化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 479-503.DOI: 10.16085/j.issn.1000-6613.2024-0222
陈王觅1,2(), 席北斗2, 李鸣晓2(), 叶美瀛2, 侯佳奇2, 于承泽2, 魏域芳2, 孟繁华2
收稿日期:
2024-01-30
修回日期:
2024-05-01
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
李鸣晓
作者简介:
陈王觅(1994—),男,博士研究生,研究方向为固体废弃物资源化。E-mail:chenwangmi@tju.edu.cn。
基金资助:
CHEN Wangmi1,2(), XI Beidou2, LI Mingxiao2(), YE Meiying2, HOU Jiaqi2, YU Chengze2, WEI Yufang2, MENG Fanhua2
Received:
2024-01-30
Revised:
2024-05-01
Online:
2024-11-20
Published:
2024-12-06
Contact:
LI Mingxiao
摘要:
热解技术具有处理效率高、资源化产物多样、不易产生二英、碳素有效转化率高的特点,已被中国多部委推荐应用于典型有机固体废弃物的快速处理与处置中。针对传统热解系统在处理有机固体废弃物过程中不稳定、产物品质差、热能利用率低而导致的碳排放增加问题,本文综述了新型低碳热解技术和高附加值碳基材料制备方法,并明确指出通过改善传热传质过程、调控产物生成和生产高附加值产品,可以实现热解系统碳排放的削减。另外,总结了热解技术与其他有机固体废弃物处理技术相结合的案例,分析了降低耦合系统碳排放的方法。一方面通过产物交叉利用减少碳素浪费,进而降低直接碳排放;另一方面通过优化能量流路径提高系统能量利用率,降低初级能源消耗带来的间接碳排放。最后,探讨了全生命周期评价、过程模拟技术和机器学习方法在热解系统碳排放优化中的应用,梳理了利用计算机模拟和人工智能实现反应过程复杂且难以实时监测的热解系统整体优化途径,为降低热解系统碳排放提供了新的思路。
中图分类号:
陈王觅, 席北斗, 李鸣晓, 叶美瀛, 侯佳奇, 于承泽, 魏域芳, 孟繁华. 热解系统碳排放削减技术研究进展[J]. 化工进展, 2024, 43(S1): 479-503.
CHEN Wangmi, XI Beidou, LI Mingxiao, YE Meiying, HOU Jiaqi, YU Chengze, WEI Yufang, MENG Fanhua. Research progress on carbon emission reduction technology for pyrolysis system[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 479-503.
热解技术 | 碳减排途径 | 常用物料 | 不足 |
---|---|---|---|
真空热解 | 降低热解温度,减少能源消耗;降低表观活化能,加快加热速度和降温速度;提升生物油热值与产量 | 农林废弃物,橡塑类,电路板,集成电路,显示器,锂电池,电容器 | 能源消耗居高不下,只适用于特定物料,产物需要深度处理 |
催化热解 | 废弃物热解过程:催化制备高附加值产品,提高碳素有效转化率;降低反应活化能,缩短反应时间,降低反应温度,减少能源消耗 油气重整过程:减少油气二次处理过程能源消耗与污染物产生;实现热解油氧组分脱除,提高热解油热值;高值合成气制备,提高碳素有效转化率 | 生物质,橡塑类,纸类,食品废弃物 | 催化剂的稳定性差,固-固反应效率低下,催化剂成型后性能差,催化剂分离困难,产物需要提纯 |
微波热解 | 降低热解温度,减少能源消耗;提高反应速率,缩短反应时间,减少能源消耗;快速制备高值产品,提高碳素有效转化率;减少预处理过程能源消耗 | 生物质,污泥,食品废弃物,油脂类废弃物,煤 | 只适用于特定物料,电能消耗较高,设备研发滞后,设备投资高 |
等离子体热解 | 提高热传递速率,减少热量损失;基于高淬火速率制备特定气相和固相产物,减少碳素浪费;实现清洁氢气/合成气的可持续生产,减少尾气处理物料与能源消耗;通过足够高的温度和均匀的温度分布,减少含碳低值副产物产生 | 城市固体废弃物,生物医学废物,生物质,橡塑类,污泥 | 设备投资高,技术适用场景少 |
共热解 | 通过不同物料之间的协同作用,降低反应活化能,缩短反应时间;增加资源化产物产量;调控制备高附加值热解产物 | 污泥,塑料,生物质,页岩油和煤,餐厨垃圾,锂电池 | 运输与预处理能耗高,物料适用性评价不足,需制定多种废弃物协同处置技术指南、标准和政策,物料间相互作用不明 |
表1 低碳热解技术减少碳排放的途径
热解技术 | 碳减排途径 | 常用物料 | 不足 |
---|---|---|---|
真空热解 | 降低热解温度,减少能源消耗;降低表观活化能,加快加热速度和降温速度;提升生物油热值与产量 | 农林废弃物,橡塑类,电路板,集成电路,显示器,锂电池,电容器 | 能源消耗居高不下,只适用于特定物料,产物需要深度处理 |
催化热解 | 废弃物热解过程:催化制备高附加值产品,提高碳素有效转化率;降低反应活化能,缩短反应时间,降低反应温度,减少能源消耗 油气重整过程:减少油气二次处理过程能源消耗与污染物产生;实现热解油氧组分脱除,提高热解油热值;高值合成气制备,提高碳素有效转化率 | 生物质,橡塑类,纸类,食品废弃物 | 催化剂的稳定性差,固-固反应效率低下,催化剂成型后性能差,催化剂分离困难,产物需要提纯 |
微波热解 | 降低热解温度,减少能源消耗;提高反应速率,缩短反应时间,减少能源消耗;快速制备高值产品,提高碳素有效转化率;减少预处理过程能源消耗 | 生物质,污泥,食品废弃物,油脂类废弃物,煤 | 只适用于特定物料,电能消耗较高,设备研发滞后,设备投资高 |
等离子体热解 | 提高热传递速率,减少热量损失;基于高淬火速率制备特定气相和固相产物,减少碳素浪费;实现清洁氢气/合成气的可持续生产,减少尾气处理物料与能源消耗;通过足够高的温度和均匀的温度分布,减少含碳低值副产物产生 | 城市固体废弃物,生物医学废物,生物质,橡塑类,污泥 | 设备投资高,技术适用场景少 |
共热解 | 通过不同物料之间的协同作用,降低反应活化能,缩短反应时间;增加资源化产物产量;调控制备高附加值热解产物 | 污泥,塑料,生物质,页岩油和煤,餐厨垃圾,锂电池 | 运输与预处理能耗高,物料适用性评价不足,需制定多种废弃物协同处置技术指南、标准和政策,物料间相互作用不明 |
碳基材料 | 可调控反应要素 | 特征 | 参考文献 |
---|---|---|---|
生物炭 | 高温 | 碳芳构化程度高,富含碳碳双键和杂环氮基团 | [ |
快速升温 | 生物炭结构简化,增加油气产量 | [ | |
缓慢升温 | 生物炭产量、芳构化程度和稳定性提高 | [ | |
碳纳米管 | 废弃塑料制品(PP、PET、PE、酚醛树脂) | 过程易控制,减污降碳协同,当前制备 碳纳米管最常用原料 | [ |
废塑料/含过渡金属或稀土元素催化剂催化热解 | 掺杂金属元素或合金的高性能碳纳米管 | [ | |
废塑料/含氮组分掺杂原料共热解 | 氮掺杂的高性能碳纳米管 | [ | |
低阶煤 | 成本低 | [ | |
废弃木质素 | 拉伸强度达1.33GPa,电导率达1.19×105 S/m,连续生产率达120m/h | [ | |
石墨烯及类石墨烯材料 | 废弃聚丙烯 | 片状石墨烯,产率10.1g C/100g PP, 可掺杂金属和合金 | [ |
废弃轮胎/氢氧化钾微波催化,延长保温时间 | 产品石墨化程度提高,高石墨化产品产量增加,杂质元素有效去除 | [ | |
甘蔗干叶/柠檬酸铁两步催化热解 | 低成本氧化石墨烯制备 | [ | |
稻壳与氧化石墨烯共热解 | 具有良好吸附性能的石墨烯材料 | [ |
表2 高附加值热解炭材料研究现状
碳基材料 | 可调控反应要素 | 特征 | 参考文献 |
---|---|---|---|
生物炭 | 高温 | 碳芳构化程度高,富含碳碳双键和杂环氮基团 | [ |
快速升温 | 生物炭结构简化,增加油气产量 | [ | |
缓慢升温 | 生物炭产量、芳构化程度和稳定性提高 | [ | |
碳纳米管 | 废弃塑料制品(PP、PET、PE、酚醛树脂) | 过程易控制,减污降碳协同,当前制备 碳纳米管最常用原料 | [ |
废塑料/含过渡金属或稀土元素催化剂催化热解 | 掺杂金属元素或合金的高性能碳纳米管 | [ | |
废塑料/含氮组分掺杂原料共热解 | 氮掺杂的高性能碳纳米管 | [ | |
低阶煤 | 成本低 | [ | |
废弃木质素 | 拉伸强度达1.33GPa,电导率达1.19×105 S/m,连续生产率达120m/h | [ | |
石墨烯及类石墨烯材料 | 废弃聚丙烯 | 片状石墨烯,产率10.1g C/100g PP, 可掺杂金属和合金 | [ |
废弃轮胎/氢氧化钾微波催化,延长保温时间 | 产品石墨化程度提高,高石墨化产品产量增加,杂质元素有效去除 | [ | |
甘蔗干叶/柠檬酸铁两步催化热解 | 低成本氧化石墨烯制备 | [ | |
稻壳与氧化石墨烯共热解 | 具有良好吸附性能的石墨烯材料 | [ |
1 | LI Pan, WANG Biao, HU Junhao, et al. Research on the kinetics of catalyst coke formation during biomass catalytic pyrolysis: A mini review[J]. Journal of the Energy Institute, 2023, 110: 101315. |
2 | ANDOOZ Amirhossein, EQBALPOUR Mohammad, KOWSARI Elaheh, et al. A comprehensive review on pyrolysis of E-waste and its sustainability[J]. Journal of Cleaner Production, 2022, 333: 130191. |
3 | DUTTA Abhijit, CAI Hao, TALMADGE Michael S, et al. Model quantification of the effect of coproducts and refinery co-hydrotreating on the economics and greenhouse gas emissions of a conceptual biomass catalytic fast pyrolysis process[J]. Chemical Engineering Journal, 2023, 451: 138485. |
4 | Jannik BÖTTGER, ECKHARD Till, PFLIEGER Christin, et al. Green coal substitutes for boilers through hydrothermal carbonization of biomass: Pyrolysis and combustion behavior[J]. Fuel, 2023, 344: 128025. |
5 | CHU Zhiwei, LI Yingjie, ZHANG Chunxiao, et al. A review on resource utilization of oil sludge based on pyrolysis and gasification[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109692. |
6 | VAISHNAVI Mahadevan, VASANTH Prasad Mohan, RAJKUMAR Sundararajan, et al. A critical review of the correlative effect of process parameters on pyrolysis of plastic wastes[J]. Journal of Analytical and Applied Pyrolysis, 2023, 170: 105907. |
7 | GLUSHKOV D O, NYASHINA G S, ANAND R, et al. Composition of gas produced from the direct combustion and pyrolysis of biomass[J]. Process Safety and Environmental Protection, 2021, 156: 43-56. |
8 | KORONEOS C, DOMPROS A, ROUMBAS G. Hydrogen production via biomass gasification—A life cycle assessment approach[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(8): 1261-1268. |
9 | Neus PUY, RIERADEVALL Joan, Jordi BARTROLÍ. Environmental assessment of post-consumer wood and forest residues gasification: The case study of Barcelona metropolitan area[J]. Biomass and Bioenergy, 2010, 34(10): 1457-1465. |
10 | RAFASCHIERI Angelantonio, RAPACCINI Mario, MANFRIDA Giampaolo. Life cycle assessment of electricity production from poplar energy crops compared with conventional fossil fuels[J]. Energy Conversion and Management, 1999, 40(14): 1477-1493. |
11 | GAUNT John L, LEHMANN Johannes. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production[J]. Environmental Science & Technology, 2008, 42(11): 4152-4158. |
12 | FAN Jiqing, KALNES Tom N, ALWARD Matthew, et al. Life cycle assessment of electricity generation using fast pyrolysis bio-oil[J]. Renewable Energy, 2011, 36(2): 632-641. |
13 | HELLER Martin C, KEOLEIAN Gregory A, MANN Margaret K, et al. Life cycle energy and environmental benefits of generating electricity from willow biomass[J]. Renewable Energy, 2004, 29(7): 1023-1042. |
14 | SEBASTIÁN F, ROYO J, GÓMEZ M. Cofiring versus biomass-fired power plants: GHG (greenhouse gases) emissions savings comparison by means of LCA (life cycle assessment) methodology[J]. Energy, 2011, 36(4): 2029-2037. |
15 | YANG Qing, HAN Fei, CHEN Yingquan, et al. Greenhouse gas emissions of a biomass-based pyrolysis plant in China[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1580-1590. |
16 | CHEN G Q, YANG Q, ZHAO Y H. Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2322-2329. |
17 | 徐漓, 吴玉锋, 张元甲, 等. “双碳”目标背景下广东农林废弃物综合利用技术进展[J]. 化工进展, 2023, 42(11): 5648-5660. |
XU Li, WU Yufeng, ZHANG Yuanjia, et al. Progress of comprehensive utilization technology of agricultural and forestry wastes in Guangdong under the background of “carbon peaking and carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5648-5660. | |
18 | 陈思, 刘钊. 生物质热解气化发电技术发展分析[J]. 一重技术, 2023(2): 67-70. |
CHEN Si, LIU Zhao. Analysis of development of biomass pyrolysis gasification power generation technology[J]. CFHI Technology, 2023 (2): 67-70. | |
19 | 叶美瀛, 陈王觅, 侯佳奇, 等. 热解气化技术在我国村镇生活垃圾处理的应用现状[J]. 环境保护科学, 2023, 49(2): 31-37. |
YE Meiying, CHEN Wangmi, HOU Jiaqi, et al. Application status of pyrolysis and gasification technology in rural domestic waste treatment[J]. Environmental Protection Science, 2023, 49(2): 31-37. | |
20 | DEWAYANTO Nugroho, ISHA Ruzinah, NORDIN Mohd Ridzuan. Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis[J]. Energy Conversion and Management, 2014, 86: 226-232. |
21 | CHANG Siu Hua. Plastic waste as pyrolysis feedstock for plastic oil production: A review[J]. Science of the Total Environment, 2023, 877: 162719. |
22 | CHEN Ya, ZHANG Lingen, XU Zhenming. Vacuum pyrolysis characteristics and kinetic analysis of liquid crystal from scrap liquid crystal display panels[J]. Journal of Hazardous Materials, 2017, 327: 55-63. |
23 | LI Yize, GUPTA Rohit, ZHANG Qiaozhi, et al. Review of biochar production via crop residue pyrolysis: Development and perspectives[J]. Bioresource Technology, 2023, 369: 128423. |
24 | NUGROHO Rusdan Aditya Aji, ALHIKAMI Akhmad Faruq, WANG Weicheng. Thermal decomposition of polypropylene plastics through vacuum pyrolysis[J]. Energy, 2023, 277: 127707. |
25 | CHEN Zhenyang, NIU Bo, ZHANG Lingen, et al. Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors[J]. Journal of Hazardous Materials, 2018, 342: 192-200. |
26 | LIU Ya, LI Kuo, GUO Jie, et al. Impact of the operating conditions on the derived products and the reaction mechanism in vacuum pyrolysis treatment of the organic material in waste integrated circuits[J]. Journal of Cleaner Production, 2018, 197: 1488-1497. |
27 | CARRIER Marion, HARDIE Ailsa G, Uras Ümit, et al. Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar[J]. Journal of Analytical and Applied Pyrolysis, 2012, 96: 24-32. |
28 | DUSSO Diego, TÉLLEZ Jhoan F, FUERTES Valeria C, et al. Vacuum pyrolysis of chia flour residues: An alternative way to obtain omega-3/omega-6 fatty acids and calcium-enriched biochars[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105379. |
29 | TÉLLEZ Jhoan F, SILVA Mariana P, SIMISTER Rachael, et al. Fast pyrolysis of rice husk under vacuum conditions to produce levoglucosan[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105105. |
30 | Ümit URAS, CARRIER Marion, HARDIE Ailsa G, et al. Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 207-213. |
31 | GAO Ningbo, WANG Fengchao, QUAN Cui, et al. Tire pyrolysis char: Processes, properties, upgrading and applications[J]. Progress in Energy and Combustion Science, 2022, 93: 101022. |
32 | SU Shiung Lam, WAN Adibah Wan Mahari, YONG Sik Ok, et al. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109359. |
33 | HUANG Zhihao, ZHU Jie, RUAN Jujun. A novel technology of vacuum low-temperature pyrolysis with NVZI for the high-efficiency debromination of resin particles from waste printed circuit boards[J]. Resources, Conservation and Recycling, 2023, 188: 106711. |
34 | ZHANG Yu, ZHANG Xiaoqiao, ZHU Ping, et al. Defluorination and directional conversion to light fuel by lithium synergistic vacuum catalytic co-pyrolysis for electrolyte and polyvinylidene fluoride in spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2023, 460: 132445. |
35 | TANG Yiqi, XIE Hongwei, ZHANG Beilei, et al. Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach: Controlling the recovery of CoO or Co[J]. Waste Management, 2019, 97: 140-148. |
36 | MA En, XU Zhenming. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels[J]. Journal of Hazardous Materials, 2013, 263: 610-617. |
37 | ABOMOHRA Abd El-Fatah, SHEIKH Huda M A, EL-NAGGAR Amal H, et al. Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111335. |
38 | WOLF E L. Applications of Graphene: An Overview[M]. Cham: Springer, 2014. |
39 | LI Kai, ZHANG Guan, WANG Zexiang, et al. Calcium formate assisted catalytic pyrolysis of pine for enhanced production of monocyclic aromatic hydrocarbons over bimetal-modified HZSM-5[J]. Bioresource Technology, 2020, 315: 123805. |
40 | ZAINAN Nur Hidayah, SRIVATSA Srikanth Chakravartula, LI Fanghua, et al. Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris[J]. Fuel, 2018, 223: 12-19. |
41 | KIM Soosan, PARK Chanyeong, LEE Jechan. Reduction of polycyclic compounds and biphenyls generated by pyrolysis of industrial plastic waste by using supported metal catalysts: A case study of polyethylene terephthalate treatment[J]. Journal of Hazardous Materials, 2020, 392: 122464. |
42 | CHEN Xu, CHEN Yingquan, CHEN Zhen, et al. Catalytic fast pyrolysis of cellulose to produce furan compounds with SAPO type catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 53-60. |
43 | QIU Bingbing, TAO Xuedong, WANG Jiahao, et al. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review[J]. Energy Conversion and Management, 2022, 261: 115647. |
44 | DAI Minquan, YU Zhaosheng, FANG Shiwen, et al. Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale[J]. Energy Conversion and Management, 2019, 192: 1-10. |
45 | GIN A W, HASSAN H, AHMAD M A, et al. Recent progress on catalytic co-pyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: The influence of technical and reaction kinetic parameters[J]. Arabian Journal of Chemistry, 2021, 14(4): 103035. |
46 | AYSU Tevfik, SANNA Aimaro. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils[J]. Bioresource Technology, 2015, 194: 108-116. |
47 | JANGAM Ashok, Sonali DAS, PATI Subhasis, et al. Catalytic reforming of tar model compound over La1- x Sr x -Co0.5Ti0.5O3- δ dual perovskite catalysts: Resistance to sulfide and chloride compounds[J]. Applied Catalysis A: General, 2021, 613: 118013. |
48 | CHEAH Singfoong, GASTON Katherine R, PARENT Yves O, et al. Nickel cerium olivine catalyst for catalytic gasification of biomass[J]. Applied Catalysis B: Environmental, 2013, 134/135: 34-45. |
49 | Naiara GARCÍA-GÓMEZ, VALECILLOS José, REMIRO Aingeru, et al. Effect of reaction conditions on the deactivation by coke of a NiAl2O4 spinel derived catalyst in the steam reforming of bio-oil[J]. Applied Catalysis B: Environmental, 2021, 297: 120445. |
50 | GAO Lijing, SUN Jiahui, XU Wei, et al. Catalytic pyrolysis of natural algae over Mg-Al layered double oxides/ZSM-5 (MgAl-LDO/ZSM-5) for producing bio-oil with low nitrogen content[J]. Bioresource Technology, 2017, 225: 293-298. |
51 | ZHANG Xuesong, LEI Hanwu, ZHU Lei, et al. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics[J]. Bioresource Technology, 2016, 220: 233-238. |
52 | SHEN Yafei, YUAN Rui. Pyrolysis of agroforestry bio-wastes with calcium/magnesium oxides or carbonates—Focusing on biochar as soil conditioner[J]. Biomass and Bioenergy, 2021, 155: 106277. |
53 | HU Zhifeng, MA Xiaoqian, LI Longjun. Optimal conditions for the catalytic and non-catalytic pyrolysis of water hyacinth[J]. Energy Conversion and Management, 2015, 94: 337-344. |
54 | SHEN Yafei, ZHAO Peitao, SHAO Qinfu, et al. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Applied Catalysis B: Environmental, 2014, 152/153: 140-151. |
55 | WANG Wei, LEMAIRE Romain, BENSAKHRIA Ammar, et al. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105479. |
56 | LI Qingyin, FARAMARZI Ali, ZHANG Shu, et al. Progress in catalytic pyrolysis of municipal solid waste[J]. Energy Conversion and Management, 2020, 226: 113525. |
57 | QUAN Cui, ZHANG Guangtao, XU Lianhang, et al. Improvement of the pyrolysis products of oily sludge: Catalysts and catalytic process[J]. Journal of the Energy Institute, 2022, 104: 67-79. |
58 | XIE Qinglong, ADDY Min, LIU Shiyu, et al. Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production[J]. Fuel, 2015, 160: 577-582. |
59 | CHANG Guozhang, MIAO Peng, WANG Hongchao, et al. A synergistic effect during the co-pyrolysis of Nannochloropsis sp. and palm kernel shell for aromatic hydrocarbon production[J]. Energy Conversion and Management, 2018, 173: 545-554. |
60 | CHE Qingfeng, YANG Minjiao, WANG Xianhua, et al. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust[J]. Fuel Processing Technology, 2019, 188: 146-152. |
61 | DAI Gongxin, WANG Shurong, ZOU Qun, et al. Improvement of aromatics production from catalytic pyrolysis of cellulose over metal-modified hierarchical HZSM-5[J]. Fuel Processing Technology, 2018, 179: 319-323. |
62 | KAMALI Ali, HEIDARI Setareh, GOLZARY Abooali, et al. Optimized catalytic pyrolysis of refinery waste sludge to yield clean high quality oil products[J]. Fuel, 2022, 328: 125292. |
63 | ZHOU Qiaoqiao, LIU Zhenyu, WU Ta Yeong, et al. Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars[J]. Renewable and Sustainable Energy Reviews, 2023, 176: 113194. |
64 | DJAKARIA Koïta, TANG Ziyue, SHAO Jingai, et al. Improving the production of furfural from cellulose catalytic pyrolysis using WO3/ γ-Al2O3 composite oxides[J]. Journal of Analytical and Applied Pyrolysis, 2022, 167: 105648. |
65 | ZHANG Huiyan, MENG Xin, LIU Chao, et al. Selective low-temperature pyrolysis of microcrystalline cellulose to produce levoglucosan and levoglucosenone in a fixed bed reactor[J]. Fuel Processing Technology, 2017, 167: 484-490. |
66 | GUAN Guoqing, KAEWPANHA Malinee, HAO Xiaogang, et al. Catalytic steam reforming of biomass tar: Prospects and challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 450-461. |
67 | WANG Shaoqing, WAN Zhen, HAN Yushun, et al. A review on lignin waste valorization by catalytic pyrolysis: Catalyst, reaction system, and industrial symbiosis mode[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109113. |
68 | OEMAR U, ANG M L, HEE W F, et al. Perovskite La x M1– x Ni0.8Fe0.2O3 catalyst for steam reforming of toluene: Crucial role of alkaline earth metal at low steam condition[J]. Applied Catalysis B: Environmental, 2014, 148/149: 231-242. |
69 | ZHENG Xiaohai, LI Bang, SHEN Lijuan, et al. Oxygen vacancies engineering of Fe doped LaCoO3 perovskite catalysts for efficient H2S selective oxidation[J]. Applied Catalysis B: Environmental, 2023, 329: 122526. |
70 | YAN Jingchun, JIANG Shouxi, SONG Tao, et al. Chemical looping catalytic steam gasification (CLCSG) of algae over La1- x Ba x FeO3 perovskites for syngas production[J]. Biomass and Bioenergy, 2021, 151: 106154. |
71 | REN Jie, LIU Yiling. Promoting syngas production from steam reforming of toluene using a highly stable Ni/(Mg, Al)O x catalyst[J]. Applied Catalysis B: Environmental, 2022, 300: 120743. |
72 | SHAFIZADEH Alireza, RASTEGARI Hajar, SHAHBEIK Hossein, et al. A critical review of the use of nanomaterials in the biomass pyrolysis process[J]. Journal of Cleaner Production, 2023, 400: 136705. |
73 | SURIAPPARAO Dadi V, TEJASVI Ravi. A review on role of process parameters on pyrolysis of biomass and plastics: Present scope and future opportunities in conventional and microwave-assisted pyrolysis technologies[J]. Process Safety and Environmental Protection, 2022, 162: 435-462. |
74 | LUO Juan, MA Rui, LIN Junhao, et al. Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113107. |
75 | XAYACHAK Tu, HAQUE Nawshad, PARTHASARATHY Raj, et al. Pyrolysis for plastic waste management: An engineering perspective[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108865. |
76 | Xin Yi LIM, Peter Nai Yuh YEK, LIEW Rock Keey, et al. Engineered biochar produced through microwave pyrolysis as a fuel additive in biodiesel combustion[J]. Fuel, 2022, 312: 122839. |
77 | HUANG Yu-Fong, Shang-Lien LO. Energy recovery from waste printed circuit boards using microwave pyrolysis: Product characteristics, reaction kinetics, and benefits[J]. Environmental Science and Pollution Research, 2020, 27(34): 43274-43282. |
78 | KIM Daegi, KIM Gabin, Doo Young OH, et al. Enhanced hydrogen production from anaerobically digested sludge using microwave assisted pyrolysis[J]. Fuel, 2022, 314: 123091. |
79 | Shih-Hsin HO, ZHANG Congyu, CHEN Wei-Hsin, et al. Characterization of biomass waste torrefaction under conventional and microwave heating[J]. Bioresource Technology, 2018, 264: 7-16. |
80 | MOHAMED Badr A, KIM Chang Soo, ELLIS Naoko, et al. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties[J]. Bioresource Technology, 2016, 201: 121-132. |
81 | BENEROSO D, MONTI T, KOSTAS E T, et al. Microwave pyrolysis of biomass for bio-oil production: Scalable processing concepts[J]. Chemical Engineering Journal, 2017, 316: 481-498. |
82 | MOHAMED Badr A, BILAL Muhammad, SALAMA El-Sayed, et al. Phenolic-rich bio-oil production by microwave catalytic pyrolysis of switchgrass: Experimental study, life cycle assessment, and economic analysis[J]. Journal of Cleaner Production, 2022, 366: 132668. |
83 | HUANG Carol, MOHAMED Badr A, LI Loretta Y. Comparative life-cycle assessment of pyrolysis processes for producing bio-oil, biochar, and activated carbon from sewage sludge[J]. Resources, Conservation and Recycling, 2022, 181: 106273. |
84 | Edmundo MUÑOZ, CURAQUEO Gustavo, Mara CEA, et al. Environmental hotspots in the life cycle of a biochar-soil system[J]. Journal of Cleaner Production, 2017, 158: 1-7. |
85 | WANG Hui, WANG Lijun, SHAHBAZI Abolghasem. Life cycle assessment of fast pyrolysis of municipal solid waste in North Carolina of USA[J]. Journal of Cleaner Production, 2015, 87(1): 511-519. |
86 | LIN Junhao, LIU Shiwei, HAN Zijian, et al. Scaled-up microwave pyrolysis of sludge for hydrogen-rich biogas and life cycle assessment: Parameters synergistic optimization, carbon footprint analysis and technology upgrade[J]. Chemical Engineering Journal, 2023, 452: 139551. |
87 | MONG Guo Ren, CHONG Cheng Tung, Jo-Han NG, et al. Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management[J]. Energy, 2021, 216: 119194. |
88 | 杨捷, 商辉, 李军, 等. 微波辅助热解废旧塑料的研究进展[J]. 现代化工, 2023, 43(9): 80-84. |
YANG Jie, SHANG Hui, LI Jun, et al. Research progress on microwave-assisted pyrolysis of spent plastics[J]. Modern Chemical Industry, 2023, 43(9): 80-84. | |
89 | BHATT Kangana P, PATEL Sanjay, UPADHYAY Darshit S, et al. A critical review on solid waste treatment using plasma pyrolysis technology[J]. Chemical Engineering and Processing: Process Intensification, 2022, 177: 108989. |
90 | XU Zhicheng, GAO Ningbo, MA Yan, et al. Biomass volatiles reforming by integrated pyrolysis and plasma-catalysis system for H2 production: Understanding roles of temperature and catalyst[J]. Energy Conversion and Management, 2023, 288: 117159. |
91 | CUDJOE Dan, WANG Hong. Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis[J]. Fuel Processing Technology, 2022, 237: 107470. |
92 | GIWA Abdulmoseen Segun, MAURICE Ndungutse Jean, AI Luoyan, et al. Advances in sewage sludge application and treatment: Process integration of plasma pyrolysis and anaerobic digestion with the resource recovery[J]. Heliyon, 2023, 9(9): e19765. |
93 | SIKARWAR Vineet Singh, Milan HRABOVSKÝ, VAN OOST Guido, et al. Progress in waste utilization via thermal plasma[J]. Progress in Energy and Combustion Science, 2020, 81: 100873. |
94 | AMINU Idris, NAHIL Mohamad A, WILLIAMS Paul T. Pyrolysis-plasma/catalytic reforming of post-consumer waste plastics for hydrogen production[J]. Catalysis Today, 2023, 420: 114084. |
95 | RAMOS Ana, TEIXEIRA Carlos Afonso, ROUBOA Abel. Environmental assessment of municipal solid waste by two-stage plasma gasification[J]. Energies, 2019, 12(1): 137. |
96 | EVANGELISTI Sara, TAGLIAFERRI Carla, CLIFT Roland, et al. Life cycle assessment of conventional and two-stage advanced energy-from-waste technologies for municipal solid waste treatment[J]. Journal of Cleaner Production, 2015, 100: 212-223. |
97 | KERSCHER Florian, STARY Alexander, GLEIS Stephan, et al. Low-carbon hydrogen production via electron beam plasma methane pyrolysis: Techno-economic analysis and carbon footprint assessment[J]. International Journal of Hydrogen Energy, 2021, 46(38): 19897-19912. |
98 | ZHANG Weijiang, YUAN Chengyong, XU Jiao, et al. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor[J]. Bioresource Technology, 2015, 183: 255-258. |
99 | HUANG Carol, MOHAMED Badr A, LI Loretta Y. Comparative life-cycle energy and environmental analysis of sewage sludge and biomass co-pyrolysis for biofuel and biochar production[J]. Chemical Engineering Journal, 2023, 457: 141284. |
100 | ZHOU Chunbao, ZHANG Yingwen, LIU Yang, et al. Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation[J]. Energy, 2021, 218: 119398. |
101 | CHEN Lin, WANG Shuzhong, MENG Haiyu, et al. Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste[J]. Applied Thermal Engineering, 2017, 111: 834-846. |
102 | ENGAMBA ESSO Samy Berthold, Xiong ZHE, CHAIWAT Weerawut, et al. Review on synergistic effects during co-pyrolysis of biomass and plastic waste: Significance of operating conditions and interaction mechanism[J]. Biomass and Bioenergy, 2022, 159: 106415. |
103 | ZHANG Xi, ZENG Yizhen, ZHAN Lulu, et al. Upgradation of agricultural straw pyrolysis through co-processing with PE waste and by-product detoxification[J]. Fuel, 2023, 336: 126767. |
104 | HONG Yu, CHEN Wanru, LUO Xiang, et al. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production[J]. Bioresource Technology, 2017, 237: 47-56. |
105 | SU Guangcan, Hwai Chyuan ONG, I M Rizwanul FATTAH, et al. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges[J]. Science of the Total Environment, 2022, 809: 151170. |
106 | SRIDHAR Adithya, KAPOOR Ashish, SENTHIL KUMAR Ponnusamy, et al. Conversion of food waste to energy: A focus on sustainability and life cycle assessment[J]. Fuel, 2021, 302: 121069. |
107 | PARK Chanyeong, LEE Nahyeon, KIM Jisu, et al. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions[J]. Environmental Pollution, 2021, 270: 116045. |
108 | MA Mingyan, XU Donghai, ZHI Youwei, et al. Co-pyrolysis re-use of sludge and biomass waste: Development, kinetics, synergistic mechanism and industrialization[J]. Journal of Analytical and Applied Pyrolysis, 2022, 168: 105746. |
109 | KAZEMI TARGHI Negar, TAVAKOLI Omid, NAZEMI Ali Hekmat. Co-pyrolysis of lentil husk wastes and Chlorella vulgaris: Bio-oil and biochar yields optimization[J]. Journal of Analytical and Applied Pyrolysis, 2022, 165: 105548. |
110 | ANSARI Khursheed B, HASSAN Saeikh Zaffar, BHOI Rohidas, et al. Co-pyrolysis of biomass and plastic wastes: A review on reactants synergy, catalyst impact, process parameter, hydrocarbon fuel potential, COVID-19[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106436. |
111 | WANG Xin, ZHAO Bingwei, YANG Xiaoyi. Co-pyrolysis of microalgae and sewage sludge: Biocrude assessment and char yield prediction[J]. Energy Conversion and Management, 2016, 117: 326-334. |
112 | SAMAL Biswajit, VANAPALLI Kumar Raja, DUBEY Brajesh Kumar, et al. Char from the co-pyrolysis of eucalyptus wood and low-density polyethylene for use as high-quality fuel: Influence of process parameters[J]. Science of the Total Environment, 2021, 794: 148723. |
113 | SAJDAK M, MUZYKA R. Use of plastic waste as a fuel in the co-pyrolysis of biomass. Part Ⅰ: The effect of the addition of plastic waste on the process and products[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 267-275. |
114 | HUANG Yu-Fong, SHIH Chun-Hao, CHIUEH Pei-Te, et al. Microwave co-pyrolysis of sewage sludge and rice straw[J]. Energy, 2015, 87: 638-644. |
115 | ZHANG Chen, YANG Xue, TAN Xuejun, et al. Sewage sludge treatment technology under the requirement of carbon neutrality: Recent progress and perspectives[J]. Bioresource Technology, 2022, 362: 127853. |
116 | LI Yuanling, YU Han, LIU Lina, et al. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates[J]. Journal of Hazardous Materials, 2021, 420: 126655. |
117 | ZHANG Yiteng, CHENG Xingxing, WANG Zhiqiang, et al. Co-pyrolysis of peanut shell with phosphate fertilizer to improve carbon sequestration and emission reduction potential of biochar[J]. Fuel Processing Technology, 2022, 236: 107435. |
118 | MOHD NASIR Amirah Syafika, MOHAMED Badr, LI Loretta Y. Comparative life cycle assessment of co-pyrolysing sewage sludge and wastewater-grown microalgae for biofuel production[J]. Resources, Conservation and Recycling, 2023, 190: 106780. |
119 | 李晓娜, 潘超, 宋洋, 等. 典型塑料与生物质废弃物的共热解技术及高值化利用[J]. 环境科学研究, 2023, 36(9): 1765-1778. |
LI Xiaona, PAN Chao, SONG Yang, et al. Review of co-pyrolysis technologies of typical plastic and biomass waste for value-added products[J]. Research of Environmental Sciences, 2023, 36(9): 1765-1778. | |
120 | ELKASABI Yaseen, JONES Kerby, MULLEN Charles A, et al. Spinning band distillation of biomass pyrolysis oil phenolics to produce pure phenol[J]. Separation and Purification Technology, 2023, 314: 123603. |
121 | IYODO MOHAMMED Habu, GARBA Kabir, AHMED Saeed ISA, et al. Recent advances on strategies for upgrading biomass pyrolysis vapour to value-added bio-oils for bioenergy and chemicals[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102984. |
122 | 郑洪岩, 赵子龙, 肖鲁青山, 等. 分子筛催化纤维素和淀粉转化制糠醛[J]. 燃料化学学报, 2021, 49(9): 1261-1269. |
ZHENG Hongyan, ZHAO Zilong, XIAO Luqingshan, et al. Catalytic conversion of cellulose and starch to furfural over zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1261-1269. | |
123 | WANG Bo, LI Kai, Dong hong NAN, et al. Enhanced production of levoglucosenone from pretreatment assisted catalytic pyrolysis of waste paper[J]. Journal of Analytical and Applied Pyrolysis, 2022, 165: 105567. |
124 | WEI Xinlai, WANG Zhi, WU Yang, et al. Fast pyrolysis of cellulose with solid acid catalysts for levoglucosenone[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 150-154. |
125 | HU Bin, LU Qiang, WU Yuting, et al. Insight into the formation mechanism of levoglucosenone in phosphoric acid-catalyzed fast pyrolysis of cellulose[J]. Journal of Energy Chemistry, 2020, 43: 78-89. |
126 | DE SOUZA Priscilla Magalhães, DE SOUSA Leandro Alves, NORONHA Fábio Bellot, et al. Dehydration of levoglucosan to levoglucosenone over solid acid catalysts. Tuning the product distribution by changing the acid properties of the catalysts[J]. Molecular Catalysis, 2022, 529: 112564. |
127 | HU Bin, CHENG Anshuai, LI Yang, et al. A sustainable strategy for the production of 1,4: 3,6-dianhydro-α-D-glucopyranose through oxalic acid-assisted fast pyrolysis of cellulose[J]. Chemical Engineering Journal, 2022, 436: 135200. |
128 | LI Wentao, Donghong NAN, ZHANG Guan, et al. 9,10 - Dihyroanthrancene assisted catalytic pyrolysis of bagasse over N-doped activated carbon to enhance 4-ethyl phenol production[J]. Journal of Analytical and Applied Pyrolysis, 2022, 165: 105572. |
129 | LI Yang, HU Bin, FU Hao, et al. Fast pyrolysis of bagasse catalyzed by mixed alkaline-earth metal oxides for the selective production of 4-vinylphenol[J]. Journal of Analytical and Applied Pyrolysis, 2022, 164: 105531. |
130 | LU Qiang, ZHANG Zhenxi, YE Xiaoning, et al. Catalytic fast pyrolysis of alkali-pretreated bagasse for selective preparation of 4-vinylphenol[J]. Journal of Analytical and Applied Pyrolysis, 2019, 143: 104669. |
131 | VUPPALADADIYAM Arun Krishna, VUPPALADADIYAM Sai Sree Varsha, AWASTHI Abhishek, et al. Biomass pyrolysis: A review on recent advancements and green hydrogen production[J]. Bioresource Technology, 2022, 364: 128087. |
132 | VUPPALADADIYAM Arun Krishna, VUPPALADADIYAM Sai Sree Varsha, SIKARWAR Vineet Singh, et al. A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges[J]. Journal of the Energy Institute, 2023, 108: 101236. |
133 | AMALINA Farah, RAZAK Abdul Syukor Abd, KRISHNAN Santhana, et al. Biochar production techniques utilizing biomass waste-derived materials and environmental applications—A review[J]. Journal of Hazardous Materials Advances, 2022, 7: 100134. |
134 | CHEN Dengyu, YU Xinzhi, SONG Chao, et al. Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar[J]. Bioresource Technology, 2016, 218: 1303-1306. |
135 | LIU Yuxue, GAO Chengxiang, WANG Yuying, et al. Vermiculite modification increases carbon retention and stability of rice straw biochar at different carbonization temperatures[J]. Journal of Cleaner Production, 2020, 254: 120111. |
136 | ZHANG Jie, LIU Jia, LIU Rongle. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate[J]. Bioresource Technology, 2015, 176: 288-291. |
137 | XIONG Zhe, WANG Yi, SYED-HASSAN Syed Shatir A, et al. Effects of heating rate on the evolution of bio-oil during its pyrolysis[J]. Energy Conversion and Management, 2018, 163: 420-427. |
138 | REN Shoujie, LEI Hanwu, WANG Lu, et al. Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts[J]. RSC Advances, 2014, 4(21): 10731-10737. |
139 | LENG Lijian, HUANG Huajun. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 2018, 270: 627-642. |
140 | MANYÀ Joan J, AZUARA Manuel, MANSO José A. Biochar production through slow pyrolysis of different biomass materials: Seeking the best operating conditions[J]. Biomass and Bioenergy, 2018, 117: 115-123. |
141 | TRIPATHI Manoj, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 467-481. |
142 | JOSHI Manisha, BHATT Devesh, SRIVASTAVA Anjana. Enhanced adsorption efficiency through biochar modification: A comprehensive review[J]. Industrial & Engineering Chemistry Research, 2023, 62(35): 13748-13761. |
143 | MURTAZA Ghulam, AHMED Zeeshan, VALIPOUR Mohammad, et al. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants[J]. Scientific Reports, 2024, 14: 217. |
144 | LENG Lijian, XIONG Qin, YANG Lihong, et al. An overview on engineering the surface area and porosity of biochar[J]. Science of the Total Environment, 2021, 763: 144204. |
145 | KIM Youkwan, Jeong-Ik OH, VITHANAGE Meththika, et al. Modification of biochar properties using CO2 [J]. Chemical Engineering Journal, 2019, 372: 383-389. |
146 | ZHANG Chen, JI Ying, LI Chunchun, et al. The application of biochar for CO2 capture: Influence of biochar preparation and CO2 capture reactors[J]. Industrial & Engineering Chemistry Research, 2023, 62(42): 17168-17181. |
147 | TANG Zhipei, GAO Jianmin, ZHANG Yu, et al. Ultra-microporous biochar-based carbon adsorbents by a facile chemical activation strategy for high-performance CO2 adsorption[J]. Fuel Processing Technology, 2023, 241: 107613. |
148 | JUNG Sungyup, PARK Young-Kwon, KWON Eilhann E. Strategic use of biochar for CO2 capture and sequestration[J]. Journal of CO2 Utilization, 2019, 32: 128-139. |
149 | PENG Hongbo, GAO Peng, CHU Gang, et al. Enhanced adsorption of C u ( Ⅱ ) and C d ( Ⅱ ) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229: 846-853. |
150 | GODWIN Patrick M, PAN Yuanfeng, XIAO H, et al. Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater[J]. Journal of Bioresources and Bioproducts, 2019, 4(1): 31-42. |
151 | TANG Lin, YU Jiangfang, PANG Ya, et al. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal[J]. Chemical Engineering Journal, 2018, 336: 160-169. |
152 | CHIN Jia Fu, HENG Zeng wei, TEOH Hui Chieh, et al. Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater—Modification, application and mechanism[J]. Chemosphere, 2022, 291: 133035. |
153 | ZHOU Xiaohui, ZHOU Jianjun, LIU Yaochi, et al. Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(Ⅱ) removal in water[J]. Fuel, 2018, 233: 469-479. |
154 | TAN Xuefei, ZHU Shishu, WANG Rupeng, et al. Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups[J]. Chinese Chemical Letters, 2021, 32(10): 2939-2946. |
155 | SADEGH Fatemeh, SADEGH Negar, WONGNIRAMAIKUL Worawit, et al. Adsorption of volatile organic compounds on biochar: A review[J]. Process Safety and Environmental Protection, 2024, 182: 559-578. |
156 | SAGHIR Summaira, XIAO Zhenggang. Synergistic approach for synthesis of functionalized biochar for efficient adsorption of Lopinavir from polluted water[J]. Bioresource Technology, 2024, 391: 129916. |
157 | MOSLEH Mojgan Hadi, RAJABI Hamid. NaOH-benzoic acid modified biochar for enhanced removal of aromatic VOCs[J]. Separation and Purification Technology, 2024, 330: 125453. |
158 | LOHAN Diksha, JAIN Reena, SRIVASTAVA Anju, et al. Surface engineering approaches for the design of magnetic biochar-composites for removal of heavy metals: A comprehensive review[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111448. |
159 | TAN Ling, NIE Yudong, CHANG Haixing, et al. Adsorption performance of N i ( Ⅱ ) by KOH-modified biochar derived from different microalgae species[J]. Bioresource Technology, 2024, 394: 130287. |
160 | DONG Jun, SHEN Lingfang, SHAN Shengdao, et al. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of P b ( Ⅱ ) from aqueous solution[J]. Science of the Total Environment, 2022, 806: 151442. |
161 | CUONG Dinh Viet, HOU Chia-Hung. Enhancing phosphorus removal through layered double hydroxide-decorated biochars: Unveiling pore structure and surface functionalization[J]. Journal of the Taiwan Institute of Chemical Engineers, 2024, 155: 105273. |
162 | SUN Zhengyi, WANG Xue, WU Yufei, et al. Effect of sludge biochar on methane production from anaerobic granular sludge[J]. Journal of Water Process Engineering, 2023, 56: 104410. |
163 | WEI Yufang, ZHAO Hongbing, QI Xuejiao, et al. Direct interspecies electron transfer stimulated by coupling of modified anaerobic granular sludge with microbial electrolysis cell for biogas production enhancement[J]. Applied Energy, 2023, 341: 121100. |
164 | FAN Qiongbo, SHAO Zhijiang, GUO Xiaohui, et al. Effects of Fe-N co-modified biochar on methanogenesis performance, microbial community, and metabolic pathway during anaerobic co-digestion of alternanthera philoxeroides and cow manure[J]. Journal of Environmental Management, 2024, 351: 120006. |
165 | JIN Hongyu, HE Zhangwei, REN Yongxiang, et al. Revealing the roles of biochar derived from iron-rich fermented sludge residue in anaerobic digestion[J]. Chemical Engineering Journal, 2024, 481: 148376. |
166 | SUBRAMANIAM Mahesan Naidu, WU Zhentao, Pei Sean GOH, et al. The state-of-the-art development of biochar based photocatalyst for removal of various organic pollutants in wastewater[J]. Journal of Cleaner Production, 2023, 429: 139487. |
167 | FITO Jemal, KEFENI Kebede K, NKAMBULE Thabo T I. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater[J]. Science of the Total Environment, 2022, 829: 154648. |
168 | LIU Yong, YU Xiaobin, KAMALI Mohammadreza, et al. Biochar in hydroxyl radical-based electrochemical advanced oxidation processes (eAOPs)—Mechanisms and prospects[J]. Chemical Engineering Journal, 2023, 467: 143291. |
169 | WANG Jin, SUN Mengqing, WANG Lulu, et al. High-efficiency removal of arsenic( Ⅲ ) from wastewater using combined copper ferrite@biochar and persulfate[J]. Chemosphere, 2023, 336: 139089. |
170 | WANG Xuhui, LI Weiguang, WANG Shuncai, et al. Regulated synthesis of cobalt phosphide/biochar utilizing phytic acid: Biochar enhances anion co-catalysis of cobalt phosphides in persulfate activation[J]. Chemical Engineering Journal, 2023, 478: 147273. |
171 | ZHU Xinwei, SHEN Jimin, KANG Jing, et al. Surface atomic oxygen species mediated the in-situ formation of hydroxyl radicals on Fe3C decorated biochar for enhancing catalytic ozonation[J]. Chemical Engineering Journal, 2023, 473: 145380. |
172 | YIN Jianxiang, ZHAO Ling, XU Xiaoyun, et al. Evaluation of long-term carbon sequestration of biochar in soil with biogeochemical field model[J]. Science of the Total Environment, 2022, 822: 153576. |
173 | ELKHLIFI Zouhair, IFTIKHAR Jerosha, SARRAF Mohammad, et al. Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: A review[J]. Sustainability, 2023, 15(3): 2527. |
174 | CROMBIE Kyle, Ondřej MAŠEK. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration[J]. GCB Bioenergy, 2015, 7(2): 349-361. |
175 | LIU Xiaotong, HE Su, HAN Zhenan, et al. Investigation of spherical alumina supported catalyst for carbon nanotubes production from waste polyethylene[J]. Process Safety and Environmental Protection, 2021, 146: 201-207. |
176 | AZARA Abir, BELBESSAI Salma, ABATZOGLOU Nicolas. A review of filamentous carbon nanomaterial synthesis via catalytic conversion of waste plastic pyrolysis products[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107049. |
177 | GOU Xiang, ZHAO Dong, WU Chunfei. Catalytic conversion of hard plastics to valuable carbon nanotubes[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145: 104748. |
178 | ZHANG Qiang, HUANG Jiaqi, QIAN Weizhong, et al. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage[J]. Small, 2013, 9(8): 1237-1265. |
179 | SU Xiao, WANG Ruoyu, LI Xiaofeng, et al. A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets[J]. Nano Materials Science, 2022, 4(3): 185-204. |
180 | JIA Jingbo, VEKSHA Andrei, Teik-Thye LIM, et al. Modulating local environment of Ni with W for synthesis of carbon nanotubes and hydrogen from plastics[J]. Journal of Cleaner Production, 2022, 352: 131620. |
181 | LIU Xiaotong, ZHANG Yeshui, NAHIL Mohamad A, et al. Development of Ni- and Fe- based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 32-39. |
182 | NAHIL Mohamad Anas, WU Chunfei, WILLIAMS Paul T. Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene[J]. Fuel Processing Technology, 2015, 130: 46-53. |
183 | VEKSHA Andrei, YIN Ke, James Guo Sheng MOO, et al. Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction[J]. Journal of Hazardous Materials, 2020, 387: 121256. |
184 | YAO Dingding, WU Chunfei, YANG Haiping, et al. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst[J]. Energy Conversion and Management, 2017, 148: 692-700. |
185 | JIA Jingbo, VEKSHA Andrei, Teik-Thye LIM, et al. In situ grown metallic nickel from X-Ni (X=La, Mg, Sr) oxides for converting plastics into carbon nanotubes: Influence of metal-support interaction[J]. Journal of Cleaner Production, 2020, 258: 120633. |
186 | Kätlin KAARE, JANTSON Martin, PALGRAVE Robert, et al. Study of the electrocatalytic activity of silicon and nitrogen co-doped carbon towards oxygen reduction reaction[J]. Journal of Electroanalytical Chemistry, 2023, 950: 117859. |
187 | LI Mohua, BAI Liang, JIANG Shengtao, et al. Electrocatalytic transformation of oxygen to hydroxyl radicals via three-electron pathway using nitrogen-doped carbon nanotube-encapsulated nickel nanocatalysts for effective organic decontamination[J]. Journal of Hazardous Materials, 2023, 452: 131352. |
188 | YANG Yaqi, WANG Pu, LUO Zhiwang, et al. Enhanced electrocatalytic activity of 2D ordered mesoporous nitrogen-rich carbon nanosheets functional NiFe2O4 nanospheres for ultrasensitive detection of chlorogenic acid in natural samples[J]. Chemical Engineering Journal, 2023, 468: 143815. |
189 | WU Lei, LIU Jiao, Rajasekhar REDDY B, et al. Preparation of coal-based carbon nanotubes using catalytical pyrolysis: A brief review[J]. Fuel Processing Technology, 2022, 229: 107171. |
190 | GUO Qingxiang, ZHAO Yuqiong, LEI Yaning, et al. Tuning lignite structure via hydromodification to promote the formation of coal-based CNTs: Exploration for the carbon source of CNTs[J]. ACS Omega, 2023, 8(29): 25938-25950. |
191 | LIU Fuyao, WANG Qianqian, ZHAI Gongxun, et al. Continuously processing waste lignin into high-value carbon nanotube fibers[J]. Nature Communications, 2022, 13: 5755. |
192 | VEKSHA Andrei, CHEN Wenqian, LIANG Lili, et al. Converting polyolefin plastics into few-walled carbon nanotubes via a tandem catalytic process: Importance of gas composition and system configuration[J]. Journal of Hazardous Materials, 2022, 435: 128949. |
193 | KUMAR Anuj, GUPTA Ram K, UBAIDULLAH Mohd, et al. Engineering of hollow mesoporous Fe-graphitic carbon Nitride@CNTs for superior electrocatalytic oxygen reduction reaction[J]. Fuel, 2024, 357: 129809. |
194 | NGUYEN Tung M, TRAN Minh X, VAN Nguyen Tuan, et al. Embedding nickel diselenide in carbon derived from biomass and its electrocatalytic activity for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 52: 709-717. |
195 | WU Xinyi, TU Weihan, VEKSHA Andrei, et al. Polyolefin-derived substrate-grown carbon nanotubes as binder-free electrode for hydrogen evolution in alkaline media[J]. Chemosphere, 2024, 349: 140769. |
196 | URADE Akanksha R, LAHIRI Indranil, SURESH K S. Graphene properties, synthesis and applications: A review[J]. JOM, 2023, 75(3): 614-630. |
197 | ZHAO Shuhan, LUO Zhongyang, FANG Mengxiang, et al. Characteristics of graphene growth at different temperatures from the benzene ring structure in coal tar[J]. Processes, 2023, 11(2): 593. |
198 | LIOU Tzong-Horng, TSENG Yu-Kai, ZHANG Tengyuan, et al. Rice husk char as a sustainable material for the preparation of graphene oxide-supported biocarbons with mesoporous structure: A characterization and adsorption study[J]. Fuel, 2023, 344: 128042. |
199 | THANGARAJ Baskar, MUMTAZ Fatima, ABBAS Yawar, et al. Synthesis of graphene oxide from sugarcane dry leaves by two-stage pyrolysis[J]. Molecules, 2023, 28(8): 3329. |
200 | CHOU Chih-Ming, DAI Yung-Dun, YUAN Ching, et al. Preparation of an electrochemical sensor utilizing graphene-like biochar for the detection of tetracycline[J]. Environmental Research, 2023, 236: 116785. |
201 | KIM Se-Hee, KIM Dong-Su, MORADI Hiresh, et al. Highly porous biobased graphene-like carbon adsorbent for dye removal: Preparation, adsorption mechanisms and optimization[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109278. |
202 | KONG Wei, Hyun KUM, Sang-Hoon BAE, et al. Path towards graphene commercialization from lab to market[J]. Nature Nanotechnology, 2019, 14: 927-938. |
203 | WELDEKIDAN Haftom, MOHANTY Amar K, MISRA Manjusri. Upcycling of plastic wastes and biomass for sustainable graphitic carbon production: A critical review[J]. ACS Environmental Au, 2022, 2(6): 510-522. |
204 | ZHANG Qi, SONG Ningjing, MA Canliang, et al. Constructing a low-cost Si-NSs@C/NG composite by a ball milling-catalytic pyrolysis method for lithium storage[J]. Molecules, 2023, 28(8): 3458. |
205 | FAN Jincheng, LI Tengfei, GAO Yuanhong, et al. Comprehensive study of graphene grown by chemical vapor deposition[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(10): 4333-4338. |
206 | WU Yanxia, WANG Shengxi, KOMVOPOULOS Kyriakos. A review of graphene synthesis by indirect and direct deposition methods[J]. Journal of Materials Research, 2020, 35(1): 76-89. |
207 | SAHA Jhantu Kumar, DUTTA Animesh. A review of graphene: Material synthesis from biomass sources[J]. Waste Biomass Valorization, 2022, 13(3): 1385-1429. |
208 | ABOUL-ENEIN Ateyya A, AZAB Mostafa A, HAGGAR Ahmed M, et al. Synthesis of high-quality graphene sheets via decomposition of non-condensable gases from pyrolysis of polypropylene waste using unsupported Fe, Co, and Fe-Co catalysts[J]. Journal of Material Cycles and Waste Management, 2023, 25(1): 272-287. |
209 | WU Bangjian, LIU Bingguo, CHAO Yuwen, et al. Microwave preparation of porous graphene from wasted tires and its pyrolysis behavior[J]. Waste and Biomass Valorization, 2023, 14(6): 1969-1978. |
210 | ALGHASHM Shakib, QIAN Shiying, HUA Yinfeng, et al. Properties of biochar from anaerobically digested food waste and its potential use in phosphorus recovery and soil amendment[J]. Sustainability, 2018, 10(12): 4692. |
211 | YU Fan, WANG Junxia, WANG Xutong, et al. Phosphorus-enriched biochar from biogas residue of Eichhornia crassipes: Transformation and release of phosphorus[J]. Biochar, 2023, 5(1): 82. |
212 | WANG Mengyao, WANG Gaihong, QIAN Lina, et al. Biochar production using biogas residue and their adsorption of ammonium nitrogen and chemical oxygen demand in wastewater[J]. Biomass Conversion and Biorefinery, 2023, 13(5): 3881-3892. |
213 | FANG Xiang, HUANG Yingying, FAN Xinru, et al. Effect of water-washing pretreatment on the enhancement of tetracycline adsorption by biogas residue biochar[J]. Environmental Science and Pollution Research International, 2023, 30(17): 49720-49732. |
214 | LI Dongyang, XIAO Yi, XI Beidou, et al. Enhanced phenol removal by permanganate with biogas residue biochar: Catalytic role of in-situ formation of manganese dioxide and activation of biochar[J]. Biochar, 2023, 5(1): 54. |
215 | HUANG Simian, WANG Teng, CHEN Kai, et al. Engineered biochar derived from food waste digestate for activation of peroxymonosulfate to remove organic pollutants[J]. Waste Management, 2020, 107: 211-218. |
216 | SUN Peng, HUA Yinfeng, ZHAO Jie, et al. Insights into the mechanism of hydrogen peroxide activation with biochar produced from anaerobically digested residues at different pyrolysis temperatures for the degradation of BTEXS[J]. Science of the Total Environment, 2021, 788: 147718. |
217 | QU Youpei, QU Jingbo, YAN Wencong, et al. Influence of biochar on physico-chemical, microbial community and maturity during biogas residue aerobic composting process[J]. Fermentation, 2022, 8(11): 623. |
218 | LIANG Jiajin, LIN Yunqin, WU Shubin, et al. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw[J]. Bioresource Technology, 2015, 181: 220-223. |
219 | WANG Tipeng, AI Yinong, PENG Li, et al. Pyrolysis characteristics of poplar sawdust by pretreatment of anaerobic fermentation[J]. Industrial Crops and Products, 2018, 125: 596-601. |
220 | WANG Tipeng, AI Yinong, LI Hang, et al. Comparative study of pyrolysis characteristics of bamboo powder and grape vine by anaerobic fermentation pretreatment[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 93-101. |
221 | NEUMANN Johannes, MEYER Johannes, OUADI Miloud, et al. The conversion of anaerobic digestion waste into biofuels via a novel thermo-catalytic reforming process[J]. Waste Management, 2016, 47: 141-148. |
222 | SIKARWAR Vineet Singh, Michael POHOŘELÝ, MEERS Erik, et al. Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization[J]. Fuel, 2021, 294: 120533. |
223 | GHYSELS Stef, ACOSTA Nayaret, ESTRADA Adriana, et al. Integrating anaerobic digestion and slow pyrolysis improves the product portfolio of a cocoa waste biorefinery[J]. Sustainable Energy & Fuels, 2020, 4(7): 3712-3725. |
224 | LI Chunxing, ZHU Xinyu, ANGELIDAKI Irini. Syngas biomethanation: Effect of biomass-gas ratio, syngas composition and pH buffer[J]. Bioresource Technology, 2021, 342: 125997. |
225 | MENIN Lorenzo, ASIMAKOPOULOS Konstantinos, SUKUMARA Sumesh, et al. Competitiveness of syngas biomethanation integrated with carbon capture and storage, power-to-gas and biomethane liquefaction services: Techno-economic modeling of process scenarios and evaluation of subsidization requirements[J]. Biomass and Bioenergy, 2022, 161: 106475. |
226 | WANG Shule, WEN Yuming, SHI Ziyi, et al. Novel carbon-negative methane production via integrating anaerobic digestion and pyrolysis of organic fraction of municipal solid waste[J]. Energy Conversion and Management, 2022, 252: 115042. |
227 | SINGH Rickwinder, PARITOSH Kunwar, PAREEK Nidhi, et al. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review[J]. Bioresource Technology, 2022, 360: 127596. |
228 | HOANG Anh Tuan, GOLDFARB Jillian L, FOLEY Aoife M, et al. Production of biochar from crop residues and its application for anaerobic digestion[J]. Bioresource Technology, 2022, 363: 127970. |
229 | CHEN Le, FANG Wei, LIANG Jinsong, et al. Biochar application in anaerobic digestion: Performances, mechanisms, environmental assessment and circular economy[J]. Resources, Conservation and Recycling, 2023, 188: 106720. |
230 | SALMAN Chaudhary Awais, SCHWEDE Sebastian, THORIN Eva, et al. Predictive modelling and simulation of integrated pyrolysis and anaerobic digestion process[J]. Energy Procedia, 2017, 105: 850-857. |
231 | LIU Minrui, LI Zhengning, QI Xinge, et al. Improvement of cow manure anaerobic digestion performance by three different crop straw biochars[J]. Environmental Technology & Innovation, 2023, 31: 103233. |
232 | MA Jiaying, WEI Huawei, SU Yinglong, et al. Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating: Microbial and metabolic insights[J]. Bioresource Technology, 2020, 313: 123706. |
233 | HE Zhang, LI Aihua, TANG Congcong, et al. Biochar regulates anaerobic digestion: Insights to the roles of pore size[J]. Chemical Engineering Journal, 2024, 480: 148219. |
234 | LI Xunan, CHU Siqin, WANG Panliang, et al. Potential of biogas residue biochar modified by ferric chloride for the enhancement of anaerobic digestion of food waste[J]. Bioresource Technology, 2022, 360: 127530. |
235 | LIU Yang, DU Jing, YE Xiaomei, et al. The new strategy of using humic acid loaded biochar to enhance the anaerobic digestion of cow manure for methane production[J]. Journal of Cleaner Production, 2023, 428: 139353. |
236 | JIA Xiaopeng, CHE Yuechi, LI Jian, et al. From cellulose to tar: Analysis of tar formation pathway with distinguishing the primary and secondary reactions[J]. Bioresource Technology, 2023, 390: 129846. |
237 | CORTAZAR M, SANTAMARIA L, LOPEZ G, et al. A comprehensive review of primary strategies for tar removal in biomass gasification[J]. Energy Conversion and Management, 2023, 276: 116496. |
238 | TORRI Cristian, FABBRI Daniele. Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass[J]. Bioresource Technology, 2014, 172: 335-341. |
239 | CORDELLA Mauro, TORRI Cristian, ADAMIANO Alessio, et al. Bio-oils from biomass slow pyrolysis: A chemical and toxicological screening[J]. Journal of Hazardous Materials, 2012, 231/232: 26-35. |
240 | WEN Connie, MOREIRA Cesar M, REHMANN Lars, et al. Feasibility of anaerobic digestion as a treatment for the aqueous pyrolysis condensate (APC) of birch bark[J]. Bioresource Technology, 2020, 307: 123199. |
241 | YUE Xia, ARENA Umberto, CHEN Dezhen, et al. Anaerobic digestion disposal of sewage sludge pyrolysis liquid in cow dung matrix and the enhancing effect of sewage sludge char[J]. Journal of Cleaner Production, 2019, 235: 801-811. |
242 | AN Qing, CHEN Dezhen, CHEN Hui, et al. Modification of hydro-chars by non-thermal plasma to enhance co-anaerobic digestion and degradation of sewage sludge pyrolysis oil[J]. Journal of Environmental Management, 2022, 307: 114531. |
243 | AN Qing, CHEN Dezhen, ZHU Yuting, et al. Promotion of methane production and degradation of pyrolysis oil during its co-anaerobic digestion process via addition of N-doping hydro-chars[J]. Journal of Environmental Management, 2023, 325(Pt B): 116519. |
244 | Anna HÄMÄLÄINEN, KOKKO Marika, CHATTERJEE Pritha, et al. The effects of digestate pyrolysis liquid on the thermophilic anaerobic digestion of sewage sludge—Perspective for a centralized biogas plant using thermal hydrolysis pretreatment[J]. Waste Management, 2022, 147: 73-82. |
245 | YU Xiunan, ZHANG Congguang, QIU Ling, et al. Anaerobic digestion of swine manure using aqueous pyrolysis liquid as an additive[J]. Renewable Energy, 2020, 147: 2484-2493. |
246 | HU Yuansheng, HAO Xiaodi, ZHAO Dan, et al. Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2 [J]. Chemosphere, 2015, 140: 34-39. |
247 | ZHU Xianpu, CHEN Liumeng, CHEN Yichao, et al. Effect of H2 addition on the microbial community structure of a mesophilic anaerobic digestion system[J]. Energy, 2020, 198: 117368. |
248 | Israel DÍAZ, Fernando FDZ-POLANCO, MUTSVENE Boldwin, et al. Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge[J]. Applied Energy, 2020, 280: 115915. |
249 | LEE Eun Seo, PARK Seon Yeong, KIM Chang Gyun. Comparison of anaerobic digestion of starch- and petro-based bioplastic under hydrogen-rich conditions[J]. Waste Management, 2024, 175: 133-145. |
250 | GIOVANNINI Giannina, Andrés DONOSO-BRAVO, JEISON David, et al. A review of the role of hydrogen in past and current modelling approaches to anaerobic digestion processes[J]. International Journal of Hydrogen Energy, 2016, 41(39): 17713-17722. |
251 | LEVITSKY Inna, TAVOR Dorith, GITIS Vitaly. Micro and nanobubbles in water and wastewater treatment: A state-of-the-art review[J]. Journal of Water Process Engineering, 2022, 47: 102688. |
252 | 武炳鑫, 许鸣皋, 张俊, 等. 真空高温热解炉多均匀化温度优化设计[J]. 真空科学与技术学报, 2023, 43(9): 754-761. |
WU Bingxin, XU Minggao, ZHANG Jun, et al. Optimized design of vacuum pyrolysis furnace with multiple homogenization temperatures[J]. Chinese Journal of Vacuum Science and Technology, 2023, 43(9): 754-761. | |
253 | PARTHASARATHY Prakash, TAHIR Furqan, PRADHAN Snigdhendubala, et al. Life cycle assessment of biofuel production from waste date stones using conventional and microwave pyrolysis[J]. Energy Conversion and Management X, 2024, 21: 100510. |
254 | MOHAMED Badr A, RUAN Roger, BILAL Muhammad, et al. Sewage sludge co-pyrolysis with agricultural/forest residues: A comparative life-cycle assessment[J]. Renewable and Sustainable Energy Reviews, 2024, 192: 114168. |
255 | Hrvoje STANČIN, STREZOV Vladimir, Hrvoje MIKULČIĆ. Life cycle assessment of alternative fuel production by co-pyrolysis of waste biomass and plastics[J]. Journal of Cleaner Production, 2023, 414: 137676. |
256 | ZHOU Yan, XU Guoqing, LI Haiyan, et al. Effect of greenhouse gas emissions on the life cycle of biomass energy production and conversion under different straw recycling modes[J]. Environmental Research, 2023, 238: 117184. |
257 | MOHAMED Badr A, O’Boyle MARNIE, Y Li LORETTA. Co-pyrolysis of sewage sludge with lignocellulosic and algal biomass for sustainable liquid and gaseous fuel production: A life cycle assessment and techno-economic analysis[J]. Applied Energy, 2023, 346: 121318. |
258 | YOUSEF Samy, EIMONTAS Justas, STASIULAITIENE Inga, et al. Recovery of energy and carbon fibre from wind turbine blades waste (carbon fibre/unsaturated polyester resin) using pyrolysis process and its life-cycle assessment[J]. Environmental Research, 2024, 245: 118016. |
259 | LU Duan, IQBAL Asad, ZAN Feixiang, et al. Integrated life cycle assessment with data envelopment analysis for enhancing medical waste management during a public health crisis[J]. Journal of Cleaner Production, 2023, 426: 139074. |
260 | Guillermo GARCIA-GARCIA, MARTÍN-LARA María Ángeles, Mónica CALERO, et al. Life-cycle assessment of the thermal and catalytic pyrolysis over sepiolite of face masks[J]. Science of the Total Environment, 2023, 895: 165063. |
261 | WEN Yuming, WANG Shule, SHI Ziyi, et al. Pyrolysis of engineered beach-cast seaweed: Performances and life cycle assessment[J]. Water Research, 2022, 222: 118875. |
262 | LA ROSA Angela Daniela, GRECO Sebastiano, TOSTO Claudio, et al. LCA and LCC of a chemical recycling process of waste CF-thermoset composites for the production of novel CF-thermoplastic composites. Open loop and closed loop scenarios[J]. Journal of Cleaner Production, 2021, 304: 127158. |
263 | ZHAO Yuanhao, WANG Changbo, ZHANG Lixiao, et al. Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility[J]. Renewable and Sustainable Energy Reviews, 2021, 140: 110661. |
264 | GANGULY Arna, BROWN Robert C, WRIGHT Mark Mba. Techno-economic and greenhouse gas emission assessment of carbon negative pyrolysis technology[J]. Green Chemistry, 2022, 24(23): 9290-9302. |
265 | NEHA Shukla, PRASANNA KUMAR RAMESH Kondragunta, REMYA Neelancherry. Techno-economic analysis and life cycle assessment of microwave co-pyrolysis of food waste and low-density polyethylene[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102356. |
266 | AGRAWAL Ruchi, BHAGIA Samarthya, SATLEWAL Alok, et al. Urban mining from biomass, brine, sewage sludge, phosphogypsum and e-waste for reducing the environmental pollution: Current status of availability, potential, and technologies with a focus on LCA and TEA[J]. Environmental Research, 2023, 224: 115523. |
267 | Jorge CRISTÓBAL, LIMLEAMTHONG Phantisa, MANFREDI Simone, et al. Methodology for combined use of data envelopment analysis and life cycle assessment applied to food waste management[J]. Journal of Cleaner Production, 2016, 135: 158-168. |
268 | GENNITSARIS Stavros, SAGANI Angeliki, SOFIANOPOULOU Stella, et al. Integrated LCA and DEA approach for circular economy-driven performance evaluation of wind turbine end-of-life treatment options[J]. Applied Energy, 2023, 339: 120951. |
269 | KAZEMI Naser, GHOLAMI PARASHKOOHI Mohammad, MOHAMMADI Ahmad, et al. Environmental life cycle assessment and energy-economic analysis in different cultivation of microalgae-based optimization method[J]. Results in Engineering, 2023, 19: 101240. |
270 | RAMANATHAN Anand, K M Meera Sheriffa BEGUM, PEREIRA Amaro Olimpio, et al. Biomass pyrolysis system based on life cycle assessment and Aspen Plus analysis and kinetic modeling[M]//A thermo-economic approach to energy from waste. Amsterdam: Elsevier, 2022: 35-71. |
271 | YANG Qing, WEI Zhiyu, ZHOU Hewen, et al. Greenhouse gas emission analysis of biomass moving-bed pyrolytic polygeneration systems based on Aspen Plus and hybrid LCA in China[J]. Energy Procedia, 2019, 158: 3690-3695. |
272 | Aisha AL-RUMAIHI, SHAHBAZ Muhammad, MCKAY Gordon, et al. Investigation of co-pyrolysis blends of camel manure, date pits and plastic waste into value added products using Aspen Plus[J]. Fuel, 2023, 340: 127474. |
273 | SERRAS-MALILLOS A, ACHA E, LOPEZ-URIONABARRENECHEA A, et al. Composite waste recycling: Predictive simulation of the pyrolysis vapours and gases upgrading process in Aspen Plus[J]. Chemosphere, 2022, 300: 134499. |
274 | ROSHA Pali, KUMAR Sandeep, IBRAHIM Hussameldin. Sensitivity analysis of biomass pyrolysis for renewable fuel production using Aspen Plus[J]. Energy, 2022, 247: 123545. |
275 | QI Jingwei, WANG Yijie, HU Ming, et al. A reactor network of biomass gasification process in an updraft gasifier based on the fully kinetic model[J]. Energy, 2023, 268: 126642. |
276 | HAN Duoduo, YANG Xiaoxiao, LI Rui, et al. Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation[J]. Journal of Cleaner Production, 2019, 231: 254-267. |
277 | LI Tongyu, WANG Jinjun, CHEN Heng, et al. Performance analysis of an integrated biomass-to-energy system based on gasification and pyrolysis[J]. Energy Conversion and Management, 2023, 287: 117085. |
278 | SHAFIZADEH Alireza, SHAHBEIK Hossein, RAFIEE Shahin, et al. Machine learning-enabled analysis of product distribution and composition in biomass-coal co-pyrolysis[J]. Fuel, 2024, 355: 129464. |
279 | SHEILA Devasahayam, BORIS Albijanic. Predicting hydrogen production from co-gasification of biomass and plastics using tree based machine learning algorithms[J]. Renewable Energy, 2024, 222: 119883. |
280 | WANG Yang, YANG Shiliang, BAO Guirong, et al. Insight into nettle straw pyrolysis: Multicomponent kinetics, gas emissions and machine learning models[J]. Journal of Analytical and Applied Pyrolysis, 2023, 172: 106021. |
281 | TAHIR Fasiha, ARSHAD Muhammad Yousaf, SAEED Muhammad Azam, et al. Integrated process for simulation of gasification and chemical looping hydrogen production using artificial neural network and machine learning validation[J]. Energy Conversion and Management, 2023, 296: 117702. |
282 | KANTHASAMY Ramesh, ALMATRAFI Eydhah, Imtiaz ALI, et al. Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes[J]. Fuel, 2023, 350: 128832. |
283 | SU Sheng, WANG Juan. Machine learning prediction of contents of oxygenated components in bio-oil using extreme gradient boosting method under different pyrolysis conditions[J]. Bioresource Technology, 2023, 379: 129040. |
284 | QI Jingwei, XU Pengcheng, HU Ming, et al. Machine learning-driven prediction and optimization of pyrolysis oil and limonene production from waste tires[J]. Journal of Analytical and Applied Pyrolysis, 2024, 177: 106296. |
285 | CHENG Yi, EKICI Ecrin, Güray YILDIZ, et al. Applied machine learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals production[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105857. |
286 | XU Dan, ZHANG Zihang, HE Zijian, et al. Machine learning-driven prediction and optimization of monoaromatic oil production from catalytic co-pyrolysis of biomass and plastic wastes[J]. Fuel, 2023, 350: 128819. |
287 | LENG Lijian, LI Tanghao, ZHAN Hao, et al. Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass[J]. Energy, 2023, 278: 127967. |
288 | YANG Ke, WU Kai, ZHANG Huiyan. Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions[J]. Energy, 2022, 254: 124320. |
289 | WANG Minghong, XIE Yingpu, GAO Yong, et al. Machine learning prediction of higher heating value of biochar based on biomass characteristics and pyrolysis conditions[J]. Bioresource Technology, 2024, 395: 130364. |
290 | LI Xu, CHEN Yingquan, TAN Wenlei, et al. Prediction of char yield and nitrogen fixation rate from pyrolysis of sewage sludge based on machine learning[J]. Journal of Analytical and Applied Pyrolysis, 2023, 171: 105948. |
291 | LI Xiaohua, HUANG Ziheng, SHAO Shanshan, et al. Machine learning prediction of physical properties and nitrogen content of porous carbon from agricultural wastes: Effects of activation and doping process[J]. Fuel, 2024, 356: 129623. |
292 | LI Hailong, AI Zejian, YANG Lihong, et al. Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar[J]. Bioresource Technology, 2023, 369: 128417. |
293 | LI Dapeng, LIANG Aijie, ZHOU Mingwei, et al. Energy utilization of agricultural waste: Machine learning prediction and pyrolysis transformation[J]. Waste Management, 2024, 175: 235-244. |
294 | ZHANG Yulan, ALDOSKY Abdulrahman Jaffar, GOYAL Vishal, et al. A machine learning study on a municipal solid waste-to-energy system for environmental sustainability in a multi-generation energy system for hydrogen production[J]. Process Safety and Environmental Protection, 2024, 182: 1171-1184. |
295 | XIA Jiulin, YAN Gongxing, ABED Azher M, et al. Machine learning approach to predict the biofuel production via biomass gasification and natural gas integrating to develop a low-carbon and environmental-friendly design: Thermodynamic-conceptual assessment[J]. Chemosphere, 2023, 336: 138985. |
296 | AKINPELU David Akorede, ADEKOYA Oluwaseun A, OLADOYE Peter Olusakin, et al. Machine learning applications in biomass pyrolysis: From biorefinery to end-of-life product management[J]. Digital Chemical Engineering, 2023, 8: 100103. |
[1] | 万震, 王绍庆, 李志合, 赵天生. HZSM-5分子筛催化木质素热解制芳烃研究进展[J]. 化工进展, 2024, 43(S1): 517-532. |
[2] | 郝静远, 齐宝金, 魏进家. 不同压力下榆神地区富油煤原位热解产物特性[J]. 化工进展, 2024, 43(S1): 268-281. |
[3] | 全翠, 高宁博, 张广涛, 索浩杰. 含油污泥热解残渣制备渗水砖的重金属和多环芳烃浸出特性[J]. 化工进展, 2024, 43(9): 5226-5233. |
[4] | 殷晨阳, 刘永峰, 陈睿哲, 张璐, 宋金瓯, 刘海峰. 基于量子化学计算的正己烷热解反应动力学模拟[J]. 化工进展, 2024, 43(8): 4273-4282. |
[5] | 王定友, 陈建, 范汝新, 李大舜. 热裂解烃制炭黑的机理及工程化技术发展历程[J]. 化工进展, 2024, 43(7): 3551-3566. |
[6] | 靳立军, 刘铮铮, 李扬, 杨赫, 胡浩权. 耦合富氢小分子催化活化的煤热解提高焦油产率策略与实践[J]. 化工进展, 2024, 43(7): 3613-3619. |
[7] | 曹景沛, 姚乃瑜, 庞新博, 赵小燕, 赵静平, 蔡士杰, 徐敏, 冯晓博, 伊凤娇. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
[8] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
[9] | 吴琪, 白柏杨, 尹永杰, 马晓迅. 鄂尔多斯褐煤显微组分结构与其热解特性间的关系[J]. 化工进展, 2024, 43(5): 2370-2385. |
[10] | 黄淄博, 周文静, 魏进家. 基于ReaxFF MD模拟的低阶煤热解产物演化规律及反应机理[J]. 化工进展, 2024, 43(5): 2409-2419. |
[11] | 刘显哲, 胡振中, 胡大为, 李显, 贺世泽, 赵纯亮, 夏慈良, 吴波, 张小勇, 罗光前, 姚洪. 低阶煤热溶萃取物的配煤炼焦性能[J]. 化工进展, 2024, 43(5): 2420-2427. |
[12] | 焦锟鹏, 赵子涛, 犹成裔, 莫文龙, 郭凤娇, 杨晓勤, 张书培, 郭佳, 魏贤勇, 樊星, AKRAM Naeem. 五彩湾次烟煤醇解可溶物的组成特征与不溶物的快速热解产物分布[J]. 化工进展, 2024, 43(5): 2449-2462. |
[13] | 狄子琛, 雷飞霞, 常成功, 陈文慧, 程芳琴. 焦化行业碳氢资源利用潜力与低碳路径评价[J]. 化工进展, 2024, 43(5): 2862-2871. |
[14] | 张鑫, 汤吉昀, 陈娟, 宋占龙, 董勇, 姚洪. 高温烟气热解废轮胎过程中痕量金属Cu、Pb的迁移特性分析[J]. 化工进展, 2024, 43(3): 1606-1613. |
[15] | 陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |