化工进展 ›› 2025, Vol. 44 ›› Issue (2): 613-624.DOI: 10.16085/j.issn.1000-6613.2024-0122
• 化工过程与装备 • 下一篇
陈可欣(), 李熙, 常福城, 武萧衣, 娄嘉诚, 李会雄(
)
收稿日期:
2024-01-16
修回日期:
2024-02-18
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
李会雄
作者简介:
陈可欣(2001—),女,硕士研究生,研究方向为多相流动与传热。E-mail:ckxlovechina@stu.xjtu.edu.cn。
基金资助:
CHEN Kexin(), LI Xi, CHANG Fucheng, WU Xiaoyi, LOU Jiacheng, LI Huixiong(
)
Received:
2024-01-16
Revised:
2024-02-18
Online:
2025-02-25
Published:
2025-03-10
Contact:
LI Huixiong
摘要:
螺旋管蒸汽发生器因其传热效率高、结构紧凑、热膨胀自由等特点,被广泛应用于化工、航空航天、核工程等领域,尤其在小型模块化核反应堆中得到了广泛应用。螺旋管特殊的几何形状导致其内工质流动特性复杂,如管内二次流及由此引发的特殊气液相分布、流型转变特性以及高于直管的压降。几何结构参数的差异往往导致螺旋管内气-液流动特性显著不同。本文结合实际应用需求,通过实验和数值模拟对某一特殊细小管径的螺旋管内亚临界压力条件下水-水蒸气两相流的压降特性和流型转换特性开展研究。发现螺旋管内气-液两相摩擦压降随热平衡干度的增加而增大,在干度约为0.75处达到峰值,然后逐渐降低;该现象出现是由于在干度约为0.75时两相发生了环状流向分散流(雾状流)的流型转变,使得壁面切应力减小,从而导致两相摩擦压降减小。结合数值模拟的分析,将螺旋管内高温高压气-液两相流的流型划分为泡状流、间歇流、环状流和分散流,其中泡状流和间歇流的转换干度为0.038,间歇流和环状流的转换干度为0.500,环状流和分散流的转换干度为0.751,同时确定了蒸干点为0.93。本文的研究结果可为螺旋管式蒸汽发生器的设计和安全运行提供参考。
中图分类号:
陈可欣, 李熙, 常福城, 武萧衣, 娄嘉诚, 李会雄. 螺旋管内水-水蒸气两相流压降及流型转变特性[J]. 化工进展, 2025, 44(2): 613-624.
CHEN Kexin, LI Xi, CHANG Fucheng, WU Xiaoyi, LOU Jiacheng, LI Huixiong. Investigation on pressure drop and characteristics of flow-pattern transition of steam-water two-phase flows in helically coiled tubes[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 613-624.
图1 螺旋管中水-水蒸气流动换热实验系统图[20]1—水箱;2—截止阀;3—过滤器;4—柱塞泵;5—质量流量计;6、7—针阀;8~10—回热器;11—预热段;12—铠装热电偶;13—压力变送器;14—实验段;15—差压变送器;16—冷凝器;17—冷却塔;18—冷却水泵;19—机械压力表;20—背压阀;21—采集系统
算例编号 | 压力P/MPa | 质量流速G/kg·m-2·s-1 | 干度x |
---|---|---|---|
1 | 11 | 1000 | 0.036 |
2 | 11 | 1000 | 0.038 |
3 | 11 | 1000 | 0.122 |
4 | 11 | 1000 | 0.150 |
5 | 11 | 1000 | 0.200 |
6 | 11 | 1000 | 0.279 |
7 | 11 | 1000 | 0.410 |
8 | 11 | 1000 | 0.483 |
9 | 11 | 1000 | 0.500 |
10 | 11 | 1000 | 0.633 |
11 | 11 | 1000 | 0.702 |
12 | 11 | 1000 | 0.751 |
13 | 11 | 1000 | 0.782 |
14 | 11 | 1000 | 0.853 |
15 | 11 | 1000 | 0.930 |
表1 数值模拟的工况参数
算例编号 | 压力P/MPa | 质量流速G/kg·m-2·s-1 | 干度x |
---|---|---|---|
1 | 11 | 1000 | 0.036 |
2 | 11 | 1000 | 0.038 |
3 | 11 | 1000 | 0.122 |
4 | 11 | 1000 | 0.150 |
5 | 11 | 1000 | 0.200 |
6 | 11 | 1000 | 0.279 |
7 | 11 | 1000 | 0.410 |
8 | 11 | 1000 | 0.483 |
9 | 11 | 1000 | 0.500 |
10 | 11 | 1000 | 0.633 |
11 | 11 | 1000 | 0.702 |
12 | 11 | 1000 | 0.751 |
13 | 11 | 1000 | 0.782 |
14 | 11 | 1000 | 0.853 |
15 | 11 | 1000 | 0.930 |
1 | SEBAN R A, MCLAUGHLIN E F. Heat transfer in tube coils with laminar and turbulent flow[J]. International Journal of Heat and Mass Transfer, 1963, 6(5): 387-395. |
2 | OWHADI Ali, BELL Kenneth J, CRAIN Berry. Forced convection boiling inside helically-coiled tubes[J]. International Journal of Heat and Mass Transfer, 1968, 11(12): 1779-1793. |
3 | CORONEL Pablo, SANDEEP K P. Heat transfer coefficient in helical heat exchangers under turbulent flow conditions[J]. International Journal of Food Engineering, 2008, 4(1): 1209. |
4 | FSADNI Andrew Michael, WHITTY Justin P M. A review on the two-phase heat transfer characteristics in helically coiled tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2016, 95: 551-565. |
5 | FSADNI Andrew Michael, WHITTY Justin P M. A review on the two-phase pressure drop characteristics in helically coiled tubes[J]. Applied Thermal Engineering, 2016, 103: 616-638. |
6 | ONAL Busra Selenay, KIRKAR Safak Metin, AKGUL Dogan, et al. Heat transfer and pressure drop characteristics of two phase flow in helical coils[J]. Thermal Science and Engineering Progress, 2022, 27: 101143. |
7 | GUO Liejin, FENG Ziping, CHEN Xuejun. An experimental investigation of the frictional pressure drop of steam-water two-phase flow in helical coils[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2601-2610. |
8 | ZHAO Liang, GUO Liejin, BAI Bofeng, et al. Convective boiling heat transfer and two-phase flow characteristics inside a small horizontal helically coiled tubing once-through steam generator[J]. International Journal of Heat and Mass Transfer, 2003, 46(25): 4779-4788. |
9 | 毛宇飞, 郭烈锦, 甄飞强, 等. 螺旋管内汽水两相流摩擦阻力特性实验研究[J]. 工程热物理学报, 2010, 31(3): 443-446. |
MAO Yufei, GUO Liejin, ZHEN Feiqiang, et al. Experimental investigation of frictional resistance for steam-water two-phase flow in helical coils[J]. Journal of Engineering Thermophysics, 2010, 31(3): 443-446. | |
10 | HARDIK B K, PRABHU S V. Boiling pressure drop and local heat transfer distribution of helical coils with water at low pressure[J]. International Journal of Thermal Sciences, 2017, 114: 44-63. |
11 | XIAO Yao, HU Zhenxiao, CHEN Shuo, et al. Experimental study of two-phase frictional pressure drop of steam-water in helically coiled tubes with small coil diameters at high pressure[J]. Applied Thermal Engineering, 2018, 132: 18-29. |
12 | 毕勤成, 陈听宽, 田永生, 等. 高温气冷堆蒸汽发生器螺旋管汽水两相流摩擦阻力特性实验研究[J]. 核动力工程, 1996, 17(5): 42-47. |
BI Qincheng, CHEN Tingkuan, TIAN Yongsheng, et al. Experimental study on friction and resistance characteristics of steam-water two-phase flow in spiral tube of steam generator in high temperature gas-cooled reactor[J]. Nuclear Power Engineering, 1996, 17(5): 42-47. | |
13 | SANTINI Lorenzo, CIONCOLINI Andrea, LOMBARDI Carlo, et al. Two-phase pressure drops in a helically coiled steam generator[J]. International Journal of Heat and Mass Transfer, 2008, 51(19/20): 4926-4939. |
14 | LEUNG L K H, GROENEVELD D C, TEYSSEDOU A, et al. Pressure drops for steam and water flow in heated tubes[J]. Nuclear Engineering and Design, 2005, 235(1): 53-65. |
15 | CIONCOLINI Andrea, SANTINI Lorenzo, RICOTTI Marco E. Subcooled and saturated water flow boiling pressure drop in small diameter helical coils at low pressure[J]. Experimental Thermal and Fluid Science, 2008, 32(6): 1301-1312. |
16 | LIU Li, ZHANG Jiarong, HU Bing, et al. Flow pattern transition and void fraction prediction of gas-liquid flow in helically coiled tubes[J]. Chemical Engineering Science, 2022, 258: 117751. |
17 | 李兆谞. 螺旋管内气液两相流流型及转换机理研究[D]. 北京: 清华大学, 2018. |
LI Zhaoxu. Research on the gas-liquid flow regimes and transition mechanisms in helically coiled tubes[D]. Beijing: Tsinghua University, 2018. | |
18 | GUPTA Abhinav, KUMAR Ravi, GUPTA Akhilesh. Condensation of R134a inside a helically coiled tube-in-shell heat exchanger[J]. Experimental Thermal and Fluid Science, 2014, 54: 279-289. |
19 | CHANG Fucheng, LIU Yeming, LOU Jiacheng, et al. Experimental investigation on flow boiling heat transfer characteristics of water and circumferential wall temperature inhomogeneity in a helically coiled tube[J]. Chemical Engineering Science, 2023, 272: 118592. |
20 | CHANG Fucheng, HU He, SHANG Yuhao, et al. Experimental and numerical study on the heat transfer characteristic of supercritical water with high mass velocity in a helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2022, 197: 123320. |
21 | MOFFAT Robert J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
22 | 林宗虎. 气液两相流和沸腾传热[M]. 西安: 西安交通大学出版社, 2003. |
LIN Zonghu. Gas-liquid two-phase flow and boiling heat transfer[M]. Xi’an: Xi’an Jiaotong University Press, 2003. | |
23 | FERRARIS D L, MARCEL C P. Two-phase flow frictional pressure drop prediction in helical coiled tubes[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120372. |
24 | JIANG B H, ZHOU Z W, JI Y. Analysis of friction factor of two-phase flow in helically coiled tubes[C]//Proceedings of 2021 28th International Conference on Nuclear Engineering, Virtual, Online, 2021. |
25 | LIU Xianfei, ZHAO Donghai, LIU Yifeng, et al. Numerical analysis of the two-phase flow characteristics in vertical downward helical pipe[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1947-1959. |
26 | HARDIK B K, PRABHU S V. Two-phase pressure drop in a helical coil flow boiling system[J]. Heat and Mass Transfer, 2018, 54(11): 3231-3251. |
27 | ITŌ H. Friction factors for turbulent flow in curved pipes[J]. Journal of Basic Engineering, 1959, 81(2): 123-132. |
28 | PARRALES Arianna, COLORADO Dario, HUICOCHEA Armando, et al. Void fraction correlations analysis and their influence on heat transfer of helical double-pipe vertical evaporator[J]. Applied Energy, 2014, 127: 156-165. |
29 | AKHLAGHI Mohammad, MOHAMMADI Vahid, NOURI Nowrouz Mohammad, et al. Multi-fluid VoF model assessment to simulate the horizontal air-water intermittent flow[J]. Chemical Engineering Research and Design, 2019, 152: 48-59. |
30 | ZHANG Yu, HE Chao, LI Pengzhou. Numerical investigation of gas-liquid two-phase flow in horizontal pipe with orifice plate[J]. Progress in Nuclear Energy, 2021, 138: 103801. |
31 | SHI Jing, GOURMA Mustapha, YEUNG Hoi. CFD simulation of horizontal oil-water flow with matched density and medium viscosity ratio in different flow regimes[J]. Journal of Petroleum Science and Engineering, 2017, 151: 373-383. |
32 | MANSOUR Michael, LANDAGE Avval, KHOT Prafull, et al. Numerical study of gas-liquid two-phase flow regimes for upward flow in a helical pipe[J]. Industrial & Engineering Chemistry Research, 2020, 59(9): 3873-3886. |
33 | 周云龙, 张立彦. 矩形截面螺旋管内气液两相流型转换数值模拟[J]. 化工学报, 2014, 65(12): 4767-4774. |
ZHOU Yunlong, ZHANG Liyan. Numerical simulation of flow pattern transition for gas-liquid two-phase flow in helical square ducts[J]. CIESC Journal, 2014, 65(12): 4767-4774. | |
34 | SMITH T R, SCHLEGEL J P, HIBIKI T, et al. Two-phase flow structure in large diameter pipes[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 156-167. |
35 | 谭鲁志. 流动沸腾临界热流密度的流体模化研究[D]. 济南: 山东大学, 2013. |
TAN Luzhi. Study on fluid-to-fluid modeling of flow boiling critical heat flux[D]. Jinan: Shandong University, 2013. | |
36 | 张鸣远, 陈学俊. 螺旋管内气-水两相流流型转换的研究[J]. 核科学与工程, 1983, 3(4): 298-304. |
ZHANG Mingyuan, CHEN Xuejun. An investigation on flow pattern transitions for air-water two-phase flow in helical coils[J]. Chinese Journal of Nuclear Science and Engineering, 1983, 3(4): 298-304. |
[1] | 于海, 栾智勇, 姬宜朋, 安申法, 陈家庆, 司政, 任强, 孙丰旭, 宋泽润. 动态水力旋流器内短路流流量的计算方法及影响分析[J]. 化工进展, 2025, 44(1): 135-144. |
[2] | 乔磊, 张亚新, 魏博, 冉文燊, 马金荣, 王峰. 氧热法气流床电石反应器烧嘴布置参数及操作参数优化[J]. 化工进展, 2025, 44(1): 145-157. |
[3] | 邢雷, 周晓庆, 蒋明虎, 赵立新, 李新亚, 陈德海. 突缩突扩圆管内离散油滴运动行为及变形特性[J]. 化工进展, 2025, 44(1): 27-37. |
[4] | 孙建辰, 杨捷, 李军, 孙会东, 牛俊敏, 廖逸飞, 任俊颖, 商辉. 催化剂颗粒排列方式对微波加热效果的影响[J]. 化工进展, 2025, 44(1): 57-65. |
[5] | 张天昊, 李双喜, 贾祥际, 胡鼎国, 崔瑞焯, 李世聪. 干摩擦釜用机械密封DLC涂层-石墨配副摩擦磨损与温度变形场分析[J]. 化工进展, 2024, 43(S1): 121-133. |
[6] | 毛宁轩, 万小维, 鞠杰, 胡彦杰, 江浩. 工业气固流化床内流场的CFD-PBM数值模拟和结构优化[J]. 化工进展, 2024, 43(S1): 13-20. |
[7] | 张伟业, 朱晓武, 罗永皓, 王志. 复合型叶序微流道混合性能的数值模拟[J]. 化工进展, 2024, 43(S1): 154-165. |
[8] | 尹少武, 黄若萧, 昝晓君, 童莉葛, 刘传平, 王立. 基于CPCM正六边形砖的蓄热储能系统设计与蓄放热模拟[J]. 化工进展, 2024, 43(S1): 243-254. |
[9] | 杨会民, 杜加丽, 权亚文, 吴升潇, 靳皎, 吴峰. 侧喷嘴下行床内热量传递特性CFD模拟[J]. 化工进展, 2024, 43(S1): 32-42. |
[10] | 薛立新, 涂龙斗, 李士洋, 郑晨晨, 蔡达健, 高从堦. 包含原位生长ZIF-L粒子的PEI基高效染料脱盐混合基质纳滤膜[J]. 化工进展, 2024, 43(S1): 431-442. |
[11] | 李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048. |
[12] | 梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062. |
[13] | 刘芳, 刘海霞, 魏云霞, 马明广. 凹凸棒/琼脂复合气凝胶的制备及太阳能界面蒸发性能[J]. 化工进展, 2024, 43(9): 5329-5338. |
[14] | 李子寒, 舒建成, 曹文星, 杨慧敏, 陈梦君. 菱锰矿浸出前后理化特性及界面水化行为变化规律[J]. 化工进展, 2024, 43(9): 5320-5328. |
[15] | 马永丽, 李沐阳, 马子皓, 王浩然, 王茂隆, 费瑶寒, 张露滨, 刘明言. 火星上的气固流态化模拟实验[J]. 化工进展, 2024, 43(8): 4203-4209. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |