化工进展 ›› 2025, Vol. 44 ›› Issue (2): 646-659.DOI: 10.16085/j.issn.1000-6613.2024-0188
收稿日期:
2024-01-24
修回日期:
2024-04-08
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
罗小平
作者简介:
罗小平(1967—),男,教授,博士生导师,研究方向为EHD强化沸腾传热及其控制、微通道换热器相变传热。E-mail:mmxpluo@scut.edu.cn。
基金资助:
LUO Xiaoping(), JIA Mengfan, LI Shizhen
Received:
2024-01-24
Revised:
2024-04-08
Online:
2025-02-25
Published:
2025-03-10
Contact:
LUO Xiaoping
摘要:
为解决微通道两相流传热过程中相变导致体积急剧膨胀,引发的流速不均、压降波动、局部过热等问题,本文对有无电场作用下不同相分离透气孔密度的逆流微细通道(PSP00型、PSP04型、PSP06型、PSP10型)内流动沸腾两相压降进行了研究,引入性能评估指标(PEC)对不同电压(0、200V、400V、600V)作用下有无相分离结构的逆流微通道的综合传热性能进行了研究,并利用高速摄影仪对通道进行了可视化研究,引入了受限气泡长径比变化率来分析通道内受限气泡的生长行为。研究结果发现,相分离结构透气孔密度越大,通道内流动阻力和压降越小,随着热流密度的增大,两相压降减小程度更加明显;施加电场会使通道内两相压降增大,但与相分离结构协同作用后的通道内两相压降相比,增加幅度减小,施加600V电压的有相分离结构的PSP10型通道较无相分离结构PSP00型通道两相压降降低了14.2%;电场和相分离结构均可使微细通道内受限气泡长径比减小,且相分离孔密度和电压越大,受限气泡长径比越小;单独电场、单独相分离结构以及电场与相分离结构复合作用均有利于提高微细通道的综合换热性能PEC,其中电场与相分离结构复合作用效果最好,且相分离结构透气孔密度和电压越大,PEC越大,电场和相分离结构(PSP10-600V)同时作用时的最大PEC为1.30,比单独电场(PSP00-600V)作用时的最大PEC提高了13.0%,比单独相分离结构(PSP10型)作用时的最大PEC提高了7.4%。
中图分类号:
罗小平, 贾梦帆, 李世珍. 电场和改性PVDF膜相分离结构协同作用下逆流微细通道压降特性[J]. 化工进展, 2025, 44(2): 646-659.
LUO Xiaoping, JIA Mengfan, LI Shizhen. Pressure drop characteristics of countercurrent microfluidic channels under synergistic effect of electric field and modified PVDF membrane phase separation structure[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 646-659.
测量参数 | 最大不确定度/% | 测量参数 | 最大不确定度/% |
---|---|---|---|
G | 2.70 | xe,out | 2.41 |
q | 1.17 | ΔPtot | 0.50 |
Lsp | 2.76 |
表1 主要参数的不确定度
测量参数 | 最大不确定度/% | 测量参数 | 最大不确定度/% |
---|---|---|---|
G | 2.70 | xe,out | 2.41 |
q | 1.17 | ΔPtot | 0.50 |
Lsp | 2.76 |
1 | Yuanzheng LYU, XIA Guodong, CHENG Lixin, et al. Experimental investigation into unstable two phase flow phenomena during flow boiling in multi-microchannels[J]. International Journal of Thermal Sciences, 2021, 166: 106985. |
2 | AL-ZAIDI Ali H, MAHMOUD Mohamed M, KARAYIANNIS Tassos G. Effect of aspect ratio on flow boiling characteristics in microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120587. |
3 | YUAN Yi, CHEN Li, ZHANG Chuangde, et al. Numerical investigation of flow boiling heat transfer in manifold microchannels[J]. Applied Thermal Engineering, 2022, 217: 119268. |
4 | ZHANG Xuelai, JI Zhe, WANG Jifen, et al. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices[J]. Applied Thermal Engineering, 2023, 235: 121294. |
5 | PRAJAPATI Yogesh K, PATHAK Manabendra, KHAN Mohd Kaleem. A comparative study of flow boiling heat transfer in three different configurations of microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 85: 711-722. |
6 | CHENG Lixin. Fundamental issues of critical heat flux phenomena during flow boiling in microscale-channels and nucleate pool boiling in confined spaces[J]. Heat Transfer Engineering, 2013, 34(13): 1016-1043. |
7 | KARAYIANNIS T G, MAHMOUD M M. Flow boiling in microchannels: Fundamentals and applications[J]. Applied Thermal Engineering, 2017, 115: 1372-1397. |
8 | CRISCUOLO Gennaro, MARKUSSEN Wiebke Brix, MEYER Knud Erik, et al. High heat flux flow boiling of R1234yf, R1234ze (E) and R134a in high aspect ratio microchannels[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122215. |
9 | 晁浩杰, 王毅飞, 孙心茹, 等. 不同纳米流体在微通道内的流动传热特性研究[J]. 低温与超导, 2023, 51(4): 25-32. |
CHAO Haojie, WANG Yifei, SUN Xinru, et al. Study on flow and heat transfer characteristics of different nanofluids in the microchannel[J]. Cryogenics & Superconductivity, 2023, 51(4): 25-32. | |
10 | KÆRN Martin Ryhl, CRISCUOLO Gennaro, MEYER Knud Erik, et al. Critical heat flux characteristics of R1234yf, R1234ze(E) and R134a during saturated flow boiling in narrow high aspect ratio microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121840. |
11 | SINGH Varinder, KUKREJA Rajeev, SEHGAL Satbir S. Condensation heat transfer of R134a and R410A in multiport rectangular microchannels with different aspect ratio[J]. International Journal of Thermal Sciences, 2022, 179: 107696. |
12 | MASTRULLO R, MAURO A W, THOME J R,et al. Critical heat flux: Performance of R1234yf, R1234ze and R134a in an aluminum multi-minichannel heat sink at high saturation temperatures[J]. International Journal of Thermal Sciences, 2016, 106: 1-17. |
13 | WANG Tian hu, WU Hao chi, MENG Jing hui, et al. Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119217. |
14 | CHEN Chaowei, LI Fei, WANG Xinyu, et al. Improvement of flow and heat transfer performance of manifold microchannel with porous fins[J]. Applied Thermal Engineering, 2022, 206: 118129. |
15 | DENG Daxiang, ZENG Long, SUN Wei. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
16 | BAKTHAVATCHALAM Balaji, HABIB Khairul, SAIDUR R, et al. Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective[J]. Journal of Molecular Liquids, 2020, 305: 112787. |
17 | DU Liang, HU Wenbo. An overview of heat transfer enhancement methods in microchannel heat sinks[J]. Chemical Engineering Science, 2023, 280: 119081. |
18 | HABIBISHANDIZ M, SAGHIR M Z. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms[J]. Thermal Science and Engineering Progress, 2022, 30: 101267. |
19 | DEMELLO Andrew J. Control and detection of chemical reactions in microfluidic systems[J]. Nature, 2006, 442: 394-402. |
20 | S M Sohel MURSHED. Introductory chapter: Electronics cooling—An overview[M]//Electronics cooling. InTech, 2016. |
21 | JI Xianbing, LI Hongchuan, XU Jinliang, et al. Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices[J]. Experimental Thermal and Fluid Science, 2017, 85: 119-131. |
22 | ALAM Tabish, KIM Man-Hoe. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 813-839. |
23 | BHAVNANI Sushil, NARAYANAN Vinod, QU Weilin, et al. Boiling augmentation with micro/nanostructured surfaces: Current status and research outlook[J]. Nanoscale and Microscale Thermophysical Engineering, 2014, 18(3): 197-222. |
24 | JOTHI PRAKASH C G, PRASANTH R. Enhanced boiling heat transfer by nano structured surfaces and nanofluids[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 4028-4043. |
25 | SHEIKHOLESLAMI Mohsen, Mofid GORJI-BANDPY, GANJI Davood Domiri. Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 444-469. |
26 | DERAMI Hamed Gholami, VUNDAVILLI Ravindra, DARABI Jeff. Experimental and computational study of gas bubble removal in a microfluidic system using nanofibrous membranes[J]. Microsystem Technologies, 2017, 23: 2685-2698. |
27 | MENG Dennis Desheng, CUBAUD Thomas, Chih-Ming HO, et al. A methanol-tolerant gas-venting microchannel for a microdirect methanol fuel cell[J]. Journal of Microelectromechanical Systems, 2007, 16(6): 1403-1410. |
28 | MOHIUDDIN Ahmed, LOGANATHAN Raamkumar, GEDUPUDI Sateesh. Experimental investigation of flow boiling in rectangular mini/micro-channels of different aspect ratios without and with vapour venting membrane[J]. Applied Thermal Engineering, 2020, 168: 114837. |
29 | WANG Ye, LIN Yilin, YANG Guang, et al. Flow physics of wicking into woven screens with hybrid micro-/nanoporous structures[J]. Langmuir, 2021, 37(7): 2289-2297. |
30 | PRIY Akash, Sumit RAJ, PATHAK Manabendra, et al. A hydrophobic porous substrate-based vapor venting technique for mitigating flow boiling instabilities in microchannel heat sink[J]. Applied Thermal Engineering, 2022, 216: 119138. |
31 | YIN Liaofei, SUN Mingmei, JIANG Peixue, et al. Heat transfer coefficient and pressure drop of water flow boiling in porous open microchannels heat sink[J]. Applied Thermal Engineering, 2023, 218: 119361. |
32 | APREOTESI Mario, PENCE Deborah, LIBURDY James. Vapor extraction from flow boiling in a fractal-like branching heat sink[C]// International Electronic Packaging Technical Conference and Exhibition, 2010: 321-328. |
33 | 罗小平, 周家玉, 李桂中. 相分离结构微细通道流动沸腾压降分析与可视化[J]. 化工进展, 2023, 42(12): 6157-6170. |
LUO Xiaoping, ZHOU Jiayu, LI Guizhong. Analysis and visualization of flow boiling pressure drop in microchannels with phase separation structure[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6157-6170. | |
34 | TANG Jinchen, HU Xuegong, YU Yingying. Electric field effect on the heat transfer enhancement in a vertical rectangular microgrooves heat sink[J]. International Journal of Thermal Sciences, 2020, 150: 106222. |
35 | LI Yun, WU Huiying, YAO Yuanpeng. Enhanced flow boiling heat transfer and suppressed boiling instability in counter-flow stepped microchannels[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123025. |
36 | JIANG Xingchi, ZHANG Shiwei, LI Yuanjie, et al. High performance heat sink with counter flow diverging microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120344. |
37 | YOUNG Thomas, An essay on the cohesion of fluids[J]. The Royal Society, 1805, 95: 65-87. |
38 | AHMAD N A, LEO Choe Peng, AHMAD Abdul Latif, et al. Membranes with great hydrophobicity: A review on preparation and characterization[J]. Separation & Purification Reviews, 2015, 44(2): 109-134. |
39 | KHAYET Mohamed. Membranes and theoretical modeling of membrane distillation: A review[J]. Advances in Colloid and Interface Science, 2011, 164(1/2): 56-88. |
40 | WU Xiaoqiong, WU Xing, WANG Tingyu, et al. Omniphobic surface modification of electrospun nanofiber membrane via vapor deposition for enhanced anti-wetting property in membrane distillation[J]. Journal of Membrane Science, 2020, 606: 118075. |
41 | TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
42 | MANCIN Simone, ZILIO Claudio, CAVALLINI Alberto, et al. Pressure drop during air flow in aluminum foams[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3121-3130. |
43 | 罗小平, 彭子哲, 刘倩, 等. 电场对微细通道内R141b制冷剂流动沸腾压降的影响[J]. 农业工程学报, 2020, 36(1): 257-265. |
LUO Xiaoping, PENG Zizhe, LIU Qian, et al. Effect of electric field on flow boiling pressure drop characteristics of R141b in microchannel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 257-265. | |
44 | LOYOLA LAVÍN Francisco, KANIZAWA Fabio Toshio, RIBATSKI Gherhardt. Analyses of the effects of channel inclination and rotation on two-phase flow characteristics and pressure drop in a rectangular channel[J]. Experimental Thermal and Fluid Science, 2019, 109: 109850. |
45 | MOFFAT Robert J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
46 | KLAUSNER J F, MEI R, BERNHARD D M, et al. Vapor bubble departure in forced convection boiling[J]. International Journal of Heat and Mass Transfer, 1993, 36(3): 651-662. |
47 | WEBB R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design[J]. International Journal of Heat and Mass Transfer, 1981, 24(4): 715-726. |
48 | QU Weilin, MUDAWAR Issam. Flow boiling heat transfer in two-phase micro-channel heat sinks—I. Experimental investigation and assessment of correlation methods[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2755-2771. |
[1] | 蔡楷楠, 陈健勇, 陈颖, 罗向龙, 梁颖宗, 何嘉诚. 非共沸工质在分液板式冷凝器中的热力性能[J]. 化工进展, 2025, 44(1): 48-56. |
[2] | 张青, 黄理浩, 陶乐仁, 朱天意, 金云飞. R513A在不同肋结构水平管内的流动沸腾换热性能[J]. 化工进展, 2024, 43(S1): 134-143. |
[3] | 宋占龙, 汤涛, 潘蔚, 赵希强, 孙静, 毛岩鹏, 王文龙. 微纳米气泡强化臭氧氧化降解含酚废水[J]. 化工进展, 2024, 43(8): 4614-4623. |
[4] | 敬佩瑜, 朱宇, 孙杰, 黄婉妮, 郭雨莹, 王娅婷, 郑智益, 丁伟. 水平管内高黏油水环输送减阻特性分析[J]. 化工进展, 2024, 43(6): 2996-3006. |
[5] | 赵伟, 江雨寒, 李振, 李毅红, 周安宁, 王宏. 煤岩显微组分电浮选分离与制氢过程中氢/氧气泡的影响机制[J]. 化工进展, 2024, 43(5): 2428-2435. |
[6] | 何发超, 刘海龙, 李昌烽, 王军锋. 非均匀电场对高黏流体中气泡分散特性的影响[J]. 化工进展, 2024, 43(4): 1774-1782. |
[7] | 曾思睿, 孔明. 基于GBDT的气液两相流相分布测量模型[J]. 化工进展, 2024, 43(2): 800-807. |
[8] | 杨志龙, 田文斌, 张珍, 王志英, 王一伟. 单孔排气气泡特征识别与参数提取方法[J]. 化工进展, 2024, 43(2): 808-817. |
[9] | 王磊, 曹雄金, 罗凯, 王艳, 费华. 不同流向上小流道加热管内超临界CO2的压降特性[J]. 化工进展, 2024, 43(2): 830-843. |
[10] | 王粤, 孙凯, 刘艳, 陈龙, 朱效宇, 许传龙. 基于全局位置迭代PCSS算法的光场PTV气泡跟踪测速方法[J]. 化工进展, 2024, 43(2): 844-854. |
[11] | 姚福春, 毕莹莹, 刘超, 唐晨, 李泽莹, 张耀宗, 孙晓明. 矩阵分析法优化臭氧膜接触传质技术[J]. 化工进展, 2024, 43(11): 6553-6562. |
[12] | 翟霖晓, 崔怡洲, 李成祥, 石孝刚, 高金森, 蓝兴英. 微气泡发生器的研究与应用进展[J]. 化工进展, 2024, 43(1): 111-123. |
[13] | 王立华, 蔡苏杭, 江文涛, 罗倩, 罗勇, 陈建峰. 微纳尺度气液传质强化油品催化加氢反应[J]. 化工进展, 2024, 43(1): 19-33. |
[14] | 裴文艺, 陈子阳, 赵萌, 姜红, 陈日志. 预润湿对Janus陶瓷膜制备及布气性能的影响[J]. 化工进展, 2024, 43(1): 353-363. |
[15] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 12
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |