化工进展 ›› 2024, Vol. 43 ›› Issue (4): 2091-2103.DOI: 10.16085/j.issn.1000-6613.2023-0676
• 资源与环境化工 • 上一篇
孙贤1(), 柳军2, 王晓辉1(), 孙长宇1, 陈光进1
收稿日期:
2023-04-24
修回日期:
2023-09-21
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
王晓辉
作者简介:
孙贤(1993—),男,博士研究生,研究方向为新能源化工。E-mail:sunxian2592@126.com。
基金资助:
SUN Xian1(), LIU Jun2, WANG Xiaohui1(), SUN Changyu1, CHEN Guangjin1
Received:
2023-04-24
Revised:
2023-09-21
Online:
2024-04-15
Published:
2024-05-13
Contact:
WANG Xiaohui
摘要:
第一类天然气水合物藏由上部含水合物沉积层和下伏气-液两相流层组成,是目前天然气水合物开采的首选目标。本文对第一类天然气水合物藏特征及试采情况进行了介绍,并回顾了相关实验和数值模拟研究进展。实验研究方面总结了第一类水合物储层的重塑方案和该类水合物藏的产气特性。指出第一类水合物藏在储层塑造方面存在一定的局限性,多数实验研究中合成的水合物储层其下伏气是没有多孔介质的纯气体,不能模拟实际带有下伏气层的水合物储层的传质过程。而且,不同产气阶段的产气速率差异明显,初始阶段产气速率明显更快。此外,适用于经典的第三类水合物藏分解特性的建模思路,即将甲烷水合物的分解描述为移动边界问题,假设水合物分解发生在尖锐界面上,不适用于第一类水合物藏分解的数值模拟研究,因为该类水合物储层在分解阶段同时出现多个分解前沿。文中同时提出了有关第一类水合物藏开发未来的研究方向,即扩大研究尺度和模拟自然海洋环境水合物储层受力情况,以更贴近自然水合物成藏环境,提高研究结论的可参考性。
中图分类号:
孙贤, 柳军, 王晓辉, 孙长宇, 陈光进. 含下伏气的第一类天然气水合物藏开发实验与模拟研究进展[J]. 化工进展, 2024, 43(4): 2091-2103.
SUN Xian, LIU Jun, WANG Xiaohui, SUN Changyu, CHEN Guangjin. Review of experimental and numerical simulation research on the development of natural gas hydrate reservoir with underlying gas[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2091-2103.
1 | YIN Zhenyuan, LINGA Praveen. Methane hydrates: A future clean energy resource[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2026-2036. |
2 | CHONG Zhengrong, YANG She Hern Bryan, BABU Ponnivalavan, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. |
3 | MAKOGON Y F, OMELCHENKO R Y. Commercial gas production from Messoyakha deposit in hydrate conditions[J]. Journal of Natural Gas Science and Engineering, 2013, 11: 1-6. |
4 | BUFFETT B A, ZATSEPINA O Y. Formation of gas hydrate from dissolved gas in natural porous media[J]. Marine Geology, 2000, 164(1/2): 69-77. |
5 | WANG Xiaohui, CHEN Yun, LI Xingxun, et al. An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method[J]. Energy, 2021, 231: 120960. |
6 | WANG Xiaohui, XU Xiaojie, CAI Jin, et al. Effect of residual guest concentration in aqueous solution on hydrate reformation kinetics[J]. Fuel, 2023, 339: 126923. |
7 | WAITE W F, RUPPEL C D, COLLETT T S, et al. Multi-measurement approach for establishing the base of gas hydrate occurrence in the Krishna-Godavari Basin for sites cored during expedition NGHP-02 in the offshore of India[J]. Marine and Petroleum Geology, 2019, 108: 296-320. |
8 | SUN Changyu, CHEN Guangjin. Methane hydrate dissociation above 0℃ and below 0℃[J]. Fluid Phase Equilibria, 2006, 242(2): 123-128. |
9 | YANG Xin, SUN Changyu, SU Kehua, et al. A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment by depressurization[J]. Energy Conversion and Management, 2012, 56: 1-7. |
10 | FENG Jingchun, WANG Yi, LI Xiaosen, et al. Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir[J]. Applied Energy, 2015, 154: 995-1003. |
11 | KIM Eunae, LEE Seungmin, LEE Judong, et al. Influences of large molecular alcohols on gas hydrates and their potential role in gas storage and CO2 sequestration[J]. Chemical Engineering Journal, 2015, 267: 117-123. |
12 | LI Xiaosen, YANG Bo, ZHANG Yu, et al. Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator[J]. Applied Energy, 2012, 93: 722-732. |
13 | CAO Bojian, SUN Yifei, CHEN Hongnan, et al. An approach to the high efficient exploitation of nature gas hydrate and carbon sequestration via injecting CO2/H2 gas mixture with varying composition[J]. Chemical Engineering Journal, 2023, 455: 140634. |
14 | CHOI Wonjung, Junghoon MOK, LEE Jonghyuk, et al. Effective CH4 production and novel CO2 storage through depressurization-assisted replacement in natural gas hydrate-bearing sediment[J]. Applied Energy, 2022, 326: 119971. |
15 | FAN Shuanshi, YU Wangyang, YU Chi, et al. Investigation of enhanced exploitation of natural gas hydrate and CO2 sequestration combined gradual heat stimulation with CO2 replacement in sediments[J]. Journal of Natural Gas Science and Engineering, 2022, 104: 104686. |
16 | Junchen LYU, CHENG Zucheng, DUAN Jiateng, et al. Enhanced CH4 recovery from hydrate-bearing sand packs via CO2 replacement assisted thermal stimulation method[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104326. |
17 | WANG Tian, SUN Lingjie, FAN Ziyu, et al. Promoting CH4/CO2 replacement from hydrate with warm brine injection for synergistic energy harvest and carbon sequestration[J]. Chemical Engineering Journal, 2023, 457: 141129. |
18 | HANCOCK S, COLLETT T, DALLIMORE S, et al. Overview of thermal stimulation production-test results for the JAPEX/JNOC/GSCet al. Mallik 5L-38 gas hydrate production research well [C]//Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie delta, Northwest Territories, Canada. Geological Survey of Canada, 2005. |
19 | KURIHARA Masanori, SATO Akihiko, FUNATSU Kunihiro, et al. Analysis of production data for 2007/2008 Mallik gas hydrate production tests in Canada[C]//International Oil and Gas Conference and Exhibition in China. Beijing: Society of Petroleum Engineers, June 8-10, 2010. |
20 | FUJII Tetsuya, SUZUKI Kiyofumi, TAKAYAMA Tokujiro, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 310-322. |
21 | LI Rui, CAO Bojian, CHEN Hongnan, et al. Experimental study on the dual-gas co-production from hydrate deposit and its underlying gas reservoir[J]. Energy, 2022, 258: 124847. |
22 | ZHANG Jidong, YIN Zhenyuan, LI Qingping, et al. Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery[J]. Energy, 2023, 282: 128315. |
23 | LI Xingxun, LIU Ming, LI Qingping, et al. Visual study on methane hydrate formation and depressurization-induced methane hydrate dissociation processes in a micro-packed bed reactor[J]. Fuel, 2023, 332: 125980. |
24 | 王云飞, 孙长宇, 喻西崇, 等. 三维中试装置内水合物降压分解动力学规律[J]. 化工进展, 2022, 41(8): 4111-4119 |
WANG Yunfei, SUN Changyu, YU Xichong, et al. Analysis of the methane hydrate decomposition kinetics through depressurization method by using a pilot-scale reactor[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4111-4119. | |
25 | 李桂琴, 李刚, 陈朝阳, 等. 多孔介质中甲烷水合物不同分解方法实验研究[J]. 化工进展, 2013, 32(6): 1230-1235. |
LI Guiqin, LI Gang, CHEN Zhaoyang, et al. Experimental investigation on different methods of dissociation of methane hydrate in porous sediment[J]. Chemical Industry and Engineering Progress, 2013, 32(6): 1230-1235. | |
26 | 黄婷, 李清平, 李锐, 等. 第一类水合物藏降压开采实验模拟[J]. 化工进展, 2022, 41(8): 4120-4128. |
HUANG Ting, LI Qingping, LI Rui, et al. Experimental simulation of depressurization mining of the class 1 hydrate reservoir[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4120-4128. | |
27 | DONG Shuang, YANG Mingjun, ZHANG Lei, et al. Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method[J]. Energy, 2023, 280: 128178. |
28 | WANG Xiaochu, SUN Youhong, PENG Saiyu, et al. Effect of pore water on the depressurization of gas hydrate in clayey silt sediments[J]. Journal of Natural Gas Science and Engineering, 2022, 108: 104836. |
29 | CHENG Fanbao, WU Zhaoran, SUN Xiang, et al. Compression-induced dynamic change in effective permeability of hydrate-bearing sediments during hydrate dissociation by depressurization[J]. Energy, 2023, 264: 126137. |
30 | GE Kun, ZHANG Xinyu, WANG Jiaqi, et al. Optimization of the depressurization rate and stepwise strategy for hydrate exploitation using a genetic algorithm-based depressurization method[J]. Chemical Engineering Science, 2023, 265: 118218. |
31 | ZHAO Jie, ZHENG Jianan, WANG Xinru, et al. Effects of underlying gas on formation and gas production of methane hydrate in muddy low-permeability cores[J]. Fuel, 2022, 309: 122128. |
32 | KRET Kakda, TSUJI Takeshi, CHHUN Chanmaly, et al. Distributions of gas hydrate and free gas accumulations associated with upward fluid flow in the Sanriku-Oki forearc basin, northeast Japan[J]. Marine and Petroleum Geology, 2020, 116: 104305. |
33 | David R COX, HUUSE Mads, NEWTON Andrew M W, et al. Shallow gas and gas hydrate occurrences on the northwest Greenland shelf margin[J]. Marine Geology, 2021, 432: 106382. |
34 | ZHANG Zijian, MCCONNELL Daniel R, HAN Dehua. Rock physics-based seismic trace analysis of unconsolidated sediments containing gas hydrate and free gas in Green Canyon 955, Northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 119-133. |
35 | MISHRA C K, DEWANGAN P, MUKHOPADHYAY R, et al. Velocity modeling and attribute analysis to understand the gas hydrates and free gas system in the Mannar Basin, India[J]. Journal of Natural Gas Science and Engineering, 2021, 92: 104007. |
36 | ZHAO Jie, ZHENG Jianan, DONG Shuang, et al. Gas production enhancement effect of underlying gas on methane hydrates in marine sediments by depressurization[J]. Fuel, 2022, 310: 122415. |
37 | Moridis GEORGE J, Collett TIMOTY S. Strategies for gas production from hydrate accumulations under various geologic conditions[C]//Proceeding Tough Symposium, Lawrence Berkeley National Laboratory, Berkeley, California, 2003. |
38 | LI Fengguang, YUAN Qing, LI Tianduo, et al. A review: Enhanced recovery of natural gas hydrate reservoirs[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2062-2073. |
39 | COLLETT T, GINSBURG G. Gas hydrates in the messoyakha gas field of the West Siberian Basin — A re-examination of the geologic evidence[J]. International Journal of Offshore and Polar Engineering, 1998, 8(1): 96-103. |
40 | LI Nan, ZHANG Jie, XIA Mingji, et al. Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator[J]. Energy, 2021, 234: 121183. |
41 | WANG Yunfei, WANG Lingban, LI Yang, et al. Effect of temperature on gas production from hydrate-bearing sediments by using a large 196-L reactor[J]. Fuel, 2020, 275: 117963. |
42 | ZHAO Jie, ZHENG Jianan, KANG Taoquan, et al. Dynamic permeability and gas production characteristics of methane hydrate-bearing marine muddy cores: Experimental and modeling study[J]. Fuel, 2021, 306: 121630. |
43 | YANG Mingjun, GAO Yi, ZHOU Hang, et al. Gas production from different classes of methane hydrate deposits by the depressurization method[J]. International Journal of Energy Research, 2019, 43(10): 5493-5505. |
44 | SUN Xian, XIAO Peng, WANG Xiaohui, et al. Study on the influence of well closure and production pressure during dual-gas co-production from hydrate-bearing sediment containing underlying gas[J]. Energy, 2023, 279: 128067. |
45 | SUN Xian, WANG Xiaohui, XIAO Peng, et al. Dual-gas co-production behavior for hydrate-bearing coarse sediment with underlying gas via depressurization under constrained conditions[J]. Gas Science and Engineering, 2023, 116: 205038. |
46 | ZHAO Jiafei, LIU Yulong, GUO Xianwei, et al. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization[J]. Applied Energy, 2020, 260: 114275. |
47 | ZHENG Jianan, ZHAO Jie, TENG Ying, et al. Joint-production characteristics of typical marine composite reservoir with water-saturated methane hydrates and higher-pressure gas by depressurization[J]. Gas Science and Engineering, 2023, 110: 204912. |
48 | CHEN Guangjin, GUO Tianmin. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2): 145-151. |
49 | HONG H, POOLADI-DARVISH M, BISHNOI P R. Analytical modelling of gas production from hydrates in porous media [J]. Journal of Canadian Petroleum Technology, 2003, 42(11): 45-56. |
50 | GERAMI S, POOLADI-DARVISH M. Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid[J]. Journal of Petroleum Science & Engineering, 2007, 56(1/2/3): 146-164. |
51 | HOLDER G, ANGERT P. Simulation of gas production from a reservoir containing both gas hydrates and free natural gas[C]// SPE Annual Technical Conference and Exhibition. New Orleans: Society of Petroleum Engineers, 1982. |
52 | JIANG Xingxing, LI Shuxia, ZHANG Lina. Sensitivity analysis of gas production from Class Ⅰ hydrate reservoir by depressurization[J]. Energy, 2012, 39(1): 281-285. |
53 | Doruk ALP, PARLAKTUNA Mahmut, MORIDIS George J. Gas production by depressurization from hypothetical Class 1G and Class 1W hydrate reservoirs[J]. Energy Conversion and Management, 2007, 48(6): 1864-1879. |
54 | SUN Xiang, LUO Tingting, WANG Lei, et al. Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization[J]. Applied Energy, 2019, 250: 7-18. |
55 | GOEL Naval, WIGGINS Michael, SHAH Subhash. Analytical modeling of gas recovery from in situ hydrates dissociation[J]. Journal of Petroleum Science and Engineering, 2001, 29(2): 115-127. |
56 | JI Chuang, AHMADI Goodarz, SMITH Duane H. Natural gas production from hydrate decomposition by depressurization[J]. Chemical Engineering Science, 2001, 56(20): 5801-5814. |
57 | HONG H, POOLADI-DARVISH M. Simulation of depressurization for gas production from gas hydrate reservoirs[J]. Journal of Canadian Petroleum Geology, 2005, 44: 39-46. |
58 | Hamed TABATABAIE S, Mehran POOLADI-DARVISH. Analytical solution for gas production from hydrate reservoirs underlain with free gas[J]. Journal of Natural Gas Science and Engineering, 2009, 1(1/2): 46-57. |
59 | WHITE M D, WURSTNER S K, MCGRAIL B P. Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection[J]. Marine and Petroleum Geology, 2011, 28(2): 546-560. |
[1] | 杜永亮, 梁卓彬, 龚耀煦, 毕豪杰, 徐志远, 苑宏英. 气隙式膜蒸馏技术研究现状和应用[J]. 化工进展, 2024, 43(4): 1655-1666. |
[2] | 张巧玲, 马祖浩, 于子元, 刘梓俊, 黄铋匀, 杨振东, 马浩然. 微小通道内超临界R134a流动传热特性[J]. 化工进展, 2024, 43(4): 1667-1675. |
[3] | 孙超, 艾诗钦, 刘月婵. 考虑物性变化及壳体传热的新型板壳式换热器板程流动传热数值模拟[J]. 化工进展, 2024, 43(4): 1676-1689. |
[4] | 王彦红, 蒋雷, 薛帅, 李洪伟, 贾玉婷. 预冷通道中超临界甲烷换热特性分析[J]. 化工进展, 2024, 43(4): 1690-1699. |
[5] | 祝妍妮, 王维, 孙闫晨昊, 魏岗, 张大为. 基于单液滴蒸发的离心喷雾干燥数值模拟[J]. 化工进展, 2024, 43(4): 1700-1710. |
[6] | 赵吉隆, 郭宇翔, 陈宏霞, 袁达忠, 杜小泽. 竖直铯热管传热特性的实验和数值模拟[J]. 化工进展, 2024, 43(4): 1711-1719. |
[7] | 钱志广, 王世学, 朱禹, 岳利可. 基于平板热管的高温质子交换膜燃料电池堆启动特性[J]. 化工进展, 2024, 43(4): 1754-1763. |
[8] | 杨东晓, 熊启钊, 王毅, 陈杨, 李立博, 李晋平. 多级孔MOF的制备及其吸附分离应用研究进展[J]. 化工进展, 2024, 43(4): 1882-1896. |
[9] | 王凯, 叶丁丁, 朱恂, 杨扬, 陈蓉, 廖强. 超亲气泡沫铜纳米线电极电化学还原CO2性能[J]. 化工进展, 2024, 43(3): 1232-1240. |
[10] | 徐泽文, 王明, 王强, 侯影飞. 胺基材料在二氧化碳分离膜领域研究进展[J]. 化工进展, 2024, 43(3): 1374-1386. |
[11] | 禹言芳, 丁鹏程, 孟辉波, 石博文, 姚云娟. 非牛顿流体在叶片式静态混合器中的传热强化特性[J]. 化工进展, 2024, 43(3): 1145-1156. |
[12] | 尹少武, 李纤纤, 韩嘉维, 路明, 童莉葛, 王立. 分户式低谷电蓄热供暖系统的蓄放热特性[J]. 化工进展, 2024, 43(3): 1206-1213. |
[13] | 姚福春, 毕莹莹, 唐晨, 杜明辉, 李泽莹, 张耀宗, 孙晓明. 中空纤维膜臭氧接触式反应器传质机理分析[J]. 化工进展, 2024, 43(2): 1089-1097. |
[14] | 李京, 方庆, 周文浩, 吴国良, 王家辉, 张华, 倪红卫. 挡板构型对含钒页岩浸出槽内多相流行为的影响[J]. 化工进展, 2024, 43(2): 619-627. |
[15] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |