化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 243-254.DOI: 10.16085/j.issn.1000-6613.2024-0890

• 能源加工与技术 • 上一篇    下一篇

基于CPCM正六边形砖的蓄热储能系统设计与蓄放热模拟

尹少武1,2(), 黄若萧1, 昝晓君1, 童莉葛1, 刘传平1, 王立1   

  1. 1.北京科技大学能源与环境工程学院,北京 100083
    2.新疆工程学院能源工程学院,新疆 乌鲁木齐 830000
  • 收稿日期:2024-06-02 修回日期:2024-06-27 出版日期:2024-11-20 发布日期:2024-12-06
  • 通讯作者: 尹少武
  • 作者简介:尹少武(1979—),男,博士,教授,博士生导师,研究方向为能量转换、储存及利用。E-mail:yinsw@ustb.edu.cn
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2024XGYTCYC04);“天池英才”引进计划(2024XGYTCYC04);中央高校基本科研业务费(FRF-DF-23-002)

Design of phase-change heat and energy storage system based on CPCM hexagonal and simulation of heat storage and release

YIN Shaowu1,2(), HUANG Ruoxiao1, ZAN Xiaojun1, TONG Lige1, LIU Chuanping1, WANG Li1   

  1. 1.School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2.School of Energy Engineering, Xinjiang Institute of Engineering, Urumqi 830000, Xinjiang, China
  • Received:2024-06-02 Revised:2024-06-27 Online:2024-11-20 Published:2024-12-06
  • Contact: YIN Shaowu

摘要:

设计了相变蓄热储能系统,创新性地采用了正六边形砖和复合相变材料(composite phase change materials,CPCM),利用ANSYS Fluent进行相变蓄热储能系统蓄放热过程特性数值模拟对蓄放热过程进行研究,探究相变蓄热砖的形状、相变蓄热砖的材料以及加热功率对所设计相变蓄热储能系统蓄热过程的影响,以及CPCM蓄热温度、空气入口流速以及空气入口温度对其放热过程的影响。模拟结果表明,在每根加热棒的加热功率为0.7kW的加热条件下,蓄热过程所需的充电时间约为7.7h,蓄热体平均温度可达870℃,模拟结果符合设计要求;正六边形砖展现出更好的加热均匀性,采用CPCM后的蓄热体具有更好的蓄热性能,加热功率的增加可以很大程度上加快蓄热过程;放热过程采用1m/s空气入口流速较为合适,此时所需的放电时间为14.6h,空气入口流速越快、温度越低、CPCM蓄热温度越低的情况下系统的放热速率越高。系统总的蓄放热时间约为22.3h,能够较好实现谷电利用。

关键词: 储能系统, 正六边形砖, 复合相变材料, 蓄放热, 数值模拟

Abstract:

The phase-change heat storage and energy storage system was designed, and the regular hexagonal brick and composite phase change materials (CPCM) were innovatively adopted. The characteristics of the heat storage and release process of the phase-change heat storage and energy storage system were numerically simulated by ANSYS Fluent, and the heat storage and release process was studied. The influence of the shape, material and heating power of the phase-change thermal storage brick on the heat storage process of the designed phase-change thermal storage system, as well as the influence of CPCM thermal storage temperature, air inlet flow rate and air inlet temperature on the heat release process were investigated. The simulation results showed that under the heating power of each heating rod of 0.7kW, the charging time required for the heat storage process was about 7.7h, and the average temperature of the heat storage body could reach 870℃. The simulation results met the design requirements. The regular hexagonal brick showed better heating uniformity, the heat accumulator with CPCM had better heat storage performance, and the increase of heating power could greatly accelerate the heat storage process. In the heat release process, 1m/s air inlet flow rate was more appropriate, and the required discharge time was 14.6h. The faster the air inlet flow rate, the lower the temperature and the lower the CPCM heat storage temperature, the higher the heat release rate of the system. The total heat storage and release time of the system was about 22.3h, which could realize the utilization of peak and valley electricity well.

Key words: energy storage system, regular hexagonal brick, composite phase change materials, heat storage and release, numerical simulation

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn