1 |
任其龙. 低阶煤高值转化制备基础化工原料关键技术及应用[J]. 化工进展, 2016, 35(12): 4101-4102.
|
|
REN Qilong. Key technologies and application of producing basic chemical materials from low-rank coal[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4101-4102.
|
2 |
HUO Hailong, LIU Xunliang, WEN Zhi, et al. Case study of a novel low rank to calcium carbide process based on techno-economic assessment[J]. Energy, 2021, 228: 120566.
|
3 |
王秋鸣, 李树莹, 耿书阳, 等. 电石熔炼过程单颗粒模型与球团新工艺强化机制[J]. 科学通报, 2021, 66(21): 2766-2774.
|
|
WANG Qiuming, LI Shuying, GENG Shuyang, et al. The single-particle model of calcium carbide production and strengthening mechanism of the novel pelletizing process[J]. Chinese Science Bulletin, 2021, 66(21): 2766-2774.
|
4 |
刘振宇, 刘清雅, 唐旭博, 等. 一种电石生产方法: CN 101327928A[P]. 2008-12-24.
|
|
LIU Zhenyu, LIU Qingya, TANG Xubo, et al. A calcium carbide production method: CN 101327928A[P]. 2008-12-24.
|
5 |
刘陆. 氧热法电石生产反应工艺及反应器设计研究[D]. 北京: 北京化工大学, 2012.
|
|
LIU Lu. Study on reactors for calcuim carbide produced in oxygen-fuel method[D]. Beijing: Beijing University of Chemical Technology, 2012.
|
6 |
于洋, 李文涛, 窦雅玲, 等. 氧热法电石生产气流床反应器性能的数值模拟[J]. 北京化工大学学报(自然科学版), 2013, 40(03): 27-31.
|
|
YU Yang, LI Wentao, DOU Yaling, et al. Simulation of the reaction performance of a fluid bed reactor for oxygen-heated calcium carbide production[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2013, 40(03): 27-31.
|
7 |
李文涛, 于洋, 窦雅玲, 等. 氧热法电石生产复合床反应器预热区的设计计算[J]. 北京化工大学学报(自然科学版), 2014, 41(01): 24-28.
|
|
LI Wentao, YU Yang, DOU Yaling, et al. Design of the preheated area in a combined bed reactor for oxygen-heating production of calcium carbid[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2014, 41(01): 24-28.
|
8 |
赵欣磊, 祁娟, 马艺桠, 等. 复合床电石反应器用固体布料器性能实验[J]. 北京化工大学学报(自然科学版), 2015, 42(3): 28-32.
|
|
ZHAO Xinlei, QI Juan, MA Yiya, et al. Performance of a solid particle distribution device used in a multi-bed reactor for calcium carbide production[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2015, 42(3): 28-32.
|
9 |
祁娟. 氧热法电石生产复合移动床反应器模型化设计研究[D]. 北京: 北京化工大学, 2015.
|
|
QI Juan. Study on hybrid composite reactor for oxygen-heatinging calcium carbide production. [D]. Beijing: Beijing University of Chemical Technology, 2015.
|
10 |
马艺桠. 氧热法制备电石过程中复合原料颗粒的热质传递和反应性能研究[D]. 北京: 北京化工大学, 2015.
|
|
MA Yiya. Study on the transfer and reaction performance of composite particle in the process of oxygen-heating CaC2 production[D]. Beijing: Beijing University of Chemical Technology, 2015.
|
11 |
徐才福, 陈雪枫, 徐建民, 等. 氧热法反应制备电石和合成气的方法及电石反应器: CN102153085B[P]. 2013-10-16.
|
|
XU Caifu, CHEN Xuefeng, XU Jianmin, et al. The method of preparing calcium carbide and synthesis gas by oxygen thermal reaction and calcium carbide reactor: CN102153085B[P]. 2013-10-16.
|
12 |
徐婉怡, 王红霞, 崔小迷, 等. 电石制备清洁生产和工程化研究进展[J]. 化工进展, 2021, 40(10): 5337-5347.
|
|
XU Wanyi, WANG Hongxia, CUI Xiaomi, et al. Research progress on cleaner production and engineering of calcium carbide preparation[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5337-5347.
|
13 |
李国栋. 粉状焦炭和粉状氧化钙制备碳化钙新工艺的基础研究[D]. 北京: 北京化工大学, 2011.
|
|
LI Guodong. Fundamental study on a novel technology of CaC2 production from fine coke and fine CaO[D]. Beijing: Beijing University of Chemical Technology, 2011.
|
14 |
刘陆, 杨鹏远, 刘辉. 氧热法电石合成的反应平衡和热匹配分析[J]. 北京化工大学学报(自然科学版), 2012, 39(2): 1-6.
|
|
LIU Lu, YANG Yuanpeng, LIU hui. Thermodynamic analysis of calcium carbide synthesis and its thermal coupling with coke combustion[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2012, 39(2): 1-6.
|
15 |
JI Leiming, LIU Qingya, LIU Zhenyu. Thermodynamic analysis of calcium carbide production[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2537-2543.
|
16 |
WANG Renxing, LIU Zhenyu, JI Leiming, et al. Reaction kinetics of CaC2 formation from powder and compressed feeds[J]. Frontiers of Chemical Science and Engineering, 2016, 10(4): 517-525.
|
17 |
Ni Lijuan, WANG Renxing, LIU Qingya, et al. SiO2 promoted CaO diffusion to C phase at 1500 and 1700℃[J]. Energies 2021, 14, 587.
|
18 |
GONG Xuzhong, ZHANG Junqiang, WANG Zhi, et al. Development of calcium coke for CaC2 production using calcium carbide slag and coking coal[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28: 76-87.
|
19 |
ZHANG Xuankai, TONG Zixiang, HE Yaling, et al. Influence of feed architecture on heat and mass transfer in calcium carbide electric furnace[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120593.
|
20 |
LI Renxi, MA Shuo, MA Hongting, et al. Numerical simulation of heat transfer and chemical reaction of CaO-C porous pellets in the reaction layer of calcium carbide furnace[J]. Applied Thermal Engineering, 2020, 181: 115877.
|
21 |
YOU Xiaomin, SHE Xuefeng, WANG Jingsong, et al. Preparation of CaO-containing carbon pellets from coking coal and calcium oxide: Effects of temperature, pore distribution and carbon structure on compressive strength in pyrolysis furnace[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(7): 153-1163.
|
22 |
YOU Xiaomin, WANG Jingsong, SHE Xuefeng, et al. Comparison of new two-step calcium carbide production process and traditional production process using numerical simulation of heat transfer and chemical reaction[J]. Chemical Engineering Research and Design, 2022, 187: 516-28.
|
23 |
XU Qian, LI Yinshi, DENG Shipei, et al. Modeling of multiprocess behavior for feedstock-mixed porous pellet: Heat and mass transfer, chemical reaction, and phase change[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12510-12519.
|
24 |
万凯迪. 煤粉热解、燃烧及碱金属释放与反应特性的大涡模拟[D]. 杭州: 浙江大学, 2017.
|
|
WAN Kaidi. Large-eddy simulation of pulverized-coal pyrolysis, combustion, and alkali metal release and reacting dynamics[D]. Hangzhou: Zhejiang University, 2017.
|
25 |
刘丽萍. 四角切圆煤粉炉炉内燃烧及配风的数值模拟[D]. 大连: 大连理工大学, 2009.
|
|
LIU Liping. Numerical simulation of combustion process and air distribution of tangentially pulverized coal-fired boiler[D]. Dalian: Dalian University of Technology, 2009.
|
26 |
苏鹏翼. 循环流化床煤气化炉关键部件试验研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020.
|
|
SU Pengyi. Experimental study on key components of CFB gasifier[D]. Beijing: The Institute of Engineering Thermophysics Chinese Academy of Sciences, 2020.
|
27 |
CHOI Choengryul, KIM Changnyung. Numerical investigation on the flow, combustion and NO x emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler[J]. Fuel, 2009, 88(9): 1720-1731.
|
28 |
高正阳, 崔伟春, 杨毅栎, 等. 火焰中心高度对W型火焰锅炉燃烧影响的数值模拟研究[J]. 热力发电, 2009, 38(11): 23-27.
|
|
GAO Zhengyang, CUI Weichun, YANG Yile, et al. Study on numerical simulation concerning influence of flame centre height upon combustion in W-shaped flame boiler[J]. Thermal Power Generation, 2009, 38(11): 23-27.
|
29 |
WANG Xiaoxiao, XU Shisen, WANG Yibin, et al. Numerical simulation on the effect of burner bias angles on the performance of a two-stage entrained-flow gasifier[J]. ACS omega, 2022, 7(8): 6640-6654.
|
30 |
胡莹超. 水煤浆气化喷嘴冷态模化试验研究与新型喷嘴开发研究[D]. 杭州: 浙江大学, 2011.
|
|
HU Yingchao. Research on cold modeling experimental of CWS burner for gasification and development of new burner[D]. Hangzhou: Zhejiang University, 2011.
|
31 |
STADLER Hannes, TOPOROV Dobrin, FOERSTER Malte, et al. On the influence of the char gasification reactions on NO formation in flameless coal combustion[J]. Combustion & Flame, 2009, 156(9): 1755-1763.
|
32 |
SU Li, FENG Shengdan, LI Ping, et al. Study on simulation of pulverized coal gasification process in the GSP gasifier[J]. Canadian Journal of Chemical Engineering, 2016, 95(4): 688-697.
|
33 |
ZHANG Hai, YUE Guangxi, LU Junfu, et al. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2779-2785.
|
34 |
CHOI Youngchan, LI Xiangyang, PARK Taejun, et al. Numerical study on the coal gasification characteristics in an entrained flow coal gasifier[J]. Fuel, 2001(15): 80.
|
35 |
张志, 李振山, 蔡宁生. 煤粉燃烧中焦炭燃烧模型的比较与分析[J]. 燃烧科学与技术, 2014, 20(5): 393-400.
|
|
ZHANG Zhi, LI Zhenshan, CAI Ningsheng. Comparison and analysis of different models of pulverized coal char combustion[J]. Journal of Combustion Science and Technology, 2014, 20(5): 393-400.
|
36 |
LI Ruijiang, ZHU Zibin. Investigations on hydrodynamics of multilayer Π-type radial flow reactors[J]. Asia-Pacific Journal of Chemical Engineering, 2012, 7(4): 517-527.
|
37 |
张金星, 张样, 黄志甲, 等. 基于响应曲面法的高炉煤气CO2吸收工艺参数优化[J]. 过程工程学报, 2021, 21(8): 985-992.
|
|
ZHANG Jinxing, ZHANG Xiang, HUANG Zhijia, et al. Optimization of CO2 absorption process parameters of blast furnace gas based on response surface methodology[J]. The Chinese Journal of Process Engineering, 2021, 21(8): 985-992.
|