化工进展 ›› 2025, Vol. 44 ›› Issue (1): 86-99.DOI: 10.16085/j.issn.1000-6613.2023-2297
收稿日期:
2023-12-29
修回日期:
2024-03-06
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
吴慧英
作者简介:
朱汝凯(1998—),男,硕士研究生,研究方向为微尺度流动与传热。E-mail:RukaiZhu@sjtu.edu.cn。
基金资助:
ZHU Rukai1(), CHENG Xiao1,2, LIU Jinya1, WU Huiying1(
)
Received:
2023-12-29
Revised:
2024-03-06
Online:
2025-01-15
Published:
2025-02-13
Contact:
WU Huiying
摘要:
基于场协同理论,提出了一种针翅式多孔倾斜射流微通道热沉用于电子元件的高效冷却。通过数值模拟研究了倾斜射流角度(θ)、翅片相对高度比(α)和通道横流对微通道内流动与传热特性的影响。研究发现:泵功随着射流角度的增加先减小后增大,热阻随着射流角度的增加单调减小,当射流角度θ=150°时热阻最小;针翅片具有破坏射流引起的螺旋流并强化横流区传热的作用,且针翅片与倾斜射流的组合能实现更好的传热性能。最后,为了获得综合性能更优的微通道参数,采用径向基神经网络与NSGA-Ⅱ遗传算法对热阻和泵功进行了多目标优化。与同水力直径下射流雷诺数(Rej)为1000的光滑垂直多孔射流微通道相比,在相同泵功下优化后的热阻下降了26.0%;在相同热阻下,优化后的泵功下降了94.6%。通过结合熵权法TOPSIS选取的热阻与泵功最优折衷解分别为0.55K/W和0.56W。
中图分类号:
朱汝凯, 程潇, 刘金亚, 吴慧英. 针翅式多孔倾斜射流微通道流动传热特性与多目标优化[J]. 化工进展, 2025, 44(1): 86-99.
ZHU Rukai, CHENG Xiao, LIU Jinya, WU Huiying. Flow and heat transfer characteristics and multi-objective optimization of pin-fin multi inclined jet microchannels[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 86-99.
网格数量 | Rt/K·W-1 | Pp /W | ΔRt/Rt | ΔPp/Pp |
---|---|---|---|---|
327574 | 0.10052 | 0.08537 | 8.30% | 0.78% |
2665630 | 0.09475 | 0.08478 | 2.08% | 0.08% |
3436366 | 0.09393 | 0.08475 | 1.20% | 0.04% |
4645551 | 0.09337 | 0.08473 | 0.59% | 0.02% |
5848364 | 0.09301 | 0.08471 | 0.20% | 0 |
6695600 | 0.09282 | 0.08471 |
表1 网格无关性验证
网格数量 | Rt/K·W-1 | Pp /W | ΔRt/Rt | ΔPp/Pp |
---|---|---|---|---|
327574 | 0.10052 | 0.08537 | 8.30% | 0.78% |
2665630 | 0.09475 | 0.08478 | 2.08% | 0.08% |
3436366 | 0.09393 | 0.08475 | 1.20% | 0.04% |
4645551 | 0.09337 | 0.08473 | 0.59% | 0.02% |
5848364 | 0.09301 | 0.08471 | 0.20% | 0 |
6695600 | 0.09282 | 0.08471 |
参数 | 数值 |
---|---|
种群大小 | 20 |
迭代次数 | 20 |
交叉概率 | 0.9 |
交叉分布指数 | 10.0 |
变异分布指数 | 20.0 |
表2 NSGA-Ⅱ 参数设置
参数 | 数值 |
---|---|
种群大小 | 20 |
迭代次数 | 20 |
交叉概率 | 0.9 |
交叉分布指数 | 10.0 |
变异分布指数 | 20.0 |
项目 | Rt/W·K-1 | Pp/W |
---|---|---|
TOPSIS | 0.055 | 0.56 |
CFD | 0.053 | 0.55 |
相对误差 | 4.4% | 1.8% |
表 3 优化结果的验证对比
项目 | Rt/W·K-1 | Pp/W |
---|---|---|
TOPSIS | 0.055 | 0.56 |
CFD | 0.053 | 0.55 |
相对误差 | 4.4% | 1.8% |
1 | TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
2 | LENG Chuan, WANG Xiaodong, WANG Tianhu. An improved design of double-layered microchannel heat sink with truncated top channels[J]. Applied Thermal Engineering, 2015, 79: 54-62. |
3 | LENG Chuan, WANG Xiaodong, WANG Tianhu, et al. Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2015, 84: 359-369. |
4 | GILMORE Nicholas, TIMCHENKO Victoria, MENICTAS Chris. Manifold microchannel heat sink topology optimisation[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121025. |
5 | LEE Junsik, REN Zhong, LIGRANI Phil, et al. Cross-flow effects on impingement array heat transfer with varying jet-to-target plate distance and hole spacing[J]. International Journal of Heat and Mass Transfer, 2014, 75: 534-544. |
6 | Ali KOŞAR, PELES Yoav. Thermal-hydraulic performance of MEMS-based pin fin heat sink[J]. ASME Journal of Heat and Mass Transfer, 2006, 128(2): 121-131. |
7 | GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225. |
8 | Abel SIU-HO, QU Weilin, PFEFFERKORN Frank. Experimental study of pressure drop and heat transfer in a single-phase micropin-fin heat sink[J]. Journal of Electronic Packaging, 2007, 129(4): 479-487. |
9 | 李艺凡, 王志鹏. 带有周期性扰流结构的微通道内流动与传热特性[J]. 化工进展, 2022, 41(6): 2893-2901. |
LI Yifan, WANG Zhipeng. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. | |
10 | PENG Ming, CHEN Li, JI Wentao, et al. Numerical study on flow and heat transfer in a multi-jet microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119982. |
11 | HUSAIN Afzal, ARIZ Mohd, AL-RAWAHI Nabeel Z-H, et al. Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink[J]. Applied Thermal Engineering, 2016, 102: 989-1000. |
12 | Montse VILARRUBÍ, RIERA Sara, Manel IBAÑEZ, et al. Experimental and numerical study of micro-pin-fin heat sinks with variable density for increased temperature uniformity[J]. International Journal of Thermal Sciences, 2018, 132: 424-434. |
13 | GAO W, ZHANG J F, QU Z G, et al. Numerical investigations of heat transfer in hybrid microchannel heat sink with multi-jet impinging and trapezoidal fins[J]. International Journal of Thermal Sciences, 2021, 164: 106902. |
14 | 屈治国, 何雅玲, 陶文铨. 平直开缝翅片传热特性的三维数值模拟及场协同原理分析[J]. 工程热物理学报, 2003, 24(5): 825-827. |
QU Zhiguo, HE Yaling, Wenquan TAG. 3D numerical simulation on heat transfer performance of slit fin surfacese and analysis with field synergy principle[J]. Journal of Engineering Thermophysics, 2003, 24(5): 825-827. | |
15 | GUO Tianqi, Matthew J RAU, VLACHOS Pavlos P, et al. Axisymmetric wall jet development in confined jet impingement[J]. Physics of Fluids, 2017, 29(2): 25102. |
16 | CHENG Jianping, XU Hongsen, TANG Zhiguo, et al. Multi-objective optimization of manifold microchannel heat sink with corrugated bottom impacted by nanofluid jet[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123634. |
17 | YANG Min, CAO Bingyang. Multi-objective optimization of a hybrid microchannel heat sink combining manifold concept with secondary channels[J]. Applied Thermal Engineering, 2020, 181: 115592. |
18 | ZHANG Furen, WU Bo, DU Bolin. Heat transfer optimization based on finned microchannel heat sink[J]. International Journal of Thermal Sciences, 2022, 172: 107357. |
19 | 王定标, 夏春杰, 董永申. 凹凸板换热器强化传热的数值模拟[J]. 化工进展, 2014, 33(S1): 106-112. |
WANG Dingbiao, XIA Chunjie, DONG Yongshen. Performance study of honeycomb plate heat exchanger[J]. Chemical Industry and Engineering Progress, 2014, 33(S1): 106-112. | |
20 | VUTHA Ashwin Kumar, ROZENFELD Tomer, SHIN Jeong-Heon, et al. Spatial temperature resolution in single-phase micro slot jet impingement cooling[J]. International Journal of Heat and Mass Transfer, 2018, 118: 720-733. |
21 | WANG Qingyu, NAKASHIMA Takuji, LAI Chenguang, et al. Modified algorithms for fast construction of optimal latin-hypercube design[J]. IEEE Access, 2020, 8: 191644-191658. |
22 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
23 | 熊远帆, 李华山, 龚宇烈. 非共沸工质蒸发式冷凝器多目标优化设计[J]. 化工进展, 2024, 43(6):2950-2960. |
XIONG Yuanfan, LI Huashan, GONG Yulie. Multi-objective optimal design of evaporative condenser using zeotropic working fluid [J]. Chemical Industry and Engineering Progress: 2024, 43(6):2950-2960. | |
24 | 李恩腾, 徐英杰, 谢小东, 等. 数据驱动的跨临界CO2热泵多目标优化设计[J]. 化工进展, 2020, 39(5): 1657-1666. |
LI Enteng, XU Yingjie, XIE Xiaodong, et al. Data-driven multi-objective optimization design of transcritical CO2 heat pump[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1657-1666. |
[1] | 罗小平, 贾梦帆, 李世珍. 电场和改性PVDF膜相分离结构协同作用下逆流微细通道压降特性[J]. 化工进展, 2025, 44(2): 646-659. |
[2] | 胡盼盼, 肖梦瑶, 王娜, 史吉平, 刘莉. 多酶协同预处理厨余垃圾技术优化[J]. 化工进展, 2025, 44(2): 1138-1146. |
[3] | 熊思恒, 黄冬梅, 肖媛, 黄晓璜, 易智康, 崔国民. 一种新的连续非结构模型同步优化质量交换网络[J]. 化工进展, 2025, 44(2): 635-645. |
[4] | 周渝, 唐甜, 熊子悠, 韦奇. 基于两级微通道分离工艺的甲醇制烯烃废水深度处理[J]. 化工进展, 2025, 44(1): 100-108. |
[5] | 苏宣合, 蒙仕达, 柯杰坤, 卢苇. 基于分子交换流的多级气体分离系统性能与能耗分析[J]. 化工进展, 2025, 44(1): 109-120. |
[6] | 肖媛, 陈怡, 刘思琪, 崔国民. 基于广义换热网络的质量交换网络质能比拟及全局优化[J]. 化工进展, 2025, 44(1): 121-134. |
[7] | 乔磊, 张亚新, 魏博, 冉文燊, 马金荣, 王峰. 氧热法气流床电石反应器烧嘴布置参数及操作参数优化[J]. 化工进展, 2025, 44(1): 145-157. |
[8] | 李灏, 孙昱楠, 李健, 陶俊宇, 程占军, 颜蓓蓓, 陈冠益. 陈腐垃圾与原生垃圾共气化特性[J]. 化工进展, 2025, 44(1): 525-537. |
[9] | 戴征舒, 左元浩, 陈孝罗, 张犁, 赵根, 张学军, 张华. 机器学习在喷射器研究中的应用进展[J]. 化工进展, 2024, 43(S1): 1-12. |
[10] | 毛宁轩, 万小维, 鞠杰, 胡彦杰, 江浩. 工业气固流化床内流场的CFD-PBM数值模拟和结构优化[J]. 化工进展, 2024, 43(S1): 13-20. |
[11] | 杨俊辉, 袁君, 张继达, 王金海, 乔红斌, 蔡振义, 马中成. 新型蓄热体结构设计及性能分析[J]. 化工进展, 2024, 43(S1): 282-294. |
[12] | 周渝, 夏太阳, 韦奇, 唐甜, 田磊. 微通道耦合反渗透膜串联处理甲醇制烯烃废水工艺优化[J]. 化工进展, 2024, 43(S1): 43-51. |
[13] | 陈王觅, 席北斗, 李鸣晓, 叶美瀛, 侯佳奇, 于承泽, 魏域芳, 孟繁华. 热解系统碳排放削减技术研究进展[J]. 化工进展, 2024, 43(S1): 479-503. |
[14] | 柳宏伟, 董国亮, 温彦博, 王强华, 徐庆, 王兴盛, 李旭升, 巩洁平, 赵斌, 刘梦瑶. 华亭挤压造粒机组工艺优化[J]. 化工进展, 2024, 43(S1): 52-60. |
[15] | 陶一, 张晨, 胡益炯, 邱彤. 基于分子结构分布的减压蜡油分子重构模型[J]. 化工进展, 2024, 43(S1): 71-76. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |