化工进展 ›› 2020, Vol. 39 ›› Issue (S2): 185-195.DOI: 10.16085/j.issn.1000-6613.2020-1266
王炜月1, 赵培培1, 金凌云2, 岑丙横1, 陈建1(), 罗孟飞1
收稿日期:
2020-07-06
出版日期:
2020-11-20
发布日期:
2020-11-17
通讯作者:
陈建
作者简介:
王炜月(1997—),女,硕士研究生,研究方向为环境催化。
基金资助:
Weiyue WANG1, Peipei ZHAO1, Lingyun JIN2, Bingheng CEN1, Jian CHEN1(), Mengfei LUO1
Received:
2020-07-06
Online:
2020-11-20
Published:
2020-11-17
Contact:
Jian CHEN
摘要:
挥发性有机物(VOCs)是主要大气污染物质,也是形成PM2.5和臭氧的重要前体。强化挥发性有机物控制,是改善大气环境的重要途径。催化燃烧(氧化)被认为是去除VOCs最有效的方式之一,本文综述了VOCs催化燃烧常用的贵金属催化剂、非贵金属催化剂。其中,贵金属催化剂主要包括基于Pd、Pt、Ru等的催化剂,非贵金属催化剂主要包括Mn、Co、Ce、Zr等的氧化物,通常贵金属催化剂具有比非贵金属更高的氧化活性和稳定性,但对于含氮VOCs非贵金属催化剂(Mn、Cu)具有更好的氮气选择性,Cr基催化剂对于含氯VOCs燃烧具有更好的效果。此外,还重点讨论了载体、分散度、催化剂制备方法对贵金属催化剂性能的影响,并对发展VOCs氧化催化剂的研究提出了展望。
中图分类号:
王炜月, 赵培培, 金凌云, 岑丙横, 陈建, 罗孟飞. 挥发性有机物燃烧催化剂的研究进展[J]. 化工进展, 2020, 39(S2): 185-195.
Weiyue WANG, Peipei ZHAO, Lingyun JIN, Bingheng CEN, Jian CHEN, Mengfei LUO. Recent advances in catalysts for volatile organic compounds combustion[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 185-195.
催化剂 | 转化率①/% | Pt0/(Pt0+Pt2+) | 质量比速率 /μmol·s-1·g-1 | |
---|---|---|---|---|
新鲜催化剂 | 用过催化剂② | |||
Pt/Al2O3 | 11.4 | 0.15 | 0.51 | 11.3 |
Pt-2Nb/Al2O3 | 17.6 | 0.34 | 0.65 | 17.5 |
Pt-6Nb/Al2O3 | 48.1 | 0.47 | 0.70 | 47.7 |
Pt-10Nb/Al2O3 | 62.3 | 0.66 | 0.71 | 61.8 |
Pt-15Nb/Al2O3 | 55.9 | 0.87 | 0.91 | 55.5 |
10Nb/Al2O3 | 0 | — | — | — |
Pt-10Nb/Al2O3-R | 69.8 | 0.86 | 0.86 | 69.2 |
表1 Pt-Nb/Al2O3催化剂的丙烷反应转化率、表面Pt0/(Pt0+Pt2+)比值和反应质量比速率[25]
催化剂 | 转化率①/% | Pt0/(Pt0+Pt2+) | 质量比速率 /μmol·s-1·g-1 | |
---|---|---|---|---|
新鲜催化剂 | 用过催化剂② | |||
Pt/Al2O3 | 11.4 | 0.15 | 0.51 | 11.3 |
Pt-2Nb/Al2O3 | 17.6 | 0.34 | 0.65 | 17.5 |
Pt-6Nb/Al2O3 | 48.1 | 0.47 | 0.70 | 47.7 |
Pt-10Nb/Al2O3 | 62.3 | 0.66 | 0.71 | 61.8 |
Pt-15Nb/Al2O3 | 55.9 | 0.87 | 0.91 | 55.5 |
10Nb/Al2O3 | 0 | — | — | — |
Pt-10Nb/Al2O3-R | 69.8 | 0.86 | 0.86 | 69.2 |
催化剂 | 选择性/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T98 | 300℃ | 340℃ | 400℃ | 420℃ | ||||||
CO | N2 | CO | N2 | CO | N2 | CO | N2 | CO | N2 | |
4MnOx/ZSM-5(18) | 7.2 | 100 | 4.4 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
12MnOx/ZSM-5(18) | 2.0 | 100 | 0 | 100 | 0 | 100 | 0 | 99.2 | 0 | 98.5 |
20MnOx/ZSM-5(18) | 1.2 | 100 | 0 | 100 | 0 | 100 | 0 | 98.5 | 0 | 95.5 |
4MnOx/ZSM-5(360) | 2.8 | 100 | 2.0 | 100 | 0 | 99.2 | 0 | 91.3 | 0 | 84.3 |
12MnOx/ZSM-5(360) | 1.8 | 100 | 0 | 100 | 0 | 93.2 | 0 | 72.6 | 0 | 62.7 |
20MnOx/ZSM-5(360) | 0.8 | 100 | 0 | 97.7 | 0 | 89.0 | 0 | 69.1 | 0 | 58.3 |
12MnOx/SiO2 | 6.0 | 90.4 | 2.6 | 67.4 | 0 | 44.7 | 0 | 28.5 | 0 | 22.1 |
表2 MnOx/ZSM-5催化剂的二乙胺氧化活性及其N2和CO的选择性与反应温度的关系[34]
