化工进展 ›› 2021, Vol. 40 ›› Issue (11): 6079-6093.DOI: 10.16085/j.issn.1000-6613.2020-2452
石彩(), 史峻铭, 滕敏, 王维聪, 额其马林, 黄占华()
收稿日期:
2020-12-06
修回日期:
2021-01-27
出版日期:
2021-11-05
发布日期:
2021-11-19
通讯作者:
黄占华
作者简介:
石彩(1993—),女,博士研究生,研究方向为生物质光催化重整。E-mail:基金资助:
SHI Cai(), SHI Junming, TENG Min, WANG Weicong, EQI Malin, HUANG Zhanhua()
Received:
2020-12-06
Revised:
2021-01-27
Online:
2021-11-05
Published:
2021-11-19
Contact:
HUANG Zhanhua
摘要:
近年来,环境治理和清洁能源生产已被视为世界的当务之急。利用可再生太阳能进行光催化反应是解决上述问题的一种有效途径。光催化体系较为复杂,光催化剂和助催化剂是影响光催化效率的两个关键因素。具有独特电子结构的过渡金属磷化物(TMPs)价格低廉、储量丰富,已成为光催化材料研究领域的新热点。本文从光催化效率提高的基本原理(光吸收增强、光生电子和空穴分离效率以及载流子利用率提高等)出发,综述了近十年来TMPs作为助催化剂和光催化剂的最新研究进展。最后,总结了TMPs在快速发展过程中依然存在全解水困难以及结构与光催化活性对应关系不明确等挑战,通过双功能TMPs的设计和理论计算的配合,新型高效光催化材料TMPs会对光催化效率的提高发挥重要作用。
中图分类号:
石彩, 史峻铭, 滕敏, 王维聪, 额其马林, 黄占华. 过渡金属磷化物在光催化机理方面的研究进展[J]. 化工进展, 2021, 40(11): 6079-6093.
SHI Cai, SHI Junming, TENG Min, WANG Weicong, EQI Malin, HUANG Zhanhua. Recent advances in the photocatalytic mechanism of transition metal phosphides[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6079-6093.
55 | XIAO N, LI S S, LI X L, et al. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen[J]. Chinese Journal of Catalysis, 2020, 41(4): 642-671. |
56 | 李景锋, 李学辉, 柴永明, 等. 磷化镍的制备、表征及其催化性能研究进展[J]. 化工进展, 2013, 32(11): 2621-2630. |
LI Jingfeng, LI Xuehui, CHAI Yongming, et al. Progress in the fabrication, characterization and catalytic reactivity of nickel phosphide[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2621-2630. | |
57 | CHENG H Q, LYU X J, CAO S, et al. Robustly photo-generating H2 in water using FeP/CdS catalyst under solar irradiation[J]. Scientific Reports, 2016, 6: 19846. |
58 | DUAN S X, ZHANG S J, CHANG S S, et al. Efficient photocatalytic hydrogen production from formic acid on inexpensive and stable phosphide/Zn3In2S6 composite photocatalysts under mild conditions[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21803-21820. |
59 | LIU E Z, JIN C Y, XU C H, et al. Facile strategy to fabricate Ni2P/g-C3N4 heterojunction with excellent photocatalytic hydrogen evolution activity[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21355-21364. |
60 | DONG Y M, KONG L G, JIANG P P, et al. A general strategy to fabricate NixP as highly efficient cocatalyst via photoreduction deposition for hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6845-6853. |
61 | 韩钟慧. 一维镉锌硫固溶体光催化剂结构调控及制氢构效关系研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
HAN Zhonghui. Structure engineering and photocatalytic structure-activity relationship base on one dimensional Cd-Zn-S solid solution[D]. Harbin: Harbin Institute of Technology, 2019. | |
62 | ZHEN W L, NING X F, YANG B J, et al. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill[J]. Applied Catalysis B: Environmental, 2018, 221: 243-257. |
63 | SHEN R C, LIU W, REN D D, et al. Co1.4Ni0.6P cocatalysts modified metallic carbon black/g-C3N4 nanosheet Schottky heterojunctions for active and durable photocatalytic H2 production[J]. Applied Surface Science, 2019, 466: 393-400. |
64 | YE L Q, HAN C Q, MA Z Y, et al. Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light[J]. Chemical Engineering Journal, 2017, 307: 311-318. |
1 | 李旭力, 王晓静, 赵君, 等. 光催化分解水制氢体系助催化剂研究进展[J]. 材料导报, 2018, 32(7): 1057-1064. |
LI Xuli, WANG Xiaojing, ZHAO Jun, et al. Progress of co-catalysts in the systems of photocatalytic hydrogen evolution[J]. Materials Review, 2018, 32(7): 1057-1064. | |
2 | LIU X Q, IOCOZZIA J, WANG Y, et al. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation[J]. Energy & Environmental Science, 2017, 10(2): 402-434. |
3 | SUN Y L, MENG X, DALL’ AGNESE Y, et al. 2D MXenes as co-catalysts in photocatalysis: synthetic methods[J]. Nano-Micro Letters, 2019, 11(1): 1-22. |
4 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
5 | WHITE J L, BARUCH M F, PANDER III J E, et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes[J]. Chemical Reviews, 2015, 115(23): 12888-12935. |
6 | CHANG X X, WANG T, GONG J L. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
7 | LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. |
8 | SHI C, QI H J, SUN Z, et al. Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB[J]. Journal of Materials Chemistry C, 2020, 8(7): 2238-2247. |
9 | 李筱玲, 邓寒霜, 赵艳艳. Ag/g-C3N4光催剂的构建及降解7-氨基头孢烷酸机理[J]. 化工进展, 2020, 39(9): 3716-3722. |
LI Xiaoling,DENG Hanshuang,ZHAO Yanyan. Preparation of Ag/g-C3N4 photocatalyst and its 7-ACA degradation mechanism[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3716-3722. | |
10 | 龙丹, 周俊伶, 时洪民, 等. 氧化亚铜光催化剂性能提升及增强机制的研究进展[J]. 化工进展, 2019, 38(6): 2756-2767. |
LONG Dan, ZHOU Junling, SHI Hongmin, et al. Research progress on the improved performance of cuprous oxide photocatalyst and its enhancement mechanism[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2756-2767. | |
11 | CHANG X X, WANG T, YANG P P, et al. The development of cocatalysts for photoelectrochemical CO2 reduction[J]. Advanced Materials, 2019, 31(31): 1804710. |
12 | 朱对虎, 李平. 过渡金属磷化物催化剂综述[J]. 工业催化, 2019, 27(7): 7-10. |
ZHU Duihu, LI Ping. Overview on transition metal phosphide catalysts[J]. Industrial Catalysis, 2019, 27(7): 7-10. | |
13 | SHI Y M, ZHANG B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6): 1529-1541. |
14 | SUN M, LIU H J, QU J H, et al. Earth-rich transition metal phosphide for energy conversion and storage[J]. Advanced Energy Materials, 2016, 6(13): 1600087. |
15 | CAO S, WANG C J, FU W F, et al. Metal phosphides as co-catalysts for photocatalytic and photoelectrocatalytic water splitting[J]. ChemSusChem, 2017, 10(22): 4306-4323. |
16 | SUN Z J, ZHENG H F, LI J S, et al. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts[J]. Energy & Environmental Science, 2015, 8(9): 2668-2676. |
17 | YUE Q D, WAN Y Y, SUN Z J, et al. MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light[J]. Journal of Materials Chemistry A, 2015, 3(33): 16941-16947. |
18 | PAN Z W, WANG R, LI J N, et al. Fe2P nanoparticles as highly efficient freestanding co-catalyst for photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5337-5345. |
19 | SUN K H, SHEN J, YANG Y T, et al. Highly efficient photocatalytic hydrogen evolution from 0D/2D heterojunction of FeP nanoparticles/CdS nanosheets[J]. Applied Surface Science, 2020, 505: 144042. |
20 | TANG J Y, YANG D, ZHOU W G, et al. Noble-metal-free molybdenum phosphide co-catalyst loaded graphitic carbon nitride for efficient photocatalysis under simulated irradiation[J]. Journal of Catalysis, 2019, 370: 79-87. |
21 | WU T L, CHEN S J, ZHANG D K, et al. Facile preparation of semimetallic MoP2 as a novel visible light driven photocatalyst with high photocatalytic activity[J]. Journal of Materials Chemistry A, 2015, 3(19): 10360-10367. |
22 | SWEENY N P, ROHRER C S, BROWN O W. Dinickel phosphide as a heterogeneous catalyst for the vapor phase reduction of nitrobenzene with hydrogen to aniline and water[J]. Journal of the American Chemical Society, 1958, 80(4): 799-800. |
23 | LIU Y L, ZHU Y P, LI M, et al. Advances in mesoporous metal phosphonate hybrid materials[J]. Acta Chimica Sinica, 2014, 72(5): 521. |
24 | WANG Y P, ZHANG L L, LI H H, et al. Solid state synthesis of Fe2P nanoparticles as high-performance anode materials for nickel-based rechargeable batteries[J]. Journal of Power Sources, 2014, 253: 360-365. |
25 | DONG Y M, KONG L G, WANG G L, et al. Photochemical synthesis of CoxP as cocatalyst for boosting photocatalytic H2 production via spatial charge separation[J]. Applied Catalysis B: Environmental, 2017, 211: 245-251. |
26 | SONG R, ZHOU W, LUO B, et al. Highly efficient photocatalytic H2 evolution using TiO2 nanoparticles integrated with electrocatalytic metal phosphides as cocatalysts[J]. Applied Surface Science, 2017, 416: 957-964. |
27 | ZHAO H, SUN S N, JIANG P P, et al. Graphitic C3N4 modified by Ni2P cocatalyst: an efficient, robust and low cost photocatalyst for visible-light-driven H2 evolution from water[J]. Chemical Engineering Journal, 2017, 315: 296-303. |
28 | YUE X Z, YI S S, WANG R W, et al. Cobalt phosphide modified titanium oxide nanophotocatalysts with significantly enhanced photocatalytic hydrogen evolution from water splitting[J]. Small, 2017, 13(14): 1603301. |
29 | LI W, HE S A, MA Q, et al. Fabrication of hierarchical BiOCl-CoP heterojunction on magnetic mesoporous silica microspheres with double-cavity structure for effective photocatalysis[J]. Applied Surface Science, 2019, 491: 395-404. |
30 | XUE F, SI Y T, WANG M, et al. Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production[J]. Nano Energy, 2019, 62: 823-831. |
31 | LU X Y, XIE J, CHEN X B, et al. Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H2 evolution over g-C3N4/MoS2 layered heterojunctions[J]. Applied Catalysis B: Environmental, 2019, 252: 250-259. |
32 | LI K, ZHANG Y, LIN Y Z, et al. Versatile functional porous cobalt-nickel phosphide-carbon cocatalyst derived from a metal-organic framework for boosting the photocatalytic activity of graphitic carbon nitride[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 28918-28927. |
65 | LIANG G Z, WAQAS M, YANG B, et al. Enhanced photocatalytic hydrogen evolution under visible light irradiation by p-type MoS2/n-type Ni2P doped g-C3N4[J]. Applied Surface Science, 2020, 504: 144448. |
66 | SUN W J, FU Z Y, SHI H X, et al. Cu3P and Ni2P co-modified g-C3N4 nanosheet with excellent photocatalytic H2 evolution activities[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(12): 3117-3125. |
33 | ZHAO C X, TANG H, LIU W, et al. Constructing 0D FeP nanodots/2D g-C3N4 nanosheets heterojunction for highly improved photocatalytic hydrogen evolution[J]. ChemCatChem, 2019, 11(24): 6310-6315. |
34 | SHI J W, ZOU Y J, CHENG L H, et al. In-situ phosphating to synthesize Ni2P decorated NiO/g-C3N4 p-n junction for enhanced photocatalytic hydrogen production[J]. Chemical Engineering Journal, 2019, 378: 122161. |
35 | XU J X, QI Y H, WANG C, et al. NH2-MIL-101(Fe)/Ni(OH)2-derived C, N-codoped Fe2P/Ni2P cocatalyst modified g-C3N4 for enhanced photocatalytic hydrogen evolution from water splitting[J]. Applied Catalysis B: Environmental, 2019, 241: 178-186. |
36 | QI Y H, XU J X, FU Y L, et al. Metal-organic framework templated synthesis of g-C3N4/Fe2O3@FeP composites for enhanced hydrogen production[J]. ChemCatChem, 2019, 11(15): 3465-3473. |
37 | WANG W C, ZHAO X L, CAO Y N, et al. Copper phosphide-enhanced lower charge trapping occurrence in graphitic-C3N4 for efficient noble-metal-free photocatalytic H2 evolution[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16527-16537. |
38 | LYU X, LI X T, YANG C, et al. Large-size, porous, ultrathin NiCoP nanosheets for efficient electro/photocatalytic water splitting[J]. Advanced Functional Materials, 2020, 30(16): 1910830. |
39 | HAN C C, ZHANG T, CAI Q J, et al. 0D CoP cocatalyst/2D g-C3N4 nanosheets: an efficient photocatalyst for promoting photocatalytic hydrogen evolution[J]. Journal of the American Ceramic Society, 2019, 102(9): 5484-5493. |
40 | SONG Y R, XIN X, GUO S H, et al. One-step MOFs-assisted synthesis of intimate contact MoP-Cu3P hybrids for photocatalytic water splitting[J]. Chemical Engineering Journal, 2020, 384: 123337. |
41 | LI S M, TAN J, JIANG Z J, et al. MOF-derived bimetallic Fe-Ni-P nanotubes with tunable compositions for dye-sensitized photocatalytic H2 and O2 production[J]. Chemical Engineering Journal, 2020, 384: 123354. |
42 | WANG K W, TAN J S, LU Z J, et al. Nanoscale engineering MoP/Fe2P/RGO toward efficient electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(30): 13939-13945. |
43 | SUN Z C, ZHU M S, LYU X, et al. Insight into iron group transition metal phosphides (Fe2P, Co2P, Ni2P) for improving photocatalytic hydrogen generation[J]. Applied Catalysis B: Environmental, 2019, 246: 330-336. |
44 | WANG A J, QIN M L, GUAN J, et al. The synthesis of metal phosphides: reduction of oxide precursors in a hydrogen plasma[J]. Angewandte Chemie, 2008, 120(32): 6141-6143. |
45 | CALLEJAS J F, MCENANEY J M, READ C G, et al. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles[J]. ACS Nano, 2014, 8(11): 11101-11107. |
46 | CAO S, CHEN Y, HOU C C, et al. Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation[J]. Journal of Materials Chemistry A, 2015, 3(11): 6096-6101. |
47 | MAN H W, TSANG C S, LI M M J, et al. Transition metal-doped nickel phosphide nanoparticles as electro- and photocatalysts for hydrogen generation reactions[J]. Applied Catalysis B: Environmental, 2019, 242: 186-193. |
48 | YUAN Y M, ZHANG J Y, CHEN H, et al. Preparation of Fe2P/Al2O3 and FeP/Al2O3 catalysts for the hydrotreating reactions[J]. Journal of Energy Chemistry, 2019, 29: 116-121. |
49 | YU S, XIE Z H, RAN M X, et al. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide[J]. Journal of Colloid and Interface Science, 2020, 573: 71-77. |
50 | SHIFA T A, WANG F M, CHENG Z Z, et al. High crystal quality 2D manganese phosphorus trichalcogenide nanosheets and their photocatalytic activity[J]. Advanced Functional Materials, 2018, 28(18): 1800548. |
51 | LIU E Z, QI L L, CHEN J B, et al. In situ fabrication of a 2D Ni2P/red phosphorus heterojunction for efficient photocatalytic H2 evolution[J]. Materials Research Bulletin, 2019, 115: 27-36. |
52 | HE H, CAO J, GUO M N, et al. Distinctive ternary CdS/Ni2P/g-C3N4 composite for overall water splitting: Ni2P accelerating separation of photocarriers[J]. Applied Catalysis B: Environmental, 2019, 249: 246-256. |
53 | POPCZUN E J, MCKONE J R, READ C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(25): 9267-9270. |
54 | SHEN R C, XIE J, XIANG Q J, et al. Ni-based photocatalytic H2-production cocatalysts[J]. Chinese Journal of Catalysis, 2019, 40(3): 240-288. |
67 | YU T P, LI Z H, LYU Z, et al. Constructing Ni2P/Cd0.5Zn0.5S/Co3O4 ternary heterostructure for high-efficient photocatalytic hydrogen production[J]. Applied Surface Science, 2020, 509: 145371-145377. |
68 | CHEN Z G, YU Y H, SHE X J, et al. Constructing Schottky junction between 2D semiconductor and metallic nickel phosphide for highly efficient catalytic hydrogen evolution[J]. Applied Surface Science, 2019, 495: 143528. |
69 | ZHANG L J, HAO X Q, LI J K, et al. Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution[J]. Chinese Journal of Catalysis, 2020, 41(1): 82-94. |
70 | SONG Y, LI N J, CHEN D Y, et al. 3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 238: 255-262. |
71 | CHO G, PARK Y, KANG H, et al. Transition metal-doped FeP nanoparticles for hydrogen evolution reaction catalysis[J]. Applied Surface Science, 2020, 510: 145427. |
72 | INDRA A, ACHARJYA A, MENEZES P W, et al. Boosting visible-light-driven photocatalytic hydrogen evolution with an integrated nickel phosphide-carbon nitride system[J]. Angewandte Chemie International Edition, 2017, 56(6): 1653-1657. |
73 | LIU S L, XU Y Y, HAN X L, et al. The competing growth and optical performances of indium phosphide/titanium dioxide (InP/TiO2) composites[J]. Materials Research Express, 2019, 6(8): 086217. |
74 | XU Y, CHEN Y, FU W F. In situ preparation of CoP@CdS and its catalytic activity toward controlling nitro reduction under visible-light irradiation[J]. ACS Omega, 2018, 3(2): 1904-1911. |
75 | HE Y Q, ZHANG F L, MA B, et al. Remarkably enhanced visible-light photocatalytic hydrogen evolution and antibiotic degradation over g-C3N4 nanosheets decorated by using nickel phosphide and gold nanoparticles as cocatalysts[J]. Applied Surface Science, 2020, 517: 146187. |
76 | 霍景沛, 林冲, 陈桂煌. 光催化二氧化碳还原催化体系研究进展[J]. 化学推进剂与高分子材料, 2020, 18(3): 8-14. |
HUO Jingpei, LIN Chong, CHEN Guihuang. Research progress in photocatalytic reduction catalyst system of carbon dioxide[J]. Chemical Propellants & Polymeric Materials, 2020, 18(3): 8-14. | |
77 | GUAN Y H, HU S Z, LI P, et al. In-situ synthesis of highly efficient direct Z-scheme Cu3P/g-C3N4 heterojunction photocatalyst for N2 photofixation[J]. Nano, 2019, 14(7): 1950083. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |