化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 225-242.DOI: 10.16085/j.issn.1000-6613.2024-0725
李帅哲1,2,3(), 聂懿宸1,2,3, PHIDSAVARD Keomeesay1, 顾雯1,2,3, 张伟1,2,3,4, 刘娜1,2,3,4, 徐高翔1,2,3,4, 刘莹1,2,3,4, 李兴勇1,2,3,4(), 陈玉保1,2,3,4()
收稿日期:
2024-04-30
修回日期:
2024-07-04
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
李兴勇,陈玉保
作者简介:
李帅哲(1999—),男,硕士研究生,研究方向为生物质热化学催化转化。E-mail:l2461965521@163.com。
基金资助:
LI Shuaizhe1,2,3(), NIE Yichen1,2,3, PHIDJAVARD Keomeesay1, GU Wen1,2,3, ZHANG Wei1,2,3,4, LIU Na1,2,3,4, XU Gaoxiang1,2,3,4, LIU Ying1,2,3,4, LI Xingyong1,2,3,4(), CHEN Yubao1,2,3,4()
Received:
2024-04-30
Revised:
2024-07-04
Online:
2024-11-20
Published:
2024-12-06
Contact:
LI Xingyong, CHEN Yubao
摘要:
烃基生物液体燃料在生物质应用中扮演重要角色。传统第一代生物柴油即脂肪酸甲酯存在含氧量高、热值低并且与化石能源混合比例有限等不足,因此采用光热催化生物质加氢脱氧异构工艺制备的第二代烃基生物柴油备受关注,其中催化剂的开发至关重要。催化剂主要由金属活性组分和载体组成,由于贵金属催化剂成本高、不易大规模应用于工业化生产,因此在生产第二代烃基生物柴油时着重研发既具有高转化率、高选择性又兼备良好稳定性的非贵金属催化剂。本文围绕生物质催化加氢脱氧工艺,重点阐述了非贵金属(Ni、Mo、W、Co等)催化剂催化生物质制备烃基燃料过程中催化活性、转化机理及失活原因等,同时对后续非贵金属催化剂在油脂加氢脱氧催化方面的研究进行了展望。
中图分类号:
李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242.
LI Shuaizhe, NIE Yichen, PHIDJAVARD Keomeesay, GU Wen, ZHANG Wei, LIU Na, XU Gaoxiang, LIU Ying, LI Xingyong, CHEN Yubao. Research progress on non-precious metal-catalyzed hydrogenation and deoxygenation of biomass to produce hydrocarbon-based biofuels[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 225-242.
燃料 | 碳数 | 主要成分 | 性能 | 热值 /MJ∙kg-1 |
---|---|---|---|---|
汽油 | 5~12 | 异构烷烃 | 高辛烷值 | 40~45 |
柴油 | 10~22 | 支链烷烃 | 高十六烷值,低冷滤点 | 45~50 |
航空燃油 | 8~14 | 支链烷烃 | 低冷滤点 | 42~46 |
生物航油 | 8~16 | 直链烷烃 支链烷烃 | 油脂黏度低 | 40~45 |
生物柴油 | 16~18 | 支链烷烃 | 十六烷值高于化石柴油 | 43~47 |
表1 化石燃料和生物质燃料的几种物化特征性能
燃料 | 碳数 | 主要成分 | 性能 | 热值 /MJ∙kg-1 |
---|---|---|---|---|
汽油 | 5~12 | 异构烷烃 | 高辛烷值 | 40~45 |
柴油 | 10~22 | 支链烷烃 | 高十六烷值,低冷滤点 | 45~50 |
航空燃油 | 8~14 | 支链烷烃 | 低冷滤点 | 42~46 |
生物航油 | 8~16 | 直链烷烃 支链烷烃 | 油脂黏度低 | 40~45 |
生物柴油 | 16~18 | 支链烷烃 | 十六烷值高于化石柴油 | 43~47 |
催化剂 | 催化原料 | 反应条件 | 主要产物 | 转化率/% | 选择性/% | 参考文献 |
---|---|---|---|---|---|---|
Pd/Al2O3 | 油酸 | 325℃、2MPa | C17烷烃 | 100 | 95 | [ |
Pd/CeZrO2 | 油酸 | 300℃、2MPa | C17烷烃 | 100 | 37 | [ |
Pt/ZSM-22 | 大豆油 | 300℃、3MPa | C7~C14烷烃 | 100 | 84.3 | [ |
Pt/SPAO-11 | 大豆油 | 357℃、4MPa | C7~C14烷烃 | 100 | 63.3 | [ |
Pt/TiO2 | 麻疯树油 | 100℃、0.4MPa | C8~C17烷烃 | 93.20 | 54.92 | [ |
Pt/TiO2-ZSM-5 | 麻疯树油 | 100℃、0.4MPa | C8~C17烷烃 | 99.71 | 71.37 | [ |
表2 不同载体的贵金属催化剂催化相同原料加氢脱氧时的性能
催化剂 | 催化原料 | 反应条件 | 主要产物 | 转化率/% | 选择性/% | 参考文献 |
---|---|---|---|---|---|---|
Pd/Al2O3 | 油酸 | 325℃、2MPa | C17烷烃 | 100 | 95 | [ |
Pd/CeZrO2 | 油酸 | 300℃、2MPa | C17烷烃 | 100 | 37 | [ |
Pt/ZSM-22 | 大豆油 | 300℃、3MPa | C7~C14烷烃 | 100 | 84.3 | [ |
Pt/SPAO-11 | 大豆油 | 357℃、4MPa | C7~C14烷烃 | 100 | 63.3 | [ |
Pt/TiO2 | 麻疯树油 | 100℃、0.4MPa | C8~C17烷烃 | 93.20 | 54.92 | [ |
Pt/TiO2-ZSM-5 | 麻疯树油 | 100℃、0.4MPa | C8~C17烷烃 | 99.71 | 71.37 | [ |
催化剂 | 催化原料 | 反应条件 | 主要产物 | 转化率 /% | 裂化率 /% | 参考 文献 |
---|---|---|---|---|---|---|
NiC | 废咖啡油 | 400℃、2MPa | C15~C18烷烃 | 78.9 | — | [ |
NiP | 废咖啡油 | 400℃、2MPa | C15~C18烷烃 | 77.4 | — | [ |
NiS | 废咖啡油 | 400℃、2MPa | C15~C18烷烃 | 71.5 | — | [ |
Mo2C/AC | 脂肪酸甲酯 | 370℃、3MPa | C15~C18烷烃 | 100 | 21 | [ |
MoO/AC | 脂肪酸甲酯 | 370℃、3MPa | C15~C18烷烃 | 56.05 | 18.55 | [ |
MoO/Al2O3 | 脂肪酸甲酯 | 370℃、3MPa | C15~C18烷烃 | 85.64 | 25.79 | [ |
MoS2/Al2O3 | 脂肪酸甲酯 | 370℃、3MPa | C15~C18烷烃 | 83.46 | 11.88 | [ |
表3 相同活性组分添加不同助剂的催化活性比较
催化剂 | 催化原料 | 反应条件 | 主要产物 | 转化率 /% | 裂化率 /% | 参考 文献 |
---|---|---|---|---|---|---|
NiC | 废咖啡油 | 400℃、2MPa | C15~C18烷烃 | 78.9 | — | [ |
NiP | 废咖啡油 | 400℃、2MPa | C15~C18烷烃 | 77.4 | — | [ |
NiS | 废咖啡油 | 400℃、2MPa | C15~C18烷烃 | 71.5 | — | [ |
Mo2C/AC | 脂肪酸甲酯 | 370℃、3MPa | C15~C18烷烃 | 100 | 21 | [ |
MoO/AC | 脂肪酸甲酯 | 370℃、3MPa | C15~C18烷烃 | 56.05 | 18.55 | [ |
MoO/Al2O3 | 脂肪酸甲酯 | 370℃、3MPa | C15~C18烷烃 | 85.64 | 25.79 | [ |
MoS2/Al2O3 | 脂肪酸甲酯 | 370℃、3MPa | C15~C18烷烃 | 83.46 | 11.88 | [ |
活性 组分 | 载体 | 原料 | 温度 /℃ | 氢压/MPa | 脱氧率 /% | 选择性 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
3Ni/2P | SBA-15 | 油酸甲酯 | 250 | 0.3 | 79.5 | — | [ |
Ni/P | — | 甲酚 | 350 | 4 | 83.4 | — | [ |
Ni/3P | ZrO2 | 甲酚 | 340 | 4 | 88 | — | [ |
Ni3P | HZSM-5 | 苯酚 | 250 | 4 | 64.5 | 47.4 | [ |
Ni2P | SiO2 | 二苯并呋喃 | 300 | 3 | 79.6 | 90.0 | [ |
表4 磷化镍催化剂HDO制备生物燃料
活性 组分 | 载体 | 原料 | 温度 /℃ | 氢压/MPa | 脱氧率 /% | 选择性 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
3Ni/2P | SBA-15 | 油酸甲酯 | 250 | 0.3 | 79.5 | — | [ |
Ni/P | — | 甲酚 | 350 | 4 | 83.4 | — | [ |
Ni/3P | ZrO2 | 甲酚 | 340 | 4 | 88 | — | [ |
Ni3P | HZSM-5 | 苯酚 | 250 | 4 | 64.5 | 47.4 | [ |
Ni2P | SiO2 | 二苯并呋喃 | 300 | 3 | 79.6 | 90.0 | [ |
活性组分 | 载体 | 原料 | 温度 /℃ | 氢压 /MPa | 转化率 /% | 选择性 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
NiMo | SiO2 | 苯甲醚 | 300 | 6 | >90 | 90 | [ |
NiMo | SiO2 | 苯酚 | 410 | 0.1 | 99.3 | 99.3 | [ |
NiMo | SiO2 | 茴香醚 | 410 | 0.1 | 99.4 | 98.6 | [ |
NiMo | Al2O3 | 愈创木酚 | 350 | 8 | 100 | 65.0 | [ |
MoO3-NiO | SBA-15 | 愈创木酚 | 300 | 0.1 | 20 | 30 | [ |
MoO3-NiO | MAS | 愈创木酚 | 300 | 0.1 | 74 | 80 | [ |
表5 其他负载型NiMo催化剂HDO活性
活性组分 | 载体 | 原料 | 温度 /℃ | 氢压 /MPa | 转化率 /% | 选择性 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
NiMo | SiO2 | 苯甲醚 | 300 | 6 | >90 | 90 | [ |
NiMo | SiO2 | 苯酚 | 410 | 0.1 | 99.3 | 99.3 | [ |
NiMo | SiO2 | 茴香醚 | 410 | 0.1 | 99.4 | 98.6 | [ |
NiMo | Al2O3 | 愈创木酚 | 350 | 8 | 100 | 65.0 | [ |
MoO3-NiO | SBA-15 | 愈创木酚 | 300 | 0.1 | 20 | 30 | [ |
MoO3-NiO | MAS | 愈创木酚 | 300 | 0.1 | 74 | 80 | [ |
活性组分 | 温度/℃ | 氢压/MPa | 转化率/% | 烷烃 选择性/% | 不饱和烃选择性/% |
---|---|---|---|---|---|
Cu-Mo | 280 | 2.5 | 98.8 | 56.7 | 40.2 |
Ni-Mo | 280 | 2.5 | 100 | 99.9 | — |
Gr-Mo | 280 | 2.5 | 79.7 | 62.1 | 32.5 |
Zn-Mo | 280 | 2.5 | 44.8 | 53.8 | 23.5 |
Fe-Mo | 280 | 2.5 | 38.9 | 45.5 | 24.3 |
Co-Mo | 280 | 2.5 | 37.1 | 60.3 | 21.8 |
表6 Mo基催化剂加入不同助剂对油酸甲酯的HDO活性影响[50]
活性组分 | 温度/℃ | 氢压/MPa | 转化率/% | 烷烃 选择性/% | 不饱和烃选择性/% |
---|---|---|---|---|---|
Cu-Mo | 280 | 2.5 | 98.8 | 56.7 | 40.2 |
Ni-Mo | 280 | 2.5 | 100 | 99.9 | — |
Gr-Mo | 280 | 2.5 | 79.7 | 62.1 | 32.5 |
Zn-Mo | 280 | 2.5 | 44.8 | 53.8 | 23.5 |
Fe-Mo | 280 | 2.5 | 38.9 | 45.5 | 24.3 |
Co-Mo | 280 | 2.5 | 37.1 | 60.3 | 21.8 |
活性组分 | 载体 | 原料 | 温度 /℃ | 氢压 /MPa | 转化率 /% | 选择性 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
Au | WO3 | 愈创木酚 | 225 | 3 | 94.2 | 98.3 | [ |
Co-W-B | — | 环戊酮 | 300 | 4 | 96.6 | 57.3 | [ |
Cu-WO x | Al2O3 | 油酸 | 300 | 3 | 100 | 93 | [ |
NiW | Al2O3 | 脂肪酸酯 | 300 | 0.25 | 84 | 74 | [ |
NiW | SiO2 | 油酸 | 320 | 4 | 100 | — | [ |
NiWPB | — | 对甲酚 | 225 | 4 | 99.6 | 92.6 | [ |
表7 钨催化剂的HDO性能
活性组分 | 载体 | 原料 | 温度 /℃ | 氢压 /MPa | 转化率 /% | 选择性 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
Au | WO3 | 愈创木酚 | 225 | 3 | 94.2 | 98.3 | [ |
Co-W-B | — | 环戊酮 | 300 | 4 | 96.6 | 57.3 | [ |
Cu-WO x | Al2O3 | 油酸 | 300 | 3 | 100 | 93 | [ |
NiW | Al2O3 | 脂肪酸酯 | 300 | 0.25 | 84 | 74 | [ |
NiW | SiO2 | 油酸 | 320 | 4 | 100 | — | [ |
NiWPB | — | 对甲酚 | 225 | 4 | 99.6 | 92.6 | [ |
1 | 刘明亮, 卫浩, 盖玉龙, 等. 中国、美国、欧盟及世界一次能源消费现状与展望[J]. 煤化工, 2022, 50(2): 1-5. |
LIU Mingliang, WEI Hao, GAI Yulong, et al. Current situation and outlook of primary energy consumption in China, US, EU and the world[J]. Coal Chemical Industry, 2022, 50(2): 1-5. | |
2 | 张臻烨, 胡山鹰, 金涌. 2060中国碳中和——化石能源转向化石资源时代[J]. 现代化工, 2021, 41(6): 1-5. |
ZHANG Zhenye, HU Shanying, JIN Yong. China achieving carbon neutral in 2060, fossil energy to fossil resource era[J]. Modern Chemical Industry, 2021, 41(6): 1-5. | |
3 | 耿国龙, 刘林林, 侯凯湖. 植物油加氢脱氧催化剂的研究进展[J]. 化工进展, 2014, 33(5): 1180-1184, 1194. |
GENG Guolong, LIU Linlin, HOU Kaihu. Progress in catalysts for the hydrodeoxygenation of vegetable oil[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1180-1184, 1194. | |
4 | 王海周, 王东军, 李山山, 等. 植物油加氢脱氧路径调控催化剂的制备[J]. 高校化学工程学报, 2018, 32(4): 840-847. |
WANG Haizhou, WANG Dongjun, LI Shanshan, et al. Preparation of catalysts for reaction pathway-control in vegetable oil hydrodeoxygenation[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(4): 840-847. | |
5 | WANG Baohua, WANG Bingquan, SHUKLA Sudheesh K, et al. Enabling catalysts for biodiesel production via transesterification[J]. Catalysts, 2023, 13(4): 740. |
6 | 辛宗武, 高磊, 张琳叶, 等. 多不饱和脂肪酸及其酯的选择性加氢研究进展[J]. 精细化工, 2020, 37(6): 1136-1144, 1198. |
XIN Zongwu, GAO Lei, ZHANG Linye, et al. A review on selective hydrogenation of polyunsaturated fatty acids and their esters[J]. Fine Chemicals, 2020, 37(6): 1136-1144, 1198. | |
7 | 杨紫浓. 第二代生物柴油催化加氢催化剂及其应用[J]. 广东化工, 2018, 45(14): 178-180, 186. |
YANG Zinong. The second generation biodiesel catalytic hydrogenation catalysts and its application[J]. Guangdong Chemical Industry, 2018, 45(14): 178-180, 186. | |
8 | ZHANG Jingjing, ZHAO Chen. Development of a bimetallic Pd-Ni/HZSM-5 catalyst for the tandem limonene dehydrogenation and fatty acid deoxygenation to alkanes and arenes for use as biojet fuel[J]. ACS Catalysis, 2016, 6(7): 4512-4525. |
9 | XU Xiwei, YANG Hui, TU Ren, et al. Quenching method to prepare ultra-low loading high-entropy catalyst for furfural selectively hydrogenation at ambient temperature[J]. Applied Catalysis B: Environmental, 2024, 342: 123358. |
10 | HACHEMI Imane, MURZIN Dmitry Yu. Kinetic modeling of fatty acid methyl esters and triglycerides hydrodeoxygenation over nickel and palladium catalysts[J]. Chemical Engineering Journal, 2018, 334: 2201-2207. |
11 | LONG Feng, LIU Weiguo, JIANG Xia, et al. State-of-the-art technologies for biofuel production from triglycerides: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111269. |
12 | MADSEN Anders Theilgaard, AHMED El Hadi, CHRISTENSEN Claus Hviid, et al. Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst[J]. Fuel, 2011, 90(11): 3433-3438. |
13 | SHIM Jae-Oh, JANG Won-Jun, JEON Kyung-Won, et al. Petroleum like biodiesel production by catalytic decarboxylation of oleic acid over Pd/Ce-ZrO2 under solvent-free condition[J]. Applied Catalysis A: General, 2018, 563: 163-169. |
14 | WANG Congxin, TIAN Zhijian, WANG Lei, et al. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes[J]. ChemSusChem, 2012, 5(10): 1974-1983. |
15 | 杨依婕, 刘莹, 张伟, 等. TiO2催化剂改性方法对光热催化麻疯树籽油制备生物燃油的影响[J]. 中国油脂, 2023, 48(1): 53-59, 65. |
YANG Yijie, LIU Ying, ZHANG Wei, et al. Effects of TiO2 catalyst modification methods on preparation of bio-fuel from Jatropha oil via photothermal catalysis[J]. China Oils and Fats, 2023, 48(1): 53-59, 65. | |
16 | 胡良栋. 单金属/复合半导体催化剂构建及光热催化麻风树油制航空煤油研究[D]. 昆明: 云南师范大学, 2022. |
HU Liangdong. Study on design of metal/semiconductors catalyst and preparation of jet-fuel via oriented reforming from jatropha oil based on photothermic catalytic technology[D]. Kunming: Yunnan Normal University, 2022. | |
17 | 王静. 负载型Ni2P/SiO2催化剂改性及其加氢脱氧性能研究[D]. 大庆: 东北石油大学, 2023. |
WANG Jing. Modification and hydrodeoxygenation performance of supported Ni2P/SiO2 [D]. Daqing: Northeast Petroleum University, 2023. | |
18 | Luděk KALUŽA, David KUBIČKA. The comparison of Co, Ni, Mo, CoMo and NiMo sulfided catalysts in rapeseed oil hydrodeoxygenation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122(1): 333-341. |
19 | David KUBIČKA, Jan HORÁČEK, Michal SETNIČKA, et al. Effect of support-active phase interactions on the catalyst activity and selectivity in deoxygenation of triglycerides[J]. Applied Catalysis B: Environmental, 2014, 145: 101-107. |
20 | 杨玲梅, 罗文, 付俊鹰, 等. 废油脂固体催化加氢制备生物航油的研究进展[J]. 太阳能学报, 2022, 43(12): 423-431. |
YANG Lingmei, LUO Wen, FU Junying, et al. Review of solid catalysis hydrogenation waste oil to produce bio-jet fuel[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 423-431. | |
21 | SEO Jangwoo, KWON Ji Sun, CHOO Hyunah, et al. Production of deoxygenated high carbon number hydrocarbons from furan condensates: Hydrodeoxygenation of biomass-based oxygenates[J]. Chemical Engineering Journal, 2019, 377: 119985. |
22 | MOLINA-CONDE Luis H, Alejandro SUÁREZ-MÉNDEZ, PÉREZ-ESTRADA Daniel E, et al. Mesoporous Ni/Al-MCM-41 catalysts for highly active and selective hydrodeoxygenation of anisole to cyclohexane[J]. Applied Catalysis A: General, 2023, 663: 119313. |
23 | GUO Cheng, RAO Kasanneni Tirumala Venkateswara, YUAN Zhongshun, et al. Hydrodeoxygenation of fast pyrolysis oil with novel activated carbon-supported NiP and CoP catalysts[J]. Chemical Engineering Science, 2018, 178: 248-259. |
24 | RODRÍGUEZ-AGUADO E, INFANTES-MOLINA A, BALLESTEROS-PLATA D, et al. Ni and Fe mixed phosphides catalysts for O-removal of a bio-oil model molecule from lignocellulosic biomass[J]. Molecular Catalysis, 2017, 437: 130-139. |
25 | YU Zhiquan, WANG Yao, ZHANG Guoqiang, et al. A highly dispersed Ni3P/HZSM-5 catalyst for hydrodeoxygenation of phenolic compounds to cycloalkanes[J]. Journal of Catalysis, 2022, 410: 294-306. |
26 | YANG Yongxing, Cristina OCHOA-HERNÁNDEZ, PIZARRO Patricia, et al. Influence of the Ni/P ratio and metal loading on the performance of Ni x P y /SBA-15 catalysts for the hydrodeoxygenation of methyl oleate[J]. Fuel, 2015, 144: 60-70. |
27 | WANG Weiyan, ZHANG Kun, LIU Huan, et al. Hydrodeoxygenation of p-cresol on unsupported Ni–P catalysts prepared by thermal decomposition method[J]. Catalysis Communications, 2013, 41: 41-46. |
28 | GONÇALVES Vinicius Ottonio O, DE SOUZA Priscilla M, Thierry CABIOC’H, et al. Effect of P/Ni ratio on the performance of nickel phosphide phases supported on zirconia for the hydrodeoxygenation of m-cresol[J]. Catalysis Communications, 2019, 119: 33-38. |
29 | KANDEL Kapil, ANDEREGG James W, NELSON Nicholas C, et al. Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel[J]. Journal of Catalysis, 2014, 314: 142-148. |
30 | HAN Qiao, REHMAN Mooeez Ur, WANG Junhu, et al. The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols[J]. Applied Catalysis B: Environmental, 2019, 253: 348-358. |
31 | LONG Feng, WU Shiyu, CHEN Yuwei, et al. Hydrogenation of fatty acids to fatty alcohols over Ni3Fe nanoparticles anchored on TiO2 crystal catalyst: Metal support interaction and mechanism investigation[J]. Chemical Engineering Journal, 2023, 464: 142773. |
32 | BYKOVA M V, D Yu ERMAKOV, KAICHEV V V, et al. Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study[J]. Applied Catalysis B: Environmental, 2012, 113: 296-307. |
33 | AMBURSA Murtala M, JUAN Joon Ching, YAHAYA Y, et al. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110667. |
34 | 鞠雅娜, 张雅琳, 张然, 等. 金属分散度对Ni基催化剂催化活性的影响研究[J]. 石油化工高等学校学报, 2022, 35(5): 71-77. |
JU Yana, ZHANG Yalin, ZHANG Ran, et al. Study on the effect of metal dispersion on the catalytic activity of nickel-based catalysts[J]. Journal of Petrochemical Universities, 2022, 35(5): 71-77. | |
35 | 鲁玉莹, 王宗宝, 韩晓琳, 等. 低温法费托合成油加氢脱氧催化剂的研究进展[J]. 现代化工, 2022, 42(10): 62-65. |
LU Yuying, WANG Zongbao, HAN Xiaolin, et al. Review on hydrodeoxygenation catalyst for low temperature Fischer-Tropsch synthetic oil[J]. Modern Chemical Industry, 2022, 42(10): 62-65. | |
36 | 张鸿科, 汪炜琛, 向治宇, 等. Ti掺杂SBA-15负载Ni基催化剂用于木质素衍生物定向加氢脱氧转化[J]. 燃料化学学报(中英文), 2024, 52(4): 536-544. |
ZHANG Hongke, WANG Weichen, XIANG Zhiyu, et al. Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 536-544. | |
37 | 王欣, 张舜光, 侯凯湖. 非负载Ni(Co)-Mo-Al2O3纳米催化剂的制备及其生物油模型化合物加氢脱氧性能研究[J]. 分子催化, 2010, 24(2): 153-157. |
WANG Xin, ZHANG Shunguang, HOU Kaihu. Preparation and hydrodeoxygenation performance of unsupported Ni(Co)-Mo-Al2O3 nano-catalysts[J]. Journal of Molecular Catalysis, 2010, 24(2): 153-157. | |
38 | SMIRNOV A A, KHROMOVA S A, D Yu ERMAKOV, et al. The composition of Ni-Mo phases obtained by NiMoO x -SiO2 reduction and their catalytic properties in anisole hydrogenation[J]. Applied Catalysis A: General, 2016, 514: 224-234. |
39 | HE Tao, LIU Xinxin, GE Yuanzheng, et al. Gas phase hydrodeoxygenation of anisole and guaiacol to aromatics with a high selectivity over Ni-Mo/SiO2 [J]. Catalysis Communications, 2017, 102: 127-130. |
40 | GUTIERREZ Andrea, TURPEINEN Eeva-Maija, VILJAVA Tuula-Riitta, et al. Hydrodeoxygenation of model compounds on sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts; Role of sulfur-containing groups in reaction networks[J]. Catalysis Today, 2017, 285: 125-134. |
41 | SELVARAJ Marimuthu, SHANTHI Kannan, MAHESWARI Rajamanickam, et al. Hydrodeoxygenation of guaiacol over MoO3-NiO/mesoporous silicates: Effect of incorporated heteroatom[J]. Energy & Fuels, 2014, 28(4): 2598-2607. |
42 | Ryan LOE, Eduardo SANTILLAN-JIMENEZ, MORGAN Tonya, et al. Effect of Cu and Sn promotion on the catalytic deoxygenation of model and algal lipids to fuel-like hydrocarbons over supported Ni catalysts[J]. Applied Catalysis B: Environmental, 2016, 191: 147-156. |
43 | ZHANG Xinghua, ZHANG Qi, CHEN Lungang, et al. Effect of calcination temperature of Ni/SiO2-ZrO2 catalyst on its hydrodeoxygenation of guaiacol[J]. Chinese Journal of Catalysis, 2014, 35(3): 302-309. |
44 | CHEN Lei, ZHANG Feng, LI Guangci, et al. Effect of Zn/Al ratio of Ni/ZnO-Al2O3 catalysts on the catalytic deoxygenation of oleic acid into alkane[J]. Applied Catalysis A: General, 2017, 529: 175-184. |
45 | LI Guangci, ZHANG Feng, CHEN Lei, et al. Highly selective hydrodecarbonylation of oleic acid into n-heptadecane over a supported nickel/zinc oxide-alumina catalyst[J]. ChemCatChem, 2015, 7(17): 2646-2653. |
46 | IBRAHIM Ahmed, LIU Xin, UGUNA Clement N, et al. Hydrodeoxygenation of p-cresol over CuNi@C catalyst derived from metal-organic frameworks precursor[J]. Fuel, 2022, 329: 125320. |
47 | YUAN Pei, LIAO Xiaoqing, CUI Haishuai, et al. Highly efficient selective hydrogenation of nitrocyclohexane to cyclohexanone oxime in ethylenediamine over MOF-derived catalysts: Effects of Ni-Co alloy and solvent[J]. Chemical Engineering Journal, 2023, 455: 140864. |
48 | OUEDRAOGO Angelika S, BHOI Prakashbhai R. Recent progress of metals supported catalysts for hydrodeoxygenation of biomass derived pyrolysis oil[J]. Journal of Cleaner Production, 2020, 253: 119957. |
49 | ZHAO Xianhui, WEI Lin, CHENG Shouyun, et al. Hydroprocessing of carinata oil for hydrocarbon biofuel over Mo-Zn/Al2O3 [J]. Applied Catalysis B: Environmental, 2016, 196: 41-49. |
50 | YU Cong, YU Shitao, LI Lu, et al. Highly stable Mo-based catalysts for selective hydrodeoxygenation to produce diesel-like hydrocarbons[J]. Fuel, 2022, 323: 124334. |
51 | 于聪, 于世涛, 李露. Cu-Mo/C催化油酸甲酯选择性加氢脱氧制备生物柴油[J]. 生物质化学工程, 2023, 57(2): 48-54. |
YU Cong, YU Shitao, LI Lu. Preparation of biodiesel by selective hydrodeoxygenation methyl oleate over Cu-Mo/C catalyst[J]. Biomass Chemical Engineering, 2023, 57(2): 48-54. | |
52 | 韩军兴. 植物油脱氧制备柴油类烃的催化剂及反应机理研究[D]. 杭州: 浙江大学, 2012. |
HAN Junxing. Study on catalysts effective for deoxygenating vegetable oils into diesel-like hydrocarbons and corresponding reaction mechanisms[D]. Hangzhou: Zhejiang University, 2012. | |
53 | 江雅洁, 赵梦阳, 张朋, 等. 介孔碳负载Mo2N催化剂的制备及加氢脱氧[J]. 高校化学工程学报, 2021, 35(3): 476-482. |
JIANG Yajie, ZHAO Mengyang, ZHANG Peng, et al. Preparation and hydrodeoxygenation of Mo2N catalysts supported on mesoporous carbon[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(3): 476-482. | |
54 | OCHOA E, TORRES D, PINILLA J L, et al. On the hydrothermal-enhanced synthesis of highly selective Mo2C catalysts to fully deoxygenated products in the guaiacol HDO reaction[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105146. |
55 | BONITA Yolanda, HICKS Jason C. Periodic trends from metal substitution in bimetallic Mo-based phosphides for hydrodeoxygenation and hydrogenation reactions[J]. The Journal of Physical Chemistry C, 2018, 122(25): 13322-13332. |
56 | 谭启航, 曹阳, 李进. Mo2N/Zr-MCM-41新型催化剂的制备、表征及其麻疯树油加氢脱氧的催化性能[J]. 燃料化学学报, 2018, 46(11): 1323-1331. |
TAN Qihang, CAO Yang, LI Jin. Preparation and characterization of Mo2N/Zr-MCM-41 catalyst and its performance in hydrodeoxygenation of Jatropha curcas oil[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1323-1331. | |
57 | 罗楠, 曹阳, 李进, 等. Ni2P/Zr-MCM-41催化剂的制备及其对麻风树油加氢脱氧的催化性能[J]. 燃料化学学报, 2016, 44(1): 76-83. |
LUO Nan, CAO Yang, LI Jin, et al. Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 76-83. | |
58 | XING Shiyou, LIU Yong, LIU Xiaochun, et al. Solvent-free hydrodeoxygenation of bio-lipids into renewable alkanes over NiW bimetallic catalyst under mild conditions[J]. Applied Catalysis B: Environmental, 2020, 269: 118718. |
59 | BATHLA Sagar, TRAN Chi-Cong, KALIAGUINE Serge, et al. Doping an oxophilic metal into a metal carbide: Unravelling the synergy between the microstructure of the catalyst and its activity and selectivity for hydrodeoxygenation[J]. ACS Catalysis, 2022, 12(22): 13980-13998. |
60 | ALWAN Basem AL, SALLEY Steven O, Simon NG K Y. Biofuels production from hydrothermal decarboxylation of oleic acid and soybean oil over Ni-based transition metal carbides supported on Al-SBA-15[J]. Applied Catalysis A: General, 2015, 498: 32-40. |
61 | FARAH Bertha, LANCELOT Christine, BLANCHARD Pascal, et al. Beneficial effect of W incorporation in supported Mo-based catalysts for the HDO of m-cresol[J]. ChemCatChem, 2023, 15(5): e202201409. |
62 | WU Yurong, SOURAV Sagar, WORRAD Alfred, et al. Dynamic formation of Brønsted acid sites over supported WO x /Pt on SiO2 inverse catalysts─Spectroscopy, probe chemistry, and calculations[J]. ACS Catalysis, 2023, 13(11): 7371-7382. |
63 | NING Honghui, ZHENG Xiaozhong, XIONG Jinqi, et al. Rebalancing hydrogenation and dehydration performances for efficient hydrodeoxygenation of biomass derivatives to match reaction temperature-induced rate-determining step switch[J]. Industrial & Engineering Chemistry Research, 2023, 62(44): 18403-18415. |
64 | LI Shangjian, WU Kui, WANG Dan, et al. Single-atom Au atomically trapped in WO3- x catalyst for selective demethoxylation of lignin-derived guaiacols[J]. Applied Surface Science, 2023, 638: 158128. |
65 | WANG Weiyan, YANG Yunquan, LUO Hean, et al. Preparation of Ni(Co)-W-B amorphous catalysts for cyclopentanone hydrodeoxygenation[J]. Catalysis Communications, 2011, 12(14): 1275-1279. |
66 | JANAMPELLI Sagar, SETHIA Govind, DARBHA Srinivas. Selective, bifunctional Cu-WO x /Al2O3 catalyst for hydrodeoxygenation of fatty acids[J]. Catalysis Science & Technology, 2020, 10(1): 268-277. |
67 | KUKUSHKIN R G, YELETSKY P M, GRASSIN C T, et al. Deoxygenation of esters over sulfur-free Ni-W/Al2O3 catalysts for production of biofuel components[J]. Chemical Engineering Journal, 2020, 396: 125202. |
68 | WANG Weiyan, YANG Sijun, QIAO Zhiqiang, et al. Preparation of Ni-W-P-B amorphous catalyst for the hydrodeoxygenation of p-cresol[J]. Catalysis Communications, 2015, 60: 50-54. |
69 | 邓益强, 巫思桦, 庞苑苑, 等. 有序孔木质素碳基催化剂催化生物质油模型化合物加氢脱氧[J]. 广东石油化工学院学报, 2023, 33(4): 32-37. |
DENG Yiqiang, WU Sihua, PANG Yuanyuan, et al. Efficient hydrodeoxygenation of biomass oil over lignin-based carbon supported metal catalysts with ordered pore structure[J]. Journal of Guangdong University of Petrochemical Technology, 2023, 33(4): 32-37. | |
70 | SHIM Jae-Oh, JEONG Dae-Woon, JANG Won-Jun, et al. Optimization of unsupported CoMo catalysts for decarboxylation of oleic acid[J]. Catalysis Communications, 2015, 67: 16-20. |
71 | ASIKIN-MIJAN N, ABDULKAREEM-ALSULTAN G, MASTULI M S, et al. Single-step catalytic deoxygenation-cracking of tung oil to bio-jet fuel over CoW/silica-alumina catalysts[J]. Fuel, 2022, 325: 124917. |
72 | ZHANG Zhige, BI Guican, ZHANG Hongdan, et al. Highly active and selective hydrodeoxygenation of oleic acid to second generation bio-diesel over SiO2-supported Co x Ni1- x P catalysts[J]. Fuel, 2019, 247: 26-35. |
73 | LI Yucheng, ZHU Liyu, ZHAO Jingyang, et al. In situ topologically prepared Co-Zn-based mixed metal oxide bimetallic catalysts for guaiacol hydrodeoxygenation[J]. Industrial Crops and Products, 2023, 204: 117217. |
74 | CHEN Jing, MA Zongyan, QIN Jiaheng, et al. Highly efficient and selective hydrodeoxygenation of guaiacol to cyclohexanol over a rod-like CoNi-C catalyst[J]. Fuel, 2023, 353: 129216. |
75 | 方礼理, 闫江梅, 李岳锋, 等. 载体预处理对苯酚加氢制环己酮用催化剂的影响[J]. 辽宁化工, 2023, 52(12): 1752-1755. |
FANG Lili, YAN Jiangmei, LI Yuefeng, et al. Effect of support pretreatment on catalyst for hydrogenation of phenol to cyclohexanone[J]. Liaoning Chemical Industry, 2023, 52(12): 1752-1755. | |
76 | JI Na, CHENG Shuai, JIA Zhichao, et al. Fabricating bifunctional Co-Al2O3@USY catalyst via in-situ growth method for mild hydrodeoxygenation of lignin to naphthenes[J]. ChemCatChem, 2022, 14(12): e202200274. |
77 | 王吴玉, 史玉竹, 严龙, 等. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698. |
WANG Wuyu, SHI Yuzhu, YAN Long, et al. Synthesis of valerate biofuels on supported Co-based bifunctional catalysts[J]. CIESC Journal, 2022, 73(2): 689-698. | |
78 | 尹浩杰, 杨发举, 宋应利, 等. 生物柴油及其非均相催化剂制备方法的研究现状[J]. 化学推进剂与高分子材料, 2024, 22(3): 1-7, 20. |
YIN Haojie, YANG Faju, SONG Yingli, et al. Research status of biodiesel and its heterogeneous catalyst preparation methods[J]. Chemical Propellants and Polymeric Materials, 2024, 22(3): 1-7, 20. | |
79 | 黄宽, 马永德, 蔡镇平, 等. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
HUANG Kuan, MA Yongde, CAI Zhenping, et al. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel[J]. CIESC Journal, 2023, 74(1): 380-396. | |
80 | 程瑾, 李澜鹏, 王兆程, 等. 油脂加氢脱氧制备第二代生物柴油催化剂研究进展[J]. 中国油脂, 2024, 49(4): 77-82, 96. |
CHENG Jin, LI Lanpeng, WANG Zhaocheng, et al. Research progress on catalysts for hydrodeoxygenation of oils to produce second generation biodiesel[J]. China Oils and Fats, 2024, 49(4): 77-82, 96. | |
81 | 郑云武, 王继大, 李冬华, 等. 生物质催化转化制备生物基航空燃料的研究进展[J]. 林产化学与工业, 2023, 43(1): 140-154. |
ZHENG Yunwu, WANG Jida, LI Donghua, et al. A review on recent advances in catalytic conversion of biomass for selective production of bio-aviation fuels[J]. Chemistry and Industry of Forest Products, 2023, 43(1): 140-154. | |
82 | CHEN Wen, LUO Zhongyang, YU Chunjiang, et al. Catalytic transformations of acids, aldehydes, and phenols in bio-oil to alcohols and esters[J]. Fuel, 2014, 135: 55-62. |
83 | 刘振涛, 梅金林, 王春雅, 等. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924. |
LIU Zhentao, MEI Jinlin, WANG Chunya, et al. Research progress on catalysts for one-step hydrogenation to produce bio aviation coal[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. | |
84 | 练彩霞, 李凝, 蒋武, 等.生物质油催化加氢脱氧(HDO)反应机理及催化剂研究进展[J]. 化工进展, 2020, 39(S1): 153-162. |
LIAN Caixia, LI Ning, JIANG Wu, et al. Research progress on the mechanism and catalysts of biomass oil catalytic hydrogenation deoxygenation (HDO) reaction[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162. | |
85 | LIN Qingjin, PEI Mingming, YAO Pan, et al. Determining hydrothermal deactivation mechanisms on Cu/SAPO-34 NH3-SCR catalysts at low- and high-reaction regions: Establishing roles of different reaction sites[J]. Rare Metals, 2022, 41(6): 1899-1910. |
86 | Tomás CORDERO-LANZAC, PALOS Roberto, HITA Idoia, et al. Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil[J]. Applied Catalysis B: Environmental, 2018, 239: 513-524. |
87 | WANG Lingxiang, WANG Liang, MENG Xiangju, et al. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts[J]. Advanced Materials, 2019, 31(50): e1901905. |
88 | SU Haixia, JIAO Yang, SHI Jiangong, et al. Towards the insights into the deactivation behavior of acetylene hydrogenation catalyst[J]. Petroleum Science, 2024, 21(2): 1405-1414. |
89 | Shuhei OGO, SEKINE Yasushi. Recent progress in ethanol steam reforming using non-noble transition metal catalysts: A review[J]. Fuel Processing Technology, 2020, 199: 106238. |
[1] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[2] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[3] | 刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924. |
[4] | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2 促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7): 3824-3833. |
[5] | 邵斌, 孙哲毅, 章云, 潘冯弘康, 赵开庆, 胡军, 刘洪来. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151. |
[6] | 简雅婷, 余强, 陈小燕, 王帆, 王忠铭, 袁振宏. 木质素制备生物液体燃料进展[J]. 化工进展, 2021, 40(S2): 109-116. |
[7] | 葛睿, 胡旭, 董灵玉, 李丹, 郝广平. 电化学耦合阴极二氧化碳还原与阳极氧化合成[J]. 化工进展, 2021, 40(9): 5132-5144. |
[8] | 陈焕浩, 范晓雷. 非热等离子体催化转化C1分子及其催化剂研究进展[J]. 化工进展, 2021, 40(6): 3034-3045. |
[9] | 石彩, 史峻铭, 滕敏, 王维聪, 额其马林, 黄占华. 过渡金属磷化物在光催化机理方面的研究进展[J]. 化工进展, 2021, 40(11): 6079-6093. |
[10] | 王炜月, 赵培培, 金凌云, 岑丙横, 陈建, 罗孟飞. 挥发性有机物燃烧催化剂的研究进展[J]. 化工进展, 2020, 39(S2): 185-195. |
[11] | 练彩霞, 李凝, 蒋武, 马浩, 彭瀚. 生物质油催化加氢脱氧(HDO)反应机理及催化剂研究进展[J]. 化工进展, 2020, 39(S1): 153-162. |
[12] | 邱泽刚,尹婵娟,李志勤,冯跃阔. 酚类加氢脱氧催化剂研究进展[J]. 化工进展, 2019, 38(08): 3658-3669. |
[13] | 石宁, 唐文勇, 唐石云, 葛武杰, 刘云花, 黄伦昌. 木质纤维素衍生平台化学品制备液态烷烃的研究进展[J]. 化工进展, 2019, 38(07): 3097-3110. |
[14] | 陈伦刚,张兴华,张琦,王晨光,马隆龙. 木质纤维素解聚平台分子催化合成航油技术的进展[J]. 化工进展, 2019, 38(03): 1269-1282. |
[15] | 李宜睿, 李东亚, 孙靖宇, 成功, 龙学军, 徐海明, 夏东升. 葡萄糖辅助合成形貌可控BiOCl及其可见光催化性能[J]. 化工进展, 2018, 37(11): 4419-4426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |