1 |
DE ROSA Mattia, BIANCO Vincenzo. Optimal insulation layer for heated water pipes under technical, economic and carbon emission constraints[J]. Energy, 2023, 270(1): 126961.
|
2 |
SURESH Sankar, SUNDAR Mahima, LOKAVARAPU Bhaskara Rao. Optimum insulation thickness in process pipelines[J/OL]. [2024-04-15]. . .
|
3 |
ZHANG Tianhu, LI Aoqi, HARI Qiga, et al. Economic thickness and life cycle cost analysis of insulating layer for the urban district steam heating pipe[J]. Case Studies in Thermal Engineering, 2022, 34: 102058.
|
4 |
TERHAN Meryem. Optimization insulation thickness and reduction of CO2 emissions for pipes in all generation district heating networks[J]. Science Progress, 2022, 105(3): 368504221122287.
|
5 |
SALEM Essam A, FARID KHALIL M, SANHOURY Asmaa S. Optimization of insulation thickness and emissions rate reduction during pipeline carrying hot oil[J]. Alexandria Engineering Journal, 2021, 60(3): 3429-3443.
|
6 |
KÜREKCİ Nuri Alpay, Mehmet ÖZCAN. A practical method for determination of economic insulation thickness of steel, plastic and copper hot water pipes[J]. Journal of Thermal Engineering, 2020, 6(1): 72-86.
|
7 |
KAYFECI Muhammet. Determination of energy saving and optimum insulation thicknesses of the heating piping systems for different insulation materials[J]. Energy and Buildings, 2014, 69: 278-284.
|
8 |
LI Fating, Pengfei JIE, FANG Zhou, et al. Determining the optimum economic insulation thickness of double pipes buried in the soil for district heating systems[J]. Frontiers in Energy, 2021, 15(1): 170-185.
|
9 |
尚小标, 李广超, 肖利平, 等. 大温度梯度下含锆型硅酸铝纤维板的透波性能[J]. 化工进展, 2023, 42(3): 1551-1561.
|
|
SHANG Xiaobiao, LI Guangchao, XIAO Liping, et al. Wave transmission performance of zirconium aluminum silicate fiberboard under large temperature gradient[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1551-1561.
|
10 |
徐得华, 靳虎, 徐雪青, 等. 多功能智能型反射隔热涂料的制备与性能表征[J]. 化工进展, 2017, 36(9): 3388-3394.
|
|
XU Dehua, JIN Hu, XU Xueqing, et al. Preparation and characterization of smart building paints with multiple functions[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3388-3394.
|
11 |
PEREIRA David J.S., VIEGAS Carlos, PANÃO Miguel R.O., Heat transfer model of fire protection fiberglass thermal barrier coated with thin aluminium layer[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122301.
|
12 |
韩申杰, 张恩浩, 卢芸. 建筑用生物质基纤维素保温气凝胶研究进展[J]. 复合材料学报, 2024, 41(1): 108-120.
|
|
HAN Shenjie, ZHANG Enhao, LU Yun. Research progress of biomass-based cellulose insulation aerogel for building[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 108-120.
|
13 |
潘月磊, 程旭东, 闫明远, 等. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309.
|
|
PAN Yuelei, CHENG Xudong, YAN Mingyuan, et al. Silica aerogel and its application in the field of thermal insulation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309.
|
14 |
穆锐, 刘元雪, 欧忠文, 等. 气凝胶复合材料的制备及其保温隔热应用进展[J/OL]. [2024-04-15]. . .
|
|
MU Rui, LIU Yuanxue, Zhongwen OU, et al. Progress in aerogel composite’s preparation and thermal insulation application[J/OL]. [2024-04-10]. . .
|
15 |
熊文婷, 罗启基, 鄢春根. 二氧化硅基气凝胶材料及其制备技术的专利分析[J]. 化工进展, 2024, 43(4): 1912-1922.
|
|
XIONG Wenting, LUO Qiji, YAN Chungen. Silica-based aerogel materials and their preparation technology from a patent analysis[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1912-1922.
|
16 |
WANG Yipu, TU Zhengtao, YUAN Linyang. Analysis of thermal energy storage optimization of thermal insulation material and thermal insulation structure of steam pipe-line[J]. Thermal Science, 2020, 24(5 Part B): 3249-3257.
|
17 |
闫秋会, 孙晓阳, 罗杰任, 等. SiO2气凝胶提高岩棉和玻璃棉性能的实验研究[J]. 化工进展, 2019, 38(6): 2847-2853.
|
|
YAN Qiuhui, SUN Xiaoyang, LUO Jieren, et al. Experimental study on improving the performance of rock wool and glass wool by silica aerogel[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2847-2853.
|
18 |
荣雁. 新型绝热材料在稠油注蒸汽管线保温中的应用[J]. 材料导报, 2020, 34(S1): 173-177.
|
|
RONG Yan. Application of new thermal insulation material in thermal insulation of heavy oil steam injection pipeline[J]. Materials Reports, 2020, 34(S1): 173-177.
|
19 |
HAYRULLIN Aidar, HAIBULLINA Aigul, SINYAVIN Alex. Insulation thermal conductivity heating networks during transportation thermal energy under dry and moisturizing condition: A comparative study of the guarded hot plate and guarded hot pipe method[J]. Transportation Research Procedia, 2022, 63: 1074-1080.
|
20 |
HUEPPE Christian, GEPPERT Jasmin, STAMMINGER Rainer, et al. Age-related efficiency loss of household refrigeration appliances: Development of an approach to measure the degradation of insulation properties[J]. Applied Thermal Engineering, 2020, 173: 115113.
|
21 |
YU Xiao, TIAN Xuesong. A fault detection algorithm for pipeline insulation layer based on immune neural network[J]. International Journal of Pressure Vessels and Piping, 2022, 196: 104611.
|
22 |
DZHALA Roman, VERBENETS Bohdan, DZHALA Vasyl, et al. Contactless testing of insulation damages distribution of the underground pipelines[J]. Procedia Structural Integrity, 2022, 36: 17-23.
|
23 |
国家能源局. 发电厂保温油漆设计规程: [S]. 北京: 中国计划出版社, 2019.
|
|
National Energy Bureau of the People’s Republic of China. Code for designing insulation and painting of power plant: [S]. Beijing: China Planning Press, 2019.
|
24 |
翟天龙, 康志勤, 唐海波. 600℃过热蒸汽输送管道保温的实验研究[J]. 化学工程, 2016, 44(5): 38-42.
|
|
ZHAI Tianlong, KANG Zhiqin, TANG Haibo. Experimental study of insulation of 600℃ superheated steam pipeline[J]. Chemical Engineering (China), 2016, 44(5): 38-42.
|
25 |
李小鹏. 直埋蒸汽管道保温层厚度优化与经济性研究[D]. 秦皇岛: 燕山大学, 2021.
|
|
LI Xiaopeng. Study on thickness optimization and economy of insulation layer for directly buried steam pipeline[D].Qinhuangdao: Yanshan University, 2021.
|