |
82 | HUANG Zhongming, LI Shengliang, CUI Xiao, et al. A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2020, 8(21): 10742-10746. |
83 | YANG Jianming, WANG Hongqiang, ZHOU Bin, et al. Versatile direct writing of aerogel-based sol-gel inks[J]. Langmuir, 2021, 37(6): 2129-2139. |
84 | GUO Youhong, LU Hengyi, ZHAO Fei, et al. Biomass‐derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Advanced Materials, 2020, 32(11): e1907061. |
85 | LI Changxia, CAO Sijia, LUTZKI Jana, et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation[J]. Journal of the American Chemical Society, 2022, 144(7): 3083-3090. |
[1] | 郑云香, 高艺伦, 李宴汝, 刘青霖, 张浩腾, 王向鹏. 氨基三乙酸酐改性多孔双网络水凝胶的制备及吸附性能[J]. 化工进展, 2024, 43(8): 4542-4549. |
[2] | 谢蒙蒙, 刘健, 党蕊, 李美馨, 林晓婷, 苏舟, 王洁. 离子导电水凝胶的制备及在柔性电子领域的应用[J]. 化工进展, 2024, 43(6): 3128-3144. |
[3] | 吴晨赫, 刘彧旻, 杨昕旻, 崔记伟, 姜韶堃, 叶金花, 刘乐全. 粉体光催化全水分解技术研究进展[J]. 化工进展, 2024, 43(4): 1810-1822. |
[4] | 刘萌萌, 秋列维, 万智卫, 李世婧, 许玉雨. 自愈水凝胶的设计原理及应用[J]. 化工进展, 2024, 43(3): 1350-1362. |
[5] | 剧芳. 基于银-硫配位的协同抗菌水凝胶的制备与性能[J]. 化工进展, 2024, 43(2): 1039-1046. |
[6] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[7] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[8] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[9] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[10] | 冯琬淇, 哈尼夏·巴合提null, 葛雨璇, 赵俭波. 磁性PASP/PAM半互穿水凝胶的制备及性能[J]. 化工进展, 2023, 42(6): 3130-3137. |
[11] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[12] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[13] | 杜涛, 马进伟, 陈茜茜, 方浩, 陈秉章, 陈厚仁. PV/T模块复合冷却模式性能对比测试与数值模拟分析[J]. 化工进展, 2023, 42(2): 722-730. |
[14] | 李世文, 王亮, 李春虎. CuBi2O4/BiOBr@GH双功能光催化剂的制备及其光催化性能[J]. 化工进展, 2023, 42(12): 6363-6371. |
[15] | 韩丽, 李望良, 李艳香, 安高军, 鲁长波. 纤维状钙钛矿太阳能电池研究进展[J]. 化工进展, 2023, 42(10): 5135-5146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |