化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3034-3045.DOI: 10.16085/j.issn.1000-6613.2020-1958

• 专栏:新能源化工 • 上一篇    下一篇

非热等离子体催化转化C1分子及其催化剂研究进展

陈焕浩1(), 范晓雷2()   

  1. 1.南京工业大学化工学院,材料化学工程国家重点实验室,江苏 南京 210009
    2.曼彻斯特大学工程学院,化学工程与分析科学系,英国 曼彻斯特 M13 9PL
  • 收稿日期:2020-09-25 修回日期:2021-01-01 出版日期:2021-06-06 发布日期:2021-06-22
  • 通讯作者: 陈焕浩
  • 作者简介:范晓雷,博士,教授,博士生导师,研究方向为低温等离子体催化。xiaolei.fan@manchester.ac.uk
  • 基金资助:
    江苏特聘教授人才项目;国家自然科学基金青年科学基金(22008109);材料化学工程国家重点实验室项目(ZK202001);欧盟“地平线2020”研究与创新基金(872102);欧盟“玛丽居里”行动基金(748196)

Review on non-thermal plasma (NTP) catalytic conversion of C1 molecules and its catalysts

CHEN Huanhao1(), FAN Xiaolei2()   

  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China
    2.Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
  • Received:2020-09-25 Revised:2021-01-01 Online:2021-06-06 Published:2021-06-22
  • Contact: CHEN Huanhao

摘要:

非热等离子体催化具有反应条件温和、启动快和反应器结构紧凑等特点,在C1分子催化转化领域(如CO2加氢、甲烷活化、水煤气变换反应和甲醇重整制氢)有着广阔的应用前景。具体来说,等离子体特有的高能电子可在气相中快速活化稳定性极强的C1分子并生成活性物质,接着与催化剂结合发生表面化学反应,从而实现常温常压下C1分子的高效转化。然而,等离子体与催化剂之间的协同作用机制以及催化机理极为复杂,仍有待进一步研究。本综述简单介绍了非热等离子体催化转化C1分子的近期研究进展,重点探讨了适用于非热等离子 体的催化剂研究以及催化机理的高级原位表征。最后,提出了非热等离子体催化转化C1分子的未来发展方向:①设计并构筑适用于非热等离子体催化的高效催化剂,并研究其构效关系;②发展高级原位表征技术,揭示活性物质的作用机理以及催化机理;③设计并构建高效的等离子体催化反应器,并建立反应器的理论模型和数值模拟方法,科学指导等离子体反应器的设计、优化和放大。

关键词: 非热等离子体, 催化剂, C1分子, 催化机理, 原位表征

Abstract:

Non-thermal plasma (NTP) activated heterogeneous catalyst (i.e. NTP-catalysis) systems have many advantages, such as mild reaction conditions, faster response, and possible compact reactor configuration, presenting wide application foreground in the catalytic transformation of single-carbon (C1) molecules [CO2 hydrogenation, methane activation, water-gas shift (WGS) reaction, and methanol-reforming for hydrogen (H2) production]. In detail, the high energy electron of plasma can quickly activate C1 molecules in the gas-phase to generate reactive species, which will interact with the heterogeneous catalyst to ignite surface chemical reaction, and hence efficiently catalytic conversion of C1 molecules under mild conditions. However, the synergic mechanism between plasma and catalyst, as well as relevant catalytic reaction mechanisms, are highly complex, which require further investigation. This review briefly presents the state-of-the-art of NTP-catalysis for catalytic conversion of C1 molecules. Specific attention focuses on ①the design and development of bespoke heterogeneous catalysts for NTP-catalytic conversions of C1 molecules and ② mechanistic investigations of catalytic conversions of C1 molecules under NTP conditions using advanced in situ characterization methods. Additionally, future perspectives of NTP-catalysis are also proposed in this review including ① the design and development of tailor-made catalysts for NTP-catalysis, and study their structure-reactivity relationships, ② the development of advanced in situ characterization techniques for gaining further insights into the function mechanisms of active species and the catalytic reaction mechanisms, ③ the design and development of highly efficient plasma catalytic reactor, and the development of theoretical model and numerical simulation method for developed reactor, providing the scientific guidance of the design, optimization and scaling-up of plasma catalytic reactor.

Key words: non-thermal plasma (NTP), catalyst, C1 molecule, catalytic mechanism, in situ characterization

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn