1 |
TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.
|
2 |
LENG Chuan, WANG Xiaodong, WANG Tianhu. An improved design of double-layered microchannel heat sink with truncated top channels[J]. Applied Thermal Engineering, 2015, 79: 54-62.
|
3 |
LENG Chuan, WANG Xiaodong, WANG Tianhu, et al. Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2015, 84: 359-369.
|
4 |
GILMORE Nicholas, TIMCHENKO Victoria, MENICTAS Chris. Manifold microchannel heat sink topology optimisation[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121025.
|
5 |
LEE Junsik, REN Zhong, LIGRANI Phil, et al. Cross-flow effects on impingement array heat transfer with varying jet-to-target plate distance and hole spacing[J]. International Journal of Heat and Mass Transfer, 2014, 75: 534-544.
|
6 |
Ali KOŞAR, PELES Yoav. Thermal-hydraulic performance of MEMS-based pin fin heat sink[J]. ASME Journal of Heat and Mass Transfer, 2006, 128(2): 121-131.
|
7 |
GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225.
|
8 |
Abel SIU-HO, QU Weilin, PFEFFERKORN Frank. Experimental study of pressure drop and heat transfer in a single-phase micropin-fin heat sink[J]. Journal of Electronic Packaging, 2007, 129(4): 479-487.
|
9 |
李艺凡, 王志鹏. 带有周期性扰流结构的微通道内流动与传热特性[J]. 化工进展, 2022, 41(6): 2893-2901.
|
|
LI Yifan, WANG Zhipeng. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901.
|
10 |
PENG Ming, CHEN Li, JI Wentao, et al. Numerical study on flow and heat transfer in a multi-jet microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119982.
|
11 |
HUSAIN Afzal, ARIZ Mohd, AL-RAWAHI Nabeel Z-H, et al. Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink[J]. Applied Thermal Engineering, 2016, 102: 989-1000.
|
12 |
Montse VILARRUBÍ, RIERA Sara, Manel IBAÑEZ, et al. Experimental and numerical study of micro-pin-fin heat sinks with variable density for increased temperature uniformity[J]. International Journal of Thermal Sciences, 2018, 132: 424-434.
|
13 |
GAO W, ZHANG J F, QU Z G, et al. Numerical investigations of heat transfer in hybrid microchannel heat sink with multi-jet impinging and trapezoidal fins[J]. International Journal of Thermal Sciences, 2021, 164: 106902.
|
14 |
屈治国, 何雅玲, 陶文铨. 平直开缝翅片传热特性的三维数值模拟及场协同原理分析[J]. 工程热物理学报, 2003, 24(5): 825-827.
|
|
QU Zhiguo, HE Yaling, Wenquan TAG. 3D numerical simulation on heat transfer performance of slit fin surfacese and analysis with field synergy principle[J]. Journal of Engineering Thermophysics, 2003, 24(5): 825-827.
|
15 |
GUO Tianqi, Matthew J RAU, VLACHOS Pavlos P, et al. Axisymmetric wall jet development in confined jet impingement[J]. Physics of Fluids, 2017, 29(2): 25102.
|
16 |
CHENG Jianping, XU Hongsen, TANG Zhiguo, et al. Multi-objective optimization of manifold microchannel heat sink with corrugated bottom impacted by nanofluid jet[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123634.
|
17 |
YANG Min, CAO Bingyang. Multi-objective optimization of a hybrid microchannel heat sink combining manifold concept with secondary channels[J]. Applied Thermal Engineering, 2020, 181: 115592.
|
18 |
ZHANG Furen, WU Bo, DU Bolin. Heat transfer optimization based on finned microchannel heat sink[J]. International Journal of Thermal Sciences, 2022, 172: 107357.
|
19 |
王定标, 夏春杰, 董永申. 凹凸板换热器强化传热的数值模拟[J]. 化工进展, 2014, 33(S1): 106-112.
|
|
WANG Dingbiao, XIA Chunjie, DONG Yongshen. Performance study of honeycomb plate heat exchanger[J]. Chemical Industry and Engineering Progress, 2014, 33(S1): 106-112.
|
20 |
VUTHA Ashwin Kumar, ROZENFELD Tomer, SHIN Jeong-Heon, et al. Spatial temperature resolution in single-phase micro slot jet impingement cooling[J]. International Journal of Heat and Mass Transfer, 2018, 118: 720-733.
|
21 |
WANG Qingyu, NAKASHIMA Takuji, LAI Chenguang, et al. Modified algorithms for fast construction of optimal latin-hypercube design[J]. IEEE Access, 2020, 8: 191644-191658.
|
22 |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
|
23 |
熊远帆, 李华山, 龚宇烈. 非共沸工质蒸发式冷凝器多目标优化设计[J]. 化工进展, 2024, 43(6):2950-2960.
|
|
XIONG Yuanfan, LI Huashan, GONG Yulie. Multi-objective optimal design of evaporative condenser using zeotropic working fluid [J]. Chemical Industry and Engineering Progress: 2024, 43(6):2950-2960.
|
24 |
李恩腾, 徐英杰, 谢小东, 等. 数据驱动的跨临界CO2热泵多目标优化设计[J]. 化工进展, 2020, 39(5): 1657-1666.
|
|
LI Enteng, XU Yingjie, XIE Xiaodong, et al. Data-driven multi-objective optimization design of transcritical CO2 heat pump[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1657-1666.
|