催化剂 | 选择性/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T98 | 300℃ | 340℃ | 400℃ | 420℃ | ||||||
CO | N2 | CO | N2 | CO | N2 | CO | N2 | CO | N2 | |
4MnOx/ZSM-5(18) | 7.2 | 100 | 4.4 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
12MnOx/ZSM-5(18) | 2.0 | 100 | 0 | 100 | 0 | 100 | 0 | 99.2 | 0 | 98.5 |
20MnOx/ZSM-5(18) | 1.2 | 100 | 0 | 100 | 0 | 100 | 0 | 98.5 | 0 | 95.5 |
4MnOx/ZSM-5(360) | 2.8 | 100 | 2.0 | 100 | 0 | 99.2 | 0 | 91.3 | 0 | 84.3 |
12MnOx/ZSM-5(360) | 1.8 | 100 | 0 | 100 | 0 | 93.2 | 0 | 72.6 | 0 | 62.7 |
20MnOx/ZSM-5(360) | 0.8 | 100 | 0 | 97.7 | 0 | 89.0 | 0 | 69.1 | 0 | 58.3 |
12MnOx/SiO2 | 6.0 | 90.4 | 2.6 | 67.4 | 0 | 44.7 | 0 | 28.5 | 0 | 22.1 |
催化剂 | T98/℃ | 选择性/% | |||||
---|---|---|---|---|---|---|---|
T98 | 300℃ | 400℃ | |||||
CO | N2 | CO | N2 | CO | N2 | ||
2CuO/ZSM-5-18 | 300 | 6.4 | 100 | 6.4 | 100 | 0 | 98.5 |
4CuO/ZSM-5-18 | 280 | 2.8 | 100 | 0.2 | 100 | 0 | 96.2 |
6CuO/ZSM-5-18 | 240 | 2.8 | 100 | 0 | 100 | 0 | 95.5 |
10CuO/ZSM-5-18 | 240 | 2.0 | 100 | 0 | 100 | 0 | 94.7 |
14CuO/ZSM-5-18 | 240 | 2.0 | 100 | 0 | 100 | 0 | 94.0 |
表3 CuO/ZSM-5催化剂的二乙胺氧化活性及其N2和CO的选择性[35]
催化剂 | T98/℃ | 选择性/% | |||||
---|---|---|---|---|---|---|---|
T98 | 300℃ | 400℃ | |||||
CO | N2 | CO | N2 | CO | N2 | ||
2CuO/ZSM-5-18 | 300 | 6.4 | 100 | 6.4 | 100 | 0 | 98.5 |
4CuO/ZSM-5-18 | 280 | 2.8 | 100 | 0.2 | 100 | 0 | 96.2 |
6CuO/ZSM-5-18 | 240 | 2.8 | 100 | 0 | 100 | 0 | 95.5 |
10CuO/ZSM-5-18 | 240 | 2.0 | 100 | 0 | 100 | 0 | 94.7 |
14CuO/ZSM-5-18 | 240 | 2.0 | 100 | 0 | 100 | 0 | 94.0 |
VOCs名称 | 最弱的CH键/kJ·mol-1 | 极性 | Cu0.15Mn0.3Ce0.55/CH | 商品Pd/Al2O3 | ||
---|---|---|---|---|---|---|
T50/℃ | T95/℃ | T50/℃ | T95/℃ | |||
苯 | 426.2 | 0 | 225 | 250 | 245 | 270 |
甲苯 | 370.3 | 0.45 | 235 | 240 | 225 | 235 |
邻二甲苯 | — | 0.33 | 250 | 280 | 215 | 225 |
己烷 | 395.0 | 0 | 190 | 210 | 330 | 345 |
环己烷 | 399.0 | 0 | 200 | 240 | 330 | 325 |
乙醇 | 396.6 | 1.69 | 160 | 175 | 220 | 245 |
乙醛 | 394.3 | 2.71 | 170 | 190 | 240 | 250 |
乙酸乙酯 | — | 1.78 | 180 | 190 | 260 | 270 |
甲基丙烯酸甲酯 | — | 1.68 | 195 | 210 | 210 | 220 |
丙酮 | 411.5 | 2.77 | 185 | 195 | 230 | 250 |
表4 Cu0.15Mn0.3Ce0.55/CH和市售Pd/Al2O3催化剂上VOC燃烧的结果[53]
VOCs名称 | 最弱的CH键/kJ·mol-1 | 极性 | Cu0.15Mn0.3Ce0.55/CH | 商品Pd/Al2O3 | ||
---|---|---|---|---|---|---|
T50/℃ | T95/℃ | T50/℃ | T95/℃ | |||
苯 | 426.2 | 0 | 225 | 250 | 245 | 270 |
甲苯 | 370.3 | 0.45 | 235 | 240 | 225 | 235 |
邻二甲苯 | — | 0.33 | 250 | 280 | 215 | 225 |
己烷 | 395.0 | 0 | 190 | 210 | 330 | 345 |
环己烷 | 399.0 | 0 | 200 | 240 | 330 | 325 |
乙醇 | 396.6 | 1.69 | 160 | 175 | 220 | 245 |
乙醛 | 394.3 | 2.71 | 170 | 190 | 240 | 250 |
乙酸乙酯 | — | 1.78 | 180 | 190 | 260 | 270 |
甲基丙烯酸甲酯 | — | 1.68 | 195 | 210 | 210 | 220 |
丙酮 | 411.5 | 2.77 | 185 | 195 | 230 | 250 |
1 | 江梅, 邹兰, 李晓倩, 等. 我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 2015, 36(9): 3522-3532. |
JIANG Mei, ZOU Lan, LI Xiaoqian, et al. Definition and control indicators of volatile organic compounds in China[J]. Environmental Science, 2015, 36(9): 3522-3532. | |
2 | LIANG Xiaoming, CHEN Xiaofang, ZHANG Jiani, et al. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China[J]. Atmospheric Environment, 2017, 162: 115-126. |
3 | EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. Journal of Hazardous Materials, 2004, 109(1/2/3): 113-39. |
4 | 户英杰, 王志强, 程星星, 等. 燃烧处理挥发性有机污染物的研究进展[J]. 化工进展, 2018, 37(1): 319-329. |
HU Yingjie, WANG Zhiqiang, CHENG Xingxing, et al. Recent progress in the removal of volatile organic compounds by combustion[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 319-329. | |
5 | HONG Eunpyo, KIM Chansong, Dong-Hee LIM, et al. Catalytic methane combustion over Pd/ZrO2 catalysts: effects of crystalline structure and textural properties[J]. Applied Catalysis B: Environmental, 2018, 232: 544-552. |
6 | GARCIA Tomas, AGOURAM Said, TAYLOR Stuart H, et al. Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: influence of the order of impregnation[J]. Catalysis Today, 2015, 254: 12-20. |
7 | GUO Yunlong, GAO Yijing, LI Xiang, et al. Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2[J]. Chemical Engineering Journal, 2019, 362: 41-52. |
8 | AVILA M S, VIGNATTI C I, APESTEGUIA C R, et al. Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts[J]. Chemical Engineering Journal, 2014, 241: 52-59. |
9 | 刘欢, 尹树孟, 周国明, 等. 新型载体对VOCs催化氧化反应性能的影响[J]. 应用化工, 2018, 47(1): 169-172. |
LIU Huan, YIN Shumeng, ZHOU Guoming, et al. Effects of novel supports on catalytic oxidation of VOCs[J]. Applied Chemical Industry, 2018, 47(1): 169-172. | |
10 | TIDAHY H L, SIFFERT S, LAMONIER J F, et al. New Pd/hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2-TiO2 catalysts for VOCs total oxidation[J]. Applied Catalysis A: General, 2006, 310: 61-69. |
11 | PAPAEFTHIMIOU Panagiotis, IOANNIDES Theophilos, VERYKIOS Xenophon E. Performance of doped Pt/TiO2(W6+) catalysts for combustion of volatile organic compounds(VOCs)[J]. Applied Catalysis B: Environmental, 1998, 15(1): 75-92. |
12 | HU Zong, LIU Xiaofei, MENG Dongmei, et al. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. ACS Catalysis, 2016, 6: 2265-2279. |
13 | WANG Yu, YANG Dengyao, LI Shaozhong, et al. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation[J]. Chemical Engineering Journal, 2018, 357: 258-268. |
14 | 史雪芳. 负载型催化剂中金属分散度的测定[J]. 黎明化工, 1993(1): 21-23, 26. |
SHI Xuefang. Determination of metal dispersion in supported catalysts[J]. Dawn Chemical, 1993(1): 21-23, 26. | |
15 | BARANOWSKA Katarzyna, OKAL Janina. Performance and stability of the Ru-Re/γ-Al2O3 catalyst in the total oxidation of propane: influence of the order of impregnation[J]. Catalysis Letters, 2016, 146(1): 72-81. |
16 | CENTENO M A, PAULIS M, MONTES M, et al. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts[J]. Applied Catalysis A: General, 2002, 234(1): 65-78. |
17 | YAZAWA Yoshiteru, YOSHIDA Hisao, HATTORI Tadashi. The support effect on platinum catalyst under oxidizing atmosphere: improvement in the oxidation-resistance of platinum by the electrophilic property of support materials[J]. Applied Catalysis A: General, 2002, 237(1): 139-148. |
18 | DENG Hua, KANG Shunyu, MA Jinzhu, et al. Role of structural defects in MnOx promoted by Ag doping in the catalytic combustion of volatile organic compounds and ambient secomposition of O3[J]. Environmental Science & Technology, 2019, 53: 10871-10879. |
19 | 李奔, 周贝, 李思汉, 等. 自组装低负载量Pd/γ-Al2O3催化剂催化氧化甲苯[J]. 精细化工, 2018, 35(9): 1555-1561. |
LI Ben, ZHOU Bei, LI Sihan, et al. A self-assembled Pd/γ-Al2O3 catalyst with low loading for catalytic oxidation of toluene[J]. Fine Chemicals, 2018, 35(9): 1555-1561. | |
20 | WANG Yafei, ZHANG Changbin, LIU Fudong, et al. Well-dispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene[J]. Applied Catalysis B: Environmental, 2013, 142/143: 72-79. |
21 | 刘艳荣, 卢英, 廖文敏, 等. 丙烷完全氧化催化剂的研究进展[J]. 化工生产与技术, 2019, 25(2): 14-19, 46. |
LIU Yanrong, LU Ying, LIAO Wenmin, et al. Progresses on catalytic total oxidation of propane[J]. Chemical Production and Technology, 2019, 25(2): 14-19, 46. | |
22 | LIU Yanrong, LI Xue, LIAO Wenmin, et al. Highly active Pt/BN catalysts for propane combustion: the roles of support and reactant-induced evolution of active sites[J]. ACS Catalysis, 2019, 9: 1472-1481. |
23 | LIAO Wenmin, FANG Xiuxiu, CEN Bingheng, et al. Deep oxidation of propane over WO3-promoted Pt/BN catalysts: the critical role of Pt-WO3 interface[J]. Applied Catalysis B: Environmental, 2020, 272: 118858. |
24 | LI Xue, LIU Yanrong, LIAO Wenmin, et al. Synergistic roles of Pt0 and Pt2+ species in propane combustion over high-performance Pt/AlF3 catalysts[J]. Applied Surface Science, 2019, 475: 524-531. |
25 | ZHAO Peipei, LI Xue, LIAO Wenmin, et al. Understanding the role of NbOx on Pt/Al2O3 for effective catalytic propane oxidation[J]. Industrial Engineering Chemistry Research, 2019, 58(48): 21945-21952. |
26 | 廖文敏, 卢英, 赵培培, 等. Pt/CexZr1-xO2催化剂上丙烷完全氧化性能研究[J]. 中国稀土学报, 2020, 38(1): 31-39. |
LIAO Wenmin, LU Ying, ZHAO Peipei, et al. Pt/CexZr1-xO2 catalysts for total oxidation of propane[J]. Journal of the Chinese Rare Earth Society, 2020, 38(1): 31-39. | |
27 | 岑丙横, 赵培培, 陈建, 等. 助剂Ba对Pd/Al2O3和Pt/Al2O3催化剂的C1~C3烷烃催化燃烧性能的影响[J]. 工业催化, 2020, 28(4): 89-94. |
CEN Bingheng, ZHAO Peipei, CHEN Jian, et al. The role of Ba additive on the catalytic performance of Pd/Al2O3 and Pt/Al2O3 for C1-C3 alkanes deep oxidation[J]. Industrial Catalysis, 2020, 28(4): 89-94. | |
28 | DEMIDYUK Vladimir, Christopher WHITEHEAD J. Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system[J]. Plasma Chemistry and Plasma Processing, 2007, 27(1): 85-94. |
29 | 卢素红, 王雪, 魏书晗, 等. 介孔Co3O4/Al2O3催化氧化甲醛的性能研究[J]. 当代化工, 2018, 47(6): 1105-1107, 1127. |
LU Suying, WANG Xue, WEI Shuhan, et al. Catalytic oxidation of formaldehyde over mesoporous Co3O4/Al2O3 catalysts[J]. Contemporary Chemical Industry, 2018, 47(6): 1105-1107, 1127. | |
30 | ZHU Zengzan, LU Guanzhong, ZHANG Zhigang, et al. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method[J]. ACS Catalyst, 2013, 3: 1154-1164. |
31 | LIAO Wenmin, ZHAO Peipei, CEN Bingheng, et al. Co-Cr-O mixed oxides for low-temperature total oxidation of propane: structural effects, kinetics, and spectroscopic investigation[J]. Chinese Journal of Catalysis, 2020, 41(3): 442-456. |
32 | SHAH Parag M, Andrew N DAY, DAVIES Thomas E, et al. Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene volatile organic compounds[J]. Applied Catalysis B: Environmental, 2019, 253: 331-340. |
33 | MO Shenpeng, ZHANG Qi, LI Jiaqi, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Applied Catalysis B: Environmental, 2019, 264: 118464. |
34 | LU Ying, HU Caihong, ZHANG Wenxia, et al. Promoting the selective catalytic oxidation of diethylamine over MnOx/ZSM-5 by surface acid centers[J]. Applied Surface Science, 2020, 521: 146348. |
35 | HU Caihong, FANG Chentao, LU Ying, et al. Selective oxidation of diethylamine on CuO/ZSM-5 catalysts: the role of cooperative catalysis of CuO and surface acid sites[J]. Industrial Engineering Chemistry Research, 2020, 59: 9432-9439. |
36 | YANG Shanshan, HUANG Qinqin, ZHOU Renxian. Influence of interaction between chromium and cerium on the catalytic performance of CrOx-CeO2/Ti-PILC catalysts for deep oxidation of n-butylamine[J]. Chinese Science Bulletin, 2014, 59(31): 3987-3992. |
37 | 戴启广, 王幸宜. 含氯挥发性有机物废气在CeO2基催化剂上的低温催化燃烧净化: 从高活性到高稳定性再到高选择性[J]. 工业催化, 2020, 28(4): 1-15. |
DAI Qiguang, WANG Xingyi. Low-temperature catalytic combustion of chlorinated volatile organic compounds over CeO2-based catalysts: from high activity to high stability and high selectivity[J]. Industrial Catalysis, 2020, 28(4): 1-15. | |
38 | MA Ruihong, HU Panjing, JIN Lingyun, et al. Characterization of CrOx/Al2O3 catalysts for dichloromethane oxidation[J]. Catalysis Today, 2011, 175(1): 598-602. |
39 | FENG Xiaobo, TIAN Mingjiao, LI Lu, et al. Yolk-shell-like mesoporous CoCrOx with superior activity and chlorine resistance in dichloromethane destruction[J]. Applied Catalysis B: Environmental, 2020, 264: 118493. |
40 | LIU Jingdi, ZHANG Tingting, JIA Aiping, et al. The effect of microstructural properties of CoCr2O4 spinel oxides on catalytic combustion of dichloromethane[J]. Applied Surface Science, 2016, 369: 58-66. |
41 | ZHANG Tingting, SONG Jiandong, CHEN Jiaxi, et al. Catalytic combustion of dichloromethane over supported CoCr2O4/TUD-1 catalysts: the effect of CoCr2O4 particle size on the modification of surface properties and the catalytic performance[J]. Applied Surface Science, 2017, 425: 1074-1081. |
42 | 张婷婷, 陈家喜, 李艳明, 等. CoCr2O4/SiO2催化剂上二氯甲烷催化氧化[J]. 工业催化, 2017, 25(12): 32-37. |
ZHANG Tingting, CHEN Jiaxi, LI Yanming, et al. Catalytic combustion of dichloromethane over CoCr2O4/SiO2 catalysts[J]. Industrial Catalysis, 2017, 25(12): 32-37. | |
43 | YANG Peng, SHI Zhinan, TAO Fei, et al. Synergistic performance between oxidizability and acidity/texture properties for 1,2-dichloroethane oxidation over (Ce,Cr)xO2/zeolite catalysts[J]. Chemical Engineering Science, 2015(134): 340-347. |
44 | YANG Peng, FAN Shaokang, CHEN Zhenyang, et al. Synthesis of Nb2O5 based solid superacid materials for catalytic combustion of chlorinated VOCs[J]. Applied Catalysis B: Environmental, 2018, 239: 114-124. |
45 | GAN Lina, SHI Wenbo, LI Kezhi, et al. Synergistic promotion effect between NOx and chlorobenzene removal on MnOx-CeO2 catalyst[J]. ACS Applied Materials & Interfaces, 2018, 10: 30426-30432. |
46 | HAN Li, WANG Yanjun, ZHANG Jie, et al. Acidic montmorillonite/cordierite monolithic catalysts for cleavage of cumene hydroperoxide[J]. Chinese Journal of Chemical Engineering, 2014, 22(8): 854-860. |
47 | 赵春林, 梁海龙, 陈鑫, 等. 整体式V2O5-MoO3-CeOx/TiO2/堇青石SCR脱硝催化剂的制备[J]. 稀有金属材料与工程, 2018, 47(S1): 222-225. |
ZHAO Chunlin, LIANG Hailong, CHEN Xin, et al. Preparation of monolithic V2O5-MoO3-CeOx/TiO2/cordierite SCR denitration catalyst[J]. Rare Metal Materials and Engineering, 2018, 47(S1): 222-225. | |
48 | 陈文亚, 朱丽, 何军, 等. Rh/Al2O3-Cr2O3整体式催化剂的制备和二氯甲烷催化氧化性能[J]. 高等学校化学学报, 2017, 38(4): 606-612. |
CHEN Wenya, ZHU Li, HE Jun, et al. Preparation of Rh/Al2O3-Cr2O3 monolithic catalysts for dichloromethane combustion[J]. Chemicl Journal of Chinese Universities, 2017, 38(4): 606-612. | |
49 | SOLLIER Brenda M, GOMEZ Leticia E, BOIX Alicia V, et al. Oxidative coupling of methane on cordierite monoliths coated with Sr/La2O3 catalysts. Influence of honeycomb structure and catalyst-cordierite chemical interactions on the catalytic behavior[J]. Applied Catalysis A, General, 2018, 550: 113-121. |
50 | DIAZ Cecilia C, Pilar YESTE M, VIDAL Hilario, et al. In situ generation of Mn1-xCex system on cordierite monolithic supports for combustion of n-hexane. Effects on activity and stability[J]. Fuel, 2020, 262: 116564. |
51 | JIN Lingyun, LU Jiqing, LUO Mengfei, et al. CeO2-Y2O3 washcoat and supported Pd catalysts for the combustion of volatile organic compounds (VOCs)[J]. Acta Physico Chimica Sinica, 2007, 23(11): 1691-1695. |
52 | JIN Lingyun, HE Mai, LU Jiqing, et al. Palladium catalysts supported on novel CexY1-xO washcoats for toluene catalytic combustion[J]. Journal of Rare Earths, 2008(4): 614-618. |
53 | LU Hanfeng, ZHOU Ying, HUANG Haifeng, et al. In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion[J]. Journal of Rare Earths, 2011, 29(9): 855-860. |
[1] | 王庆宏, 姜晨旭, 王鑫, 余美琪, 朱帅, 李一鸣, 陈春茂. 天然矿物催化氧化水中难降解有机污染物研究进展[J]. 化工进展, 2023, 42(1): 417-434. |
[2] | 张广宇, 赵健, 孙峰, 姜杰, 孙冰, 徐伟. CO2催化转化制碳酸丙烯酯研究进展:催化剂设计、性能与反应机理[J]. 化工进展, 2022, 41(S1): 177-189. |
[3] | 曹冬冬, 李兴春, 薛明. 石化中间储罐挥发性有机物排放特征与反应活性[J]. 化工进展, 2022, 41(7): 3974-3982. |
[4] | 郑亚梅, 林胜男, 荆国华, 申华臻, 吕碧洪. 基于FAHP的农药生产VOCs末端治理技术评价[J]. 化工进展, 2022, 41(6): 3372-3380. |
[5] | 吕杰琼, 谢晖, 高永平, 连丽丽, 王希越, 张浩, 高文秀, 娄大伟. 富氮类共价有机骨架材料COF-MC催化Knoevenagel缩合反应的应用[J]. 化工进展, 2022, 41(6): 2993-3001. |
[6] | 葛睿, 胡旭, 董灵玉, 李丹, 郝广平. 电化学耦合阴极二氧化碳还原与阳极氧化合成[J]. 化工进展, 2021, 40(9): 5132-5144. |
[7] | 冯海涛, 刘晓菊, 张弛, 王艳丽, 马晓燕. 复合固体推进剂用新型二茂铁类燃速催化剂研究进展[J]. 化工进展, 2021, 40(5): 2560-2573. |
[8] | 张巍, 汤云灏, 尹艳山, 龚蔚成, 宋健, 马英, 阮敏, 徐慧芳, 陈冬林. 改性镧系钙钛矿催化剂强化挥发性有机物催化氧化的研究进展[J]. 化工进展, 2021, 40(3): 1425-1437. |
[9] | 马明超, 臧甲忠, 于海斌, 范景新, 郭春垒, 靳凤英. 金属改性对多环芳烃选择性开环Pt/Beta催化剂性能的影响[J]. 化工进展, 2021, 40(11): 6113-6120. |
[10] | 李孟, 李炜, 张帅, 李雨薇, 刘芳, 赵朝成, 王永强. MOF及其复合材料吸附去除VOCs应用研究进展[J]. 化工进展, 2021, 40(1): 415-426. |
[11] | 杨宇轩, 朱晨曦, 黄群星. 废弃物衍生分级多孔炭的制备及吸附应用进展[J]. 化工进展, 2021, 40(1): 427-439. |
[12] | 冷星月, 胡彩虹, 王炜月, 李丹丹, 陈建, 罗孟飞. 低浓度挥发性有机物吸附浓缩材料的研究进展[J]. 化工进展, 2020, 39(S2): 336-345. |
[13] | 赵亚飞, 叶凯, 庄烨, 郑进保. 锰基催化剂协同等离子降解VOCs研究进展[J]. 化工进展, 2020, 39(S2): 175-184. |
[14] | 王艳, 李兆强, 张丞, 王雨, 樊蓉蓉, 丁智勇, 郭欣, 王荣. CeO2含量对柴油机商用稀土SCR催化剂脱硝性能的影响[J]. 化工进展, 2020, 39(7): 2662-2669. |
[15] | 闵健, 腾东玉, 王云, 陈达. 密封点挥发性有机物(VOCs)排放速率的数值模拟及实测应用[J]. 化工进展, 2020, 39(7): 2599-2605. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |