1 |
周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592.
|
|
ZHOU Ying, ZHOU Hongjun, XU Chunming. Exploration of the development path for the hydrogen energy[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4587-4592.
|
2 |
黄晟, 杨振丽, 李振宇. 氢产业链发展的路径分析[J]. 化工进展, 2024, 43(2): 882-893.
|
|
HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China’s hydrogen industry[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893.
|
3 |
范以薇, 刘威, 李盈盈, 等. 有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J]. 化工学报, 2024, 75(4): 1198-1208.
|
|
FAN Yiwei, LIU Wei, LI Yingying, et al. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier[J]. CIESC Journal, 2024, 75(4): 1198-1208.
|
4 |
刘若璐, 汤海波, 何翡翡, 等. 液态有机储氢技术研究现状与展望[J]. 化工进展, 2024, 43(4): 1731-1741.
|
|
LIU Ruolu, TANG Haibo, HE Feifei, et al. Recent research and prospect of liquid organic hydrogen carries technology[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1731-1741.
|
5 |
李菊峰, 王璇, 郭勇, 等. 氢能发展的意义及储氢技术现状[J]. 化学工程与装备, 2023(1): 205-206.
|
|
LI Jufeng, WANG Xuan, GUO Yong, et al. Significance of hydrogen energy development and present situation of hydrogen storage technology[J]. Chemical Engineering & Equipment, 2023(1): 205-206.
|
6 |
SUN Jianchen, SHANG Hui, MIAO Chao, et al. Microwave enhanced hydrogen production from liquid organic hydrogen carriers: A review[J]. Chemical Engineering and Processing: Process Intensification, 2023, 190: 109432.
|
7 |
张媛媛, 赵静, 鲁锡兰, 等. 有机液体储氢材料的研究进展[J]. 化工进展, 2016, 35(9): 2869-2874.
|
|
ZHANG Yuanyuan, ZHAO Jing, LU Xilan, et al. Progress in liquid organic hydrogen storage materials[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2869-2874.
|
8 |
GAMBINI Marco, GUARNACCIA Federica, MANNO Michele, et al. Thermal design and heat transfer optimisation of a liquid organic hydrogen carrier batch reactor for hydrogen storage[J]. International Journal of Hydrogen Energy, 2023, 48(96): 37625-37636.
|
9 |
KREUDER H, MÜLLER C, MEIER J, et al. Catalyst development for the dehydrogenation of MCH in a microstructured membrane reactor—For heat storage by a Liquid Organic Reaction Cycle[J]. Catalysis Today, 2015, 242: 211-220.
|
10 |
VAN HOECKE Laurens, KUMMAMURU Nithin B, POURFALLAH Hesam, et al. Intensified swirling reactor for the dehydrogenation of LOHC[J]. International Journal of Hydrogen Energy, 2024, 51: 611-623.
|
11 |
HEUBLEIN Norbert, STELZNER Malte, SATTELMAYER Thomas. Hydrogen storage using liquid organic carriers: Equilibrium simulation and dehydrogenation reactor design[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24902-24916.
|
12 |
KREUDER H, BOELTKEN T, CHOLEWA M, et al. Heat storage by the dehydrogenation of methylcyclohexane—Experimental studies for the design of a microstructured membrane reactor[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12082-12092.
|
13 |
SILVA Jornandes Dias, DE ABREU Cesar Augusto Moraes. Modelling and simulation in conventional fixed-bed and fixed-bed membrane reactors for the steam reforming of methane[J]. International Journal of Hydrogen Energy, 2016, 41(27): 11660-11674.
|
14 |
ZAYNALI Yousef, ALAVI-AMLESHI Seyed Mehdi. Comparative study of propane oxidative dehydrogenation in fluidized and fixed bed reactor[J]. Particulate Science and Technology, 2017, 35(6): 667-673.
|
15 |
LI Jinjian, TONG Fengya, LI Yi, et al. Dehydrogenation of dodecahydro-N-ethylcarbazole over spinel supporting catalyst in a continuous flow fixed bed reactor[J]. Fuel, 2022, 321: 124034.
|
16 |
USMAN Muhammad R, CRESSWELL David L, GARFORTH Arthur A. Mathematical modeling of a laboratory methylcyclohexane dehydrogenation reactor and estimation of radial thermal conductivities and wall heat transfer coefficients[J]. Chemical Engineering Communications, 2014, 201(9): 1240-1258.
|
17 |
BADAKHSH Arash, SONG Donghyun, MOON Seongeun, et al. COX-free LOHC dehydrogenation in a heatpipe reformer highly integrated with a hydrogen burner[J]. Chemical Engineering Journal, 2022, 449: 137679.
|
18 |
MIROLIAEI Ali Reza, SHAHRAKI Farhad, ATASHI Hossein. Computational fluid dynamics simulations of pressure drop and heat transfer in fixed bed reactor with spherical particles[J]. Korean Journal of Chemical Engineering, 2011, 28(6): 1474-1479.
|
19 |
CHEN Hao, SHI Yao, LI Zhao, et al. Structure-resolved CFD simulations to guide catalyst packing of selective NO reduction[J]. Chemical Engineering Journal, 2022, 446: 136888.
|
20 |
SHI Yao, CHEN Hao, CHEN Wenyao, et al. Effects of particle shape and packing style on ethylene oxidation reaction using particle-resolved CFD simulation[J]. Particuology, 2023, 82: 87-97.
|
21 |
Saurish DAS, DEEN Niels G, KUIPERS J A M. A DNS study of flow and heat transfer through slender fixed-bed reactors randomly packed with spherical particles[J]. Chemical Engineering Science, 2017, 160: 1-19.
|
22 |
STANKIEWICZ A. Energy matters: alternative sources and forms of energy for intensification of chemical and biochemical processes[J]. Chemical Engineering Research and Design, 2006, 84(7): 511-521.
|
23 |
ICHIKAWA Tomohiro, MATSUO Tomohiro, TACHIKAWA Takumu, et al. Microwave-mediated site-selective heating of spherical-carbon-bead-supported platinum for the continuous, efficient catalytic dehydrogenative aromatization of saturated cyclic hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3052-3061.
|
24 |
Xiangyu JIE, Sergio GONZALEZ-CORTES, XIAO Tiancun, et al. The decarbonisation of petroleum and other fossil hydrocarbon fuels for the facile production and safe storage of hydrogen[J]. Energy & Environmental Science, 2019, 12(1): 238-249.
|
25 |
SANZ-MORAL Luis Miguel, NAVARRETE Alexander, STURM Guido, et al. Release of hydrogen from nanoconfined hydrides by application of microwaves[J]. Journal of Power Sources, 2017, 353: 131-137.
|
26 |
HANEISHI Naoto, TSUBAKI Shuntaro, Eriko ABE, et al. Enhancement of fixed-bed flow reactions under microwave irradiation by local heating at the vicinal contact points of catalyst particles[J]. Scientific Reports, 2019, 9(1): 222.
|
27 |
HANEISHI Naoto, TSUBAKI Shuntaro, MAITANI Masato M, et al. Electromagnetic and heat-transfer simulation of the catalytic dehydrogenation of ethylbenzene under microwave irradiation[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7685-7692.
|
28 |
BAI Xinwei, MULEY Pranjali D, MUSHO Terence, et al. A combined experimental and modeling study of Microwave-assisted methane dehydroaromatization process[J]. Chemical Engineering Journal, 2022, 433: 134445.
|