化工进展 ›› 2025, Vol. 44 ›› Issue (1): 48-56.DOI: 10.16085/j.issn.1000-6613.2023-2219
蔡楷楠(), 陈健勇(
), 陈颖, 罗向龙, 梁颖宗, 何嘉诚
收稿日期:
2023-12-18
修回日期:
2024-05-13
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
陈健勇
作者简介:
蔡楷楠(1999—),男,硕士研究生,研究方向为分液冷凝。E-mail:1372522682@qq.com。
基金资助:
CAI Kainan(), CHEN Jianyong(
), CHEN Ying, LUO Xianglong, LIANG Yingzong, HE Jiacheng
Received:
2023-12-18
Revised:
2024-05-13
Online:
2025-01-15
Published:
2025-02-13
Contact:
CHEN Jianyong
摘要:
将“分液冷凝”应用于板式冷凝器中,并采用非共沸工质R134a/R245fa作为制冷剂,分别研究了工质流量、泡点温度以及工质组分(质量比)对分液板式冷凝器换热性能的影响,并与普通板式冷凝器进行对比,揭示非共沸工质在分液板式冷凝器中的热力性能。研究结果表明:低沸点工质在非共沸工质中的占比越高,气液分离的效果越好,分液效率最高可达到99.74%;“气液分离”可有效调节非共沸工质的组分,经过“气液分离”后低沸点工质在非共沸工质中的占比会提高;与普通板式冷凝器相比,分液板式冷凝器传热系数提高了5.6%~46.9%,并且与工质流量成反比,与泡点温度成正比;压降降低了12.6%~44.3%,且受工质流量、泡点温度的影响较小,低沸点工质在非共沸工质中的占比越高,压降越小。
中图分类号:
蔡楷楠, 陈健勇, 陈颖, 罗向龙, 梁颖宗, 何嘉诚. 非共沸工质在分液板式冷凝器中的热力性能[J]. 化工进展, 2025, 44(1): 48-56.
CAI Kainan, CHEN Jianyong, CHEN Ying, LUO Xianglong, LIANG Yingzong, HE Jiacheng. Thermodynamic performance of zeotropic mixtures in liquid-vapor separation plate condenser[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 48-56.
主要参数 | 参数值 |
---|---|
换热器宽度/m | 0.116 |
换热器高度/m | 0.572 |
单板换热面积/m2 | 0.064 |
板片数 | 20 |
总换热面积/m2 | 0.576 |
波纹角/(°) | 60 |
表1 板式冷凝器主要参数
主要参数 | 参数值 |
---|---|
换热器宽度/m | 0.116 |
换热器高度/m | 0.572 |
单板换热面积/m2 | 0.064 |
板片数 | 20 |
总换热面积/m2 | 0.576 |
波纹角/(°) | 60 |
仪器名称 | 类型 | 厂家及型号 | 测量范围 |
---|---|---|---|
工质流量计 | 科里奥利流量计 | Emerson-CMF100 | 0.02~0.2kg/s |
水侧流量计 | 电磁流量计 | 米科传感-LDG-SUP | 0.3~17m3/h |
工质温度传感器 | 赫斯曼PT100温度变送器 | 米科传感-MIK-202 | -50~200℃ |
水侧温度传感器 | K型热电偶 | Omega-TT-K-24-SLE | -29~260℃ |
工质压力传感器 | 赫斯曼压力变送器 | 米科传感-MIK-P310 | 0~2MPa |
工质压差传感器 | 单晶硅压差变送器 | 米科传感-MIK-2051 | 0~2kPa |
表2 测量仪表详细参数
仪器名称 | 类型 | 厂家及型号 | 测量范围 |
---|---|---|---|
工质流量计 | 科里奥利流量计 | Emerson-CMF100 | 0.02~0.2kg/s |
水侧流量计 | 电磁流量计 | 米科传感-LDG-SUP | 0.3~17m3/h |
工质温度传感器 | 赫斯曼PT100温度变送器 | 米科传感-MIK-202 | -50~200℃ |
水侧温度传感器 | K型热电偶 | Omega-TT-K-24-SLE | -29~260℃ |
工质压力传感器 | 赫斯曼压力变送器 | 米科传感-MIK-P310 | 0~2MPa |
工质压差传感器 | 单晶硅压差变送器 | 米科传感-MIK-2051 | 0~2kPa |
测量参数 | 单位 | 不确定度范围 |
---|---|---|
温度 | ℃ | ±0.2℃ |
压力 | kPa | ±0.2% |
压降 | kPa | ±0.05% |
水流量 | m3/h | ±0.3% |
工质流量 | kg/s | ±0.1% |
质量分数 | — | ±0.9% |
进口干度 | — | ±1.6% |
分液效率 | — | ±1.2% |
换热量 | kW | ±2.1% |
传热系数 | W/(m2·K) | ±5.8% |
表3 实验参数不确定度
测量参数 | 单位 | 不确定度范围 |
---|---|---|
温度 | ℃ | ±0.2℃ |
压力 | kPa | ±0.2% |
压降 | kPa | ±0.05% |
水流量 | m3/h | ±0.3% |
工质流量 | kg/s | ±0.1% |
质量分数 | — | ±0.9% |
进口干度 | — | ±1.6% |
分液效率 | — | ±1.2% |
换热量 | kW | ±2.1% |
传热系数 | W/(m2·K) | ±5.8% |
参数 | 数值 |
---|---|
R134a/R245fa | 0.7/0.3;0.5/0.5;0.3/0.7 |
工质流量/kg·s-1 | 0.06~0.10 |
泡点温度/℃ | 35~45 |
热水温度/℃ | 40~60 |
热水流量/kg·s-1 | 0.5 |
冷却水温度/℃ | 14 |
冷却水流量/kg·s-1 | 0.028~0.097 |
表4 实验工况表
参数 | 数值 |
---|---|
R134a/R245fa | 0.7/0.3;0.5/0.5;0.3/0.7 |
工质流量/kg·s-1 | 0.06~0.10 |
泡点温度/℃ | 35~45 |
热水温度/℃ | 40~60 |
热水流量/kg·s-1 | 0.5 |
冷却水温度/℃ | 14 |
冷却水流量/kg·s-1 | 0.028~0.097 |
1 | 胡雪飞. 波纹板气液分离器性能的实验与模拟研究[D]. 北京: 中国石油大学(北京), 2016. |
HU Xuefei. Experimental and CFD study on performance of corrugated plate gas-liquid separator[D]. Beijing: China University of Petroleum (Beijing), 2016. | |
2 | Hyonsoo AHN, TANAKA Kosuke, TSUGE Hideki, et al. Centrifugal gas-liquid separation under low gravity conditions[J]. Separation and Purification Technology, 2000, 19(1/2): 121-129. |
3 | Axel GÜNTHER, JENSEN Klavs F. Multiphase microfluidics: From flow characteristics to chemical and materials synthesis[J]. Lab on a Chip, 2006, 6(12): 1487-1503. |
4 | 李洪伟, 魏国宝, 王亚成, 等. 泡沫金属亲疏水性对T型小通道气液两相流相分离特性影响研究[J]. 化工学报, 2019, 70(11): 4216-4230. |
LI Hongwei, WEI Guobao, WANG Yacheng, et al. Investigation on effect of hydrophilicity and hydrophobicity of metal foam on phase separation characteristics of gas-liquid two-phase flow in T-junction[J]. CIESC Journal, 2019, 70(11): 4216-4230. | |
5 | 罗小平, 李晓婷, 杨书斌. 相分离结构与电场协同作用下微细通道流动沸腾传热研究[J]. 高校化学工程学报, 2024, 38(2): 195-208. |
LUO Xiaoping, LI Xiaoting, YANG Shubin. Study on flow boiling heat transfer in microchannel under the synergistic effect of phase separation structure and electric field[J]. Journal of Chemical Engineering of Chinese Universities, 2024, 38(2): 195-208. | |
6 | 罗小平, 周家玉, 李桂中. 相分离结构微细通道流动沸腾压降分析与可视化[J]. 化工进展, 2023, 42(12): 6157-6170. |
LUO Xiaoping, ZHOU Jiayu, LI Guizhong. Analysis and visualization of flow boiling pressure drop in microchannels with phase separation structure[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6157-6170. | |
7 | MARCONNET Amy M, DAVID Milnes P, ROGACS Anita, et al. Temperature-dependent permeability of microporous membranes for vapor venting heat exchangers[C]//Proceedings of ASME 2008 International Mechanical Engineering Congress and Exposition, October 31-November 6, 2008, Boston, Massachusetts, USA. 2009: 1005-1012. |
8 | WANG Liangfeng, ZHANG Jinxin, XIAO Jian. Vapor separation application in minichannel heat sink flow boiling heat transfer[J]. International Journal of Thermal Sciences, 2024, 199: 108926. |
9 | 彭晓峰, 吴迪, 张扬. 高性能冷凝器技术原理与实践[J]. 化工进展, 2007, 26(1): 97-104. |
PENG Xiaofeng, WU Di, ZHANG Yang. Applications and principle of high performance condensers[J]. Chemical Industry and Engineering Progress, 2007, 26(1): 97-104. | |
10 | ZHONG Tianming, CHEN Ying, YANG Qingcheng, et al. Experimental investigation on the thermodynamic performance of double-row liquid-vapor separation microchannel condenser[J]. International Journal of Refrigeration, 2016, 67: 373-382. |
11 | 张旋. 分液式微细槽道冷凝换热器的实验研究[D]. 北京: 北京交通大学, 2018. |
ZHANG Xuan. Experiment investigation on micro/mini-channel condenser with liquid-vapor separator[D]. Beijing: Beijing Jiaotong University, 2018. | |
12 | ZHANG Xuan, JIA Li, PENG Qi, et al. Experimental study of condensation heat transfer in a condenser with a liquid-vapor separator[J]. Applied Thermal Engineering, 2019, 152: 196-203. |
13 | 李连涛, 诸凯, 刘圣春, 等. 带有中间分液结构的管壳式冷凝器实验研究[J]. 化工进展, 2016, 35(5): 1332-1337. |
LI Liantao, ZHU Kai, LIU Shengchun, et al. Experimental study of shell and tube condenser with middle liquid separation structure[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1332-1337. | |
14 | 刘策, 贾力, 张旋. R134a在风冷分液式冷凝换热器中的换热性能研究[J]. 工程热物理学报, 2019, 40(7): 1620-1626. |
LIU Ce, JIA Li, ZHANG Xuan. Study on heat transfer performance of R134a in air-cooling liquid-vapor separation condenser[J]. Journal of Engineering Thermophysics, 2019, 40(7): 1620-1626. | |
15 | 范亚坤, 贾力, 党超. 气液分离式管内凝结冷凝器的实验研究[J]. 北京交通大学学报, 2016, 40(6): 115-121. |
FAN Yakun, JIA Li, DANG Chao. Experimental study on vertical tube condenser with liquid-vapor separation[J]. Journal of Beijing Jiaotong University, 2016, 40(6): 115-121. | |
16 | LONGO Giovanni A, ZILIO Claudio, RIGHETTI Giulia. Condensation of the low GWP refrigerant HFC152a inside a brazed plate heat exchanger[J]. Experimental Thermal and Fluid Science, 2015, 68: 509-515. |
17 | MANCIN Simone, Davide DEL COL, ROSSETTO Luisa. R32 partial condensation inside a brazed plate heat exchanger[J]. International Journal of Refrigeration, 2013, 36(2): 601-611. |
18 | TAO Xuan, NUIJTEN Menno P, INFANTE FERREIRA Carlos A. Two-phase vertical downward flow in plate heat exchangers: Flow patterns and condensation mechanisms[J]. International Journal of Refrigeration, 2018, 85: 489-510. |
19 | 魏博, 胡申华, 黄龙, 等. 竖壁膜状凝结传递特性研究[J]. 汽轮机技术, 2012, 54(1): 14-16. |
WEI Bo, HU Shenhua, HUANG Long, et al. The research of the exergy transfer characteristic in the vertical surface condensation[J]. Turbine Technology, 2012,54(1): 14-16. | |
20 | 朱康达, 陈颖, 陈健勇, 等. 分液板式冷凝器的热力性能评价[J]. 广东工业大学学报, 2019, 36(5): 48-55, 70. |
ZHU Kangda, CHEN Ying, CHEN Jianyong, et al. Thermodynamic performance evaluation of liquid-vapor separation plate condenser[J]. Journal of Guangdong University of Technology, 2019, 36(5): 48-55, 70. | |
21 | CHEN Jianyong, ZHU Kangda, LUO Xianglong, et al. Application of liquid-separation condensation to plate heat exchanger: Comparative studies[J]. Applied Thermal Engineering, 2019, 157: 113739. |
22 | 梁志颖, 陈健勇, 陈颖, 等. 多流程分液板式冷凝器的变工况性能研究[J]. 广东工业大学学报, 2022, 39(1): 99-106. |
LIANG Zhiying, CHEN Jianyong, CHEN Ying, et al. A study of the variable performance of multi-path liquid-vapor separation plate condenser[J]. Journal of Guangdong University of Technology, 2022, 39(1): 99-106. | |
23 | 姚远, 陈颖, 陈健勇, 等. 分液型板式冷凝器强化冷凝换热的实验研究[J]. 华南理工大学学报(自然科学版), 2021, 49(10): 114-122. |
YAO Yuan, CHEN Ying, CHEN Jianyong, et al. Experimental study on enhanced heat transfer characteristics of plate condenser with liquid-vapor separation[J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(10): 114-122. | |
24 | GUO Hao, GONG Maoqiong, QIN Xiaoyu. Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump[J]. Applied Energy, 2019, 237: 338-352. |
25 | LIU Ye, YU Jianlin. Performance evaluation of an ejector subcooling refrigeration cycle with zeotropic mixture R290/R170 for low-temperature freezer applications[J]. Applied Thermal Engineering, 2019, 161: 114128. |
26 | LUO Xianglong, HUANG Renlong, YANG Zhi, et al. Performance investigation of a novel zeotropic organic Rankine cycle coupling liquid separation condensation and multi-pressure evaporation[J]. Energy Conversion and Management, 2018, 161: 112-127. |
27 | LU Pei, LUO Xianglong, WANG Jin, et al. Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation[J]. Energy Conversion and Management, 2021, 230: 113771. |
28 | KIM Y S. Convective heat transfer characteristics of water side in plate condenser[D]. Soul: Yousei University, 1999. |
29 | LEMMON E, HUBER M, MCLINDEN M. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 10.0 | NIST[CP]. Gaithersburg (USA): National Institute of Standards and Technology, Standard Reference Data Program, 2018. |
30 | ZHANG Ji, ELMEGAARD Brian, HAGLIND Fredrik. Condensation heat transfer and pressure drop characteristics of zeotropic mixtures of R134a/R245fa in plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120577. |
[1] | 陈可欣, 李熙, 常福城, 武萧衣, 娄嘉诚, 李会雄. 螺旋管内水-水蒸气两相流压降及流型转变特性[J]. 化工进展, 2025, 44(2): 613-624. |
[2] | 罗小平, 贾梦帆, 李世珍. 电场和改性PVDF膜相分离结构协同作用下逆流微细通道压降特性[J]. 化工进展, 2025, 44(2): 646-659. |
[3] | 邢雷, 周晓庆, 蒋明虎, 赵立新, 李新亚, 陈德海. 突缩突扩圆管内离散油滴运动行为及变形特性[J]. 化工进展, 2025, 44(1): 27-37. |
[4] | 孙建辰, 杨捷, 李军, 孙会东, 牛俊敏, 廖逸飞, 任俊颖, 商辉. 催化剂颗粒排列方式对微波加热效果的影响[J]. 化工进展, 2025, 44(1): 57-65. |
[5] | 张天昊, 李双喜, 贾祥际, 胡鼎国, 崔瑞焯, 李世聪. 干摩擦釜用机械密封DLC涂层-石墨配副摩擦磨损与温度变形场分析[J]. 化工进展, 2024, 43(S1): 121-133. |
[6] | 张青, 黄理浩, 陶乐仁, 朱天意, 金云飞. R513A在不同肋结构水平管内的流动沸腾换热性能[J]. 化工进展, 2024, 43(S1): 134-143. |
[7] | 苏瑶, 陈占秀, 杨历, 邢赫威, 呼和仓, 李源华. 热源温度对非对称纳米通道流动换热的影响[J]. 化工进展, 2024, 43(S1): 144-153. |
[8] | 齐思久, 谭蔚, 蔺文静, 韩佩泽, 朱国瑞. 两相流振动测试系统中换热管圆周压力的测试方法[J]. 化工进展, 2024, 43(S1): 85-93. |
[9] | 崔祎, 李孟原, 杨路, 李海东, 张奇琪, 常承林, 王彧斐. 采用扭曲片内插件的管壳式换热器自动设计新方法[J]. 化工进展, 2024, 43(9): 4824-4832. |
[10] | 蒋静智, 邵国伟, 崔海亭, 李洪涛, 杨奇. 三套管式加肋相变蓄热单元的强化传热特性[J]. 化工进展, 2024, 43(8): 4210-4221. |
[11] | 郑庆雨, 金光远, 冯文凯, 朱正山, 周逸凡, 滕厚场, 李臻峰, 宋春芳, 宋飞虎, 李静. 一种混沌C型几何流动混合耦合电磁热特性数值分析[J]. 化工进展, 2024, 43(8): 4262-4272. |
[12] | 曾武清, 王予, 卜庆国, 马硕, 白东明, 张宗建, 张鹏, 马丹丹, 王圣博, 王润其, 武丽雯, 刘晨, 马洪亭. 陈腐垃圾掺烧对垃圾炉焚烧特性的影响[J]. 化工进展, 2024, 43(8): 4642-4653. |
[13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 蔡萌, 李新亚. 堵塞工况下水力旋流器流场特性及性能分析[J]. 化工进展, 2024, 43(7): 3776-3786. |
[14] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
[15] | 何海军, 王乃继. 基于实验与仿真的最优蒸汽管网保温结构确定[J]. 化工进展, 2024, 43(7): 4164-4172. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |