化工进展 ›› 2024, Vol. 43 ›› Issue (2): 844-854.DOI: 10.16085/j.issn.1000-6613.2023-1521

• 专栏:多相流测试 • 上一篇    下一篇

基于全局位置迭代PCSS算法的光场PTV气泡跟踪测速方法

王粤1(), 孙凯2, 刘艳3(), 陈龙1, 朱效宇1, 许传龙1()   

  1. 1.东南大学能源与环境学院,江苏 南京 210096
    2.江苏中科能源动力研究中心,江苏 连云港 222000
    3.中国科学院工程热物理研究所,江苏 连云港 222000
  • 收稿日期:2023-09-01 修回日期:2023-09-18 出版日期:2024-02-25 发布日期:2024-03-07
  • 通讯作者: 刘艳,许传龙
  • 作者简介:王粤(1999—),女,硕士研究生,研究方向为复杂流动光学检测技术。E-mail:wangyue199906@163.com
  • 基金资助:
    国家自然科学基金(52306211);连云港市科技计划创新能力建设项目(CX2207);中国博士后科学基金(2023M730558)

Light field bubble tracking velocimetry based on the global bubble position iteration and polar coordinate system similarity algorithm

WANG Yue1(), SUN Kai2, LIU Yan3(), CHEN Long1, ZHU Xiaoyu1, XU Chuanlong1()   

  1. 1.School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
    2.Jiangsu Zhongke Research Center for Clean Energy and Power, Lianyungang 222000, Jiangsu, China
    3.Institute of Engineering Thermophtsics, Chinese Academy of Sciences, Lianyungang 222000, Jiangsu, China
  • Received:2023-09-01 Revised:2023-09-18 Online:2024-02-25 Published:2024-03-07
  • Contact: LIU Yan, XU Chuanlong

摘要:

光场粒子跟踪测速(PTV)技术能够在单视角条件下重建气液两相流中气泡的三维空间位置,实现气泡运动轨迹的跟踪,为受限空间条件下气泡参数测量提供了解决方案。然而,在气泡浓度较高以及位移量较大的条件下,光场PTV气泡匹配准确率较低,由此导致气泡运动速度场测量结果出现明显的错误矢量。为解决该问题,本文提出了基于全局位置迭代以及极坐标系统相似技术的气泡匹配方法(GPPI-PCSS),通过PCSS匹配方法所获得的气泡三维速度场对单帧图像内所有气泡的位置进行迭代更新,使两帧图像中的气泡位置逐渐重合,由此获得高准确度的气泡匹配结果。通过开展鼓泡床内气泡运动行为光场PTV实验研究,对GPPI-PCSS方法的准确性进行了评价。结果表明:在采样间隔0.5~7ms、空气流量0.15~0.35L/min工况范围内,GPPI-PCSS方法的气泡匹配准确率的平均值为92.65%,分别高于传统PCSS方法的81.38%和松弛方法的84.12%。此外,通过GPPI-PCSS方法所测量得到的气泡最大运动速度范围为38.34~49.87cm/s,与理论计算值一致,由此证明了所提出的GPPI-PCSS方法可以用于光场PTV技术中,在高气泡浓度、大气泡位移条件下获得准确的气泡速度测量结果。

关键词: 光场成像, 粒子跟踪测速, 气泡位置匹配, 极坐标系统相似技术, 全局位置迭代

Abstract:

The light field particle tracking velocimetry (PTV) can track the trajectories of the bubbles in the gas-liquid two-phase flow via a single camera. This method provide a solution for the measurement of bubble parameters in space-constraint applications. However, under the conditions of high bubble concentration and large bubble displacement, the matching accuracy of PTV bubbles in the light field is low, resulting in significant velocity measurement errors. In order to solve this problem, this paper proposed a bubble matching method based on global position iteration and polar coordinate system similar technology (GPPI-PCSS). The GPPI-PCSS method iteratively updated the positions of all bubbles in a single frame image through the three-dimensional displacement field obtained by the PCSS matching method. As a result, the bubble positions in the two frames gradually coincide and the accurate bubble matching results could be obtained. The performance of the GPPI-PCSS method was evaluated by experimental study of the bubble motion behavior in the bubbling bed through light field PTV. Results showed that the average bubble matching accuracy of the GPPI-PCSS method was 92.65% in the range of 0.5—7ms sampling interval and 0.15—0.35L/min air flow, which was higher than 81.38% of the traditional PCSS method and 84.12% of the relaxation method, respectively. In addition, the maximum motion velocity of bubbles measured by GPPI-PCSS method ranged from 38.34—49.87cm/s, which was consistent with the theoretical calculation value. These results indicate that the proposed GPPI-PCSS method could be used in light-field PTV technology to obtain accurate bubble velocity measurement results under the conditions of high bubble concentration and large bubble displacement.

Key words: light field imaging, particle tracking velocimetry (PTV), bubble matching, polar coordinate system similar algorithm, global location iteration

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn