1 |
APPATURI J N, PULINGAM T, RAJABATHAR J R, et al. Acid-base bifunctional SBA-15 as an active and selective catalyst for synthesis of ethyl α-cyanocinnamate via Knoevenagel condensation[J]. Microporous and Mesoporous Materials, 2021, 320: 111091.
|
2 |
PATEL D, VITHALANI R, MODI C K. Highly efficient FeNP-embedded hybrid bifunctional reduced graphene oxide for Knoevenagel condensation with active methylene compounds[J]. New Journal of Chemistry, 2020, 44(7): 2868-2881.
|
3 |
陈琳, 谢蓉蓉, 关丽, 等. 苯并-α-吡喃酮类生物活性物质的合成[J]. 化工进展, 2014, 33(8): 2160-2164.
|
|
CHEN Lin, XIE Rongrong, GUAN Li, et al. Synthesis of some biologically active coumarins[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2160-2164.
|
4 |
YANG Y, WANG D, JIANG P F, et al. Structure-induced Lewis-base Ga4B2O9 and its superior performance in Knoevenagel condensation reaction[J]. Molecular Catalysis, 2020, 490: 110914.
|
5 |
RUBAN S M, SATHISH C I, RAMADASS K, et al. Ordered mesoporous carbon nitrides with tuneable nitrogen contents and basicity for Knoevenagel condensation[J]. ChemCatChem, 2021, 13(1): 468-474.
|
6 |
高朋召, 吴迪, 郑航博, 等. 有机胺改性对ZIF-8催化Knoevenagel缩合反应活性的影响[J]. 湖南大学学报(自然科学版), 2020, 47(8): 124-132.
|
|
GAO Pengzhao, WU Di, ZHENG Hangbo, et al. Effect of amine modification on catalytic activity of ZIF-8 in Knoevenagel condensation reaction[J]. Journal of Hunan University (Natural Sciences), 2020, 47(8): 124-132.
|
7 |
颜世强, 郭伟, 王文笙, 等. 锌-脯氨酸复合物催化的水相Knoevenagel缩合[J]. 有机化学, 2019, 39(5): 1469-1474.
|
|
YAN Shiqiang, GUO Wei, WANG Wensheng, et al. Zinc-proline complex catalyzed Knoevenagel condensation in water[J]. Chinese Journal of Organic Chemistry, 2019, 39(5): 1469-1474.
|
8 |
ŞEN B, AKDERE E H, ŞAVK A, et al. A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile[J]. Applied Catalysis B: Environmental, 2018, 225: 148-153.
|
9 |
JOHARIAN M, MORSALI A, AZHDARI TEHRANI A, et al. Water-stable fluorinated metal–organic frameworks (F-MOFs) with hydrophobic properties as efficient and highly active heterogeneous catalysts in aqueous solution[J]. Green Chemistry, 2018, 20(23): 5336-5345.
|
10 |
BAHUGUNA A, KUMAR A, CHHABRA T, et al. Potassium-functionalized graphitic carbon nitride supported on reduced graphene oxide as a sustainable catalyst for Knoevenagel condensation[J]. ACS Applied Nano Materials, 2018, 1(12): 6711-6723.
|
11 |
李航, 付海, 班大明, 等. 蒙脱土负载KF催化Knoevenagel缩合反应[J]. 福建师范大学学报(自然科学版), 2019, 35(4): 37-43.
|
|
LI Hang, FU Hai, BAN Daming, et al. Montmorillonite loading KF catalyzed Knoevenagel condensation reaction[J]. Journal of Fujian Normal University (Natural Science Edition), 2019, 35(4): 37-43.
|
12 |
李琳琳, 龚维, 付海, 等. 介孔分子筛KF-SBA-15的制备及其催化Knoevenagel反应[J]. 化学工业与工程, 2020, 37(3): 17-22.
|
|
LI Linlin, GONG Wei, FU Hai,et al. Preparation of KF-SBA-15 and its catalytic Knoevenagel reaction[J]. Chemical Industry and Engineering, 2020, 37(3): 17-22.
|
13 |
TANGALE N P, SONAR S K, NIPHADKAR P S, et al. Hierarchical K/LTL zeolites: synthesis by alkali treatment, characterization and catalytic performance in Knoevenagel condensation reaction[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 128-136.
|
14 |
COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170.
|
15 |
刘祎, 汪明旺, 吕宏凌, 等. 共价有机骨架聚合物功能膜制备方法的研究进展[J]. 化工进展, 2021, 40(8): 4360-4370.
|
|
LIU Yi, WANG Mingwang, Hongling LYU, et al. Research progress in the preparation method of covalent organic framework polymers (COFs) functional membranes[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4360-4370.
|
16 |
张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581.
|
|
ZHANG Anrui, AI Yuejie. Structure control of covalent organic frameworks(COFs) and their applications in environmental chemistry[J]. Progress in Chemistry, 2020, 32(10): 1564-1581.
|
17 |
WU X C, WANG B W, YANG Z Q, et al. Novel imine-linked covalent organic frameworks: preparation, characterization and application[J]. Journal of Materials Chemistry A, 2019, 7(10): 5650-5655.
|
18 |
MONEHZADEH F, RAFIEE Z. Application of GO/COF as a novel, efficient and recoverable catalyst in the Knoevenagel reaction[J]. Applied Organometallic Chemistry, 2020, 34(6): e5631.
|
19 |
APPATURI J N, RATTI R, PHOON B L, et al. A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation[J]. Dalton Transactions, 2021, 50(13): 4445-4469.
|
20 |
QI S C, WU J K, LU J, et al. Underlying mechanism of CO2 adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO2 chiefly through acid–base interaction?[J]. Journal of Materials Chemistry A, 2019, 7(30): 17842-17853.
|
21 |
焦莉, 徐金妹, 张秋亚, 等. 氨基修饰片状氮化碳的制备及光催化性能[J]. 化工进展, 2020, 39(5): 1866-1874.
|
|
JIAO Li, XU Jinmei, ZHANG Qiuya, et al. Preparation and photocatalytic activity of amino-modified sheet-like carbon nitride[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1866-1874.
|
22 |
WANG Z Z, LYU P, HU Y, et al. Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 207-214.
|
23 |
HU X W, LONG Y, FAN M Y, et al. Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis[J]. Applied Catalysis B: Environmental, 2019, 244: 25-35.
|
24 |
BHUNIA M K, MELISSEN S, PARIDA M R, et al. Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity[J]. Chemistry of Materials, 2015, 27(24): 8237-8247.
|
25 |
WANG H F, WANG C Y, YANG Y F, et al. H3PW12O40 /mpg-C3N4 as an efficient and reusable bifunctional catalyst in one-pot oxidation–Knoevenagel condensation tandem reaction[J]. Catalysis Science & Technology, 2017, 7(2): 405-417.
|
26 |
LIU H H, CHEN D L, WANG Z Q, et al. Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance[J]. Applied Catalysis B: Environmental, 2017, 203: 300-313.
|
27 |
HUA S X, QU D, AN L, et al. Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route[J]. Applied Catalysis B: Environmental, 2019, 240: 253-261.
|
28 |
CHAUDHARY M, SINGH L, REKHA P, et al. Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine[J]. Chemical Engineering Journal, 2019, 378: 122236.
|
29 |
ZHAO Y L, ZHAO Y, QIU J K, et al. Facile grafting of imidazolium salt in covalent organic frameworks with enhanced catalytic activity for CO2 fixation and the Knoevenagel reaction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18413-18419.
|
30 |
HAO W J, CHEN D, LI Y S, et al. Facile synthesis of porphyrin based covalent organic frameworks via an A2B2 monomer for highly efficient heterogeneous catalysis[J]. Chemistry of Materials, 2019, 31(19): 8100-8105.
|
31 |
HU J Y, ZANCA F, MCMANUS G J, et al. Catalyst-enabled in situ linkage reduction in imine covalent organic frameworks[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21740-21747.
|
32 |
RAHMATI E, RAFIEE Z. Synthesis of Co-MOF/COF nanocomposite: application as a powerful and recoverable catalyst in the Knoevenagel reaction[J]. Journal of Porous Materials, 2021, 28(1): 19-27.
|
33 |
RAFIEE Z. Fabrication of efficient Zn-MOF/COF catalyst for the Knoevenagel condensation reaction[J]. Journal of the Iranian Chemical Society, 2021, 18(10): 2657-2664.
|
34 |
SAKTHIVEL B, DHAKSHINAMOORTHY A. Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction[J]. Journal of Colloid and Interface Science, 2017, 485: 75-80.
|
35 |
XUE B, ZHU J G, LIU N, et al. Facile functionalization of graphene oxide with ethylenediamine as a solid base catalyst for Knoevenagel condensation reaction[J]. Catalysis Communications, 2015, 64: 105-109.
|
36 |
RAJABI F, FAYYAZ F, LUQUE R. Cytosine-functionalized SBA-15 mesoporous nanomaterials: synthesis, characterization and catalytic applications[J]. Microporous and Mesoporous Materials, 2017, 253: 64-70.
|
37 |
LUAN Y, QI Y, GAO H Y, et al. A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction[J]. Journal of Materials Chemistry A, 2015, 3(33): 17320-17331.
|
38 |
ZHANG L N, WANG H, SHEN W Z, et al. Controlled synthesis of graphitic carbon nitride and its catalytic properties in Knoevenagel condensations[J]. Journal of Catalysis, 2016, 344: 293-302.
|