化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3034-3045.DOI: 10.16085/j.issn.1000-6613.2020-1958
收稿日期:
2020-09-25
修回日期:
2021-01-01
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
陈焕浩
作者简介:
范晓雷,博士,教授,博士生导师,研究方向为低温等离子体催化。基金资助:
CHEN Huanhao1(), FAN Xiaolei2()
Received:
2020-09-25
Revised:
2021-01-01
Online:
2021-06-06
Published:
2021-06-22
Contact:
CHEN Huanhao
摘要:
非热等离子体催化具有反应条件温和、启动快和反应器结构紧凑等特点,在C1分子催化转化领域(如CO2加氢、甲烷活化、水煤气变换反应和甲醇重整制氢)有着广阔的应用前景。具体来说,等离子体特有的高能电子可在气相中快速活化稳定性极强的C1分子并生成活性物质,接着与催化剂结合发生表面化学反应,从而实现常温常压下C1分子的高效转化。然而,等离子体与催化剂之间的协同作用机制以及催化机理极为复杂,仍有待进一步研究。本综述简单介绍了非热等离子体催化转化C1分子的近期研究进展,重点探讨了适用于非热等离子 体的催化剂研究以及催化机理的高级原位表征。最后,提出了非热等离子体催化转化C1分子的未来发展方向:①设计并构筑适用于非热等离子体催化的高效催化剂,并研究其构效关系;②发展高级原位表征技术,揭示活性物质的作用机理以及催化机理;③设计并构建高效的等离子体催化反应器,并建立反应器的理论模型和数值模拟方法,科学指导等离子体反应器的设计、优化和放大。
中图分类号:
陈焕浩, 范晓雷. 非热等离子体催化转化C1分子及其催化剂研究进展[J]. 化工进展, 2021, 40(6): 3034-3045.
CHEN Huanhao, FAN Xiaolei. Review on non-thermal plasma (NTP) catalytic conversion of C1 molecules and its catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3034-3045.
1 | WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
2 | ZHOU W, CHENG K, KANG J C, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
3 | ZHANG Q, YU J H, CORMA A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
4 | DURME J VAN, DEWULF J, LEYS C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 324-333. |
5 | NEYTS E C, OSTRIKOV K K, SUNKARA M K, et al. Plasma catalysis: synergistic effects at the nanoscale[J]. Chemical Reviews, 2015, 115(24): 13408-13446. |
6 | WHITEHEAD J C. Plasma catalysis: challenges and future perspectives[M]. Plasma Catalysis. Berlin: Springer, 2019: 343-348. |
7 | WHITEHEAD J C. Plasma-catalysis: is it just a question of scale?[J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 264-273. |
8 | 王爱华. 等离子体协同催化技术处理挥发性有机物的研究[D]. 北京: 北京工业大学, 2015. |
WANG Aihua. Removal of volatile organic compounds by plasma coupled with catalyst[D]. Beijing: BeijingUniversity of Technology, 2015. | |
9 | 陈鹏, 陶雷, 谢怡冰, 等. 低温等离子体协同催化降解挥发性有机物的研究进展[J]. 化工进展, 2019, 38(9): 4284-4294. |
CHEN Peng, TAO Lei, XIE Yibing, et al. Non-thermal plasma cooperating catalyst degradation of the volatile organic compounds: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4284-4294. | |
10 | 梁文俊, 李坚, 李依丽, 等. 低温等离子体技术处理挥发性有机物的研究进展[J]. 电站系统工程, 2005, 21(3): 7-9. |
LIANG Wenjun, LI Jian, LI Yili, et al. Progress in decomposition of VOCs by nonthermal plasma technology[J]. Power System Engineering, 2005, 21(3): 7-9. | |
11 | 王健壮, 贾春玲, 吴爽, 等. 低温等离子体技术在恶臭治理方面的研究进展[J]. 环境科技, 2013, 26(3): 74-78. |
WANG Jianzhuang, JIA Chunling, WU Shuang, et al. The research progress of non-thermal plasma in dealing with odor pollution[J]. Environmental Science and Technology, 2013, 26(3): 74-78. | |
12 | MA S M, ZHAO Y C, YANG J P, et al. Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 791-810. |
13 | GEORGE A, SHEN B X, CRAVEN M, et al. A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 109702. |
14 | NIKOO K M, AMIN N A S, NOSHADI I. A review of methanol production from methane oxidation via non-thermal plasma reactor[J]. World Academy of Science: Engineering and Technology, 2010, 62: 354-358. |
15 | CUI W G, ZHANG G Y, HU T L, et al. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4[J]. Coordination Chemistry Reviews, 2019, 387: 79-120. |
16 | FRONTERA P, MACARIO A, FERRARO M, et al. Supported catalysts for CO2 methanation: a review[J]. Catalysts, 2017, 7(12): 59. |
17 | WANG W, DUONG-VIET C, XU Z X, et al. CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating[J]. Catalysis Today, 2020, 357: 214-220. |
18 | DE MASI D, ASENSIO J M, FAZZINI P F, et al. Engineering iron-nickel nanoparticles for magnetically induced CO2 methanation in continuous flow[J]. Angewandte Chemie: International Edition, 2020, 59(15): 6187-6191. |
19 | BUELENS L C, GALVITA V V, POELMAN H, et al. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle[J]. Science, 2016, 354(6311): 449-452. |
20 | SONG Y, OZDEMIR E, RAMESH S, et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science, 2020, 367(6479): 777-781. |
21 | LIU Z, ZHANG F, RUI N, et al. Highly active ceria-supported Ru catalyst for the dry reforming of methane: in situ identification of Ruδ+-Ce3+ interactions for enhanced conversion[J]. ACS Catalysis, 2019, 9(4): 3349-3359. |
22 | STERE C E, ANDERSON J A, CHANSAI S, et al. Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis[J]. Angewandte Chemie: International Edition, 2017, 56(20): 5579-5583. |
23 | XU S J, CHANSAI S, STERE C, et al. Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma[J]. Nature Catalysis, 2019, 2(2): 142-148. |
24 | LEE D H, KIM T. Plasma-catalyst hybrid methanol-steam reforming for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(14): 6039-6043. |
25 | MARTIN O, MARTÍN A J, MONDELLI C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie: International Edition, 2016, 55(21): 6261-6265. |
26 | ZHANG Z H, WANG S S, SONG R, et al. The most active Cu facet for low-temperature water gas shift reaction[J]. Nature Communications, 2017, 8: 488. |
27 | CHEN H H, MU Y B, SHAO Y, et al. Nonthermal plasma (NTP) activated metal-organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation[J]. AIChE Journal, 2020, 66(4): e16853. |
28 | CHEN H H, MU Y B, SHAO Y, et al. Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation[J]. Catalysis Science & Technology, 2019, 9(15): 4135-4145. |
29 | WANG L, YI Y H, GUO H C, et al. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2[J]. ACS Catalysis, 2018, 8(1): 90-100. |
30 | ELIASSON B, SIMON F G, EGLI W. Hydrogenation of CO2 in a silent discharge[M]. Non-Thermal Plasma Techniques for Pollution Control. Berlin: Springer, 1993: 321-337. |
31 | ELIASSON B, KOGELSCHATZ U, XUE B Z, et al. Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst[J]. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350-3357. |
32 | KONDRATENKO E V, PEPPEL T, SEEBURG D, et al. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation[J]. Catalysis Science & Technology, 2017, 7(2): 366-381. |
33 | MOREJUDO S H, ZANÓN R, ESCOLÁSTICO S, et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor[J]. Science, 2016, 353(6299): 563-566. |
34 | TAIFAN W, BALTRUSAITIS J. CH4 conversion to value added products: potential, limitations and extensions of a single step heterogeneous catalysis[J]. Applied Catalysis B: Environmental, 2016, 198: 525-547. |
35 | GIBSON E K, STERE C E, CURRAN-MCATEER B, et al. Probing the role of a non-thermal plasma (NTP) in the hybrid NTP catalytic oxidation of methane[J]. Angewandte Chemie: International Edition, 2017, 56(32): 9351-9355. |
36 | KIM J, GO D B, HICKS J C. Synergistic effects of plasma-catalyst interactions for CH4 activation[J]. Physical Chemistry Chemical Physics, 2017, 19(20): 13010-13021. |
37 | AGHAMIR F M, MATIN N S, JALILI A H, et al. Conversion of methane to methanol in an ac dielectric barrier discharge[J]. Plasma Sources Science and Technology, 2004, 13(4): 707-711. |
38 | INDARTO A. A review of direct methane conversion to methanol by dielectric barrier discharge[C]//IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(4): 1038-1043. |
39 | INDARTO A, CHOI J W, LEE H, et al. The kinetic studies of direct methane oxidation to methanol in the plasma process[J]. Chinese Science Bulletin, 2008, 53(18): 2783-2792. |
40 | CHEN L, ZHANG X W, HUANG L, et al. Partial oxidation of methane with air for methanol production in a post-plasma catalytic system[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(8): 1333-1340. |
41 | HUANG L, ZHANG X W, CHEN L, et al. Direct oxidation of methane to methanol over Cu-based catalyst in an AC dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2011, 31(1): 67-77. |
42 | VAKILI R, GHOLAMI R, STERE C E, et al. Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts[J]. Applied Catalysis B: Environmental, 2020, 260: 118195. |
43 | KHOJA A H, TAHIR M, AMIN N A S. Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane[J]. Energy Conversion and Management, 2019, 183: 529-560. |
44 | RAY D, NEPAK D, JANAMPELLI S, et al. Dry reforming of methane in DBD plasma over Ni-based catalysts: influence of process conditions and support on performance and durability[J]. Energy Technology, 2019, 7(4): 1801008. |
45 | WANG Q, YAN B H, JIN Y, et al. Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst: interaction of catalyst and plasma[J]. Energy & Fuels, 2009, 23(8): 4196-4201. |
46 | MAHAMMADUNNISA S, MANOJ KUMAR REDDY P, RAMARAJU B, et al. Catalytic nonthermal plasma reactor for dry reforming of methane[J]. Energy & Fuels, 2013, 27(8): 4441-4447. |
47 | LEE H, LEE D H, HA J M, et al. Plasma assisted oxidative coupling of methane (OCM) over Ag/SiO2 and subsequent regeneration at low temperature[J]. Applied Catalysis A: General, 2018, 557: 39-45. |
48 | KASINATHAN P, PARK S, CHOI W C, et al. Plasma-enhanced methane direct conversion over particle-size adjusted MOx/Al2O3 (M=Ti and Mg) catalysts[J]. Plasma Chemistry and Plasma Processing, 2014, 34(6): 1317-1330. |
49 | LIU C J, XUE B Z, ELIASSON B, et al. Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge plasmas[J]. Plasma Chemistry and Plasma Processing, 2001, 21(3): 301-310. |
50 | KIM S S, LEE H, CHOI J W, et al. Methane conversion to higher hydrocarbons in a dielectric-barrier discharge reactor with Pt/γ-Al2O3 catalyst[J]. Catalysis Communications, 2007, 8(9): 1438-1442. |
51 | SEYED MATIN N, SAVADKOOHI H A, FEIZABADI S Y. Methane conversion to C2 hydrocarbons using dielectric-barrier discharge reactor: effects of system variables[J]. Plasma Chemistry and Plasma Processing, 2008, 28(2): 189-202. |
52 | LI X S, ZHU A M, WANG K J, et al. Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J]. Catalysis Today, 2004, 98(4): 617-624. |
53 | ELIASSON B, LIU C J, KOGELSCHATZ U. Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites[J]. Industrial & Engineering Chemistry Research, 2000, 39(5): 1221-1227. |
54 | PHAM M H, GOUJARD V, TATIBOUËT J M, et al. Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons—Influence of La2O3/γ-Al2O3 catalyst[J]. Catalysis Today, 2011, 171(1): 67-71. |
55 | WANG L, YI Y, WU C, et al. One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis[J]. Angewandte Chemie: International Edition, 2017, 56(44): 13679-13683. |
56 | LI Y, LIU C J, ELIASSON B, et al. Synthesis of oxygenates and higher hydrocarbons directly from methane and carbon dioxide using dielectric-barrier discharges: product distribution[J]. Energy & Fuels, 2002, 16(4): 864-870. |
57 | CHEN H H, CAO M Y, ZHAO L H, et al. Experimental study of an intensified water-gas shift reaction process using a membrane reactor/adsorptive reactor sequence[J]. Industrial & Engineering Chemistry Research, 2018, 57(41): 13650-13660. |
58 | XIA S J, FANG L, MENG Y, et al. Water-gas shift reaction catalyzed by layered double hydroxides supported Au-Ni/Cu/Pt bimetallic alloys[J]. Applied Catalysis B: Environmental, 2020, 272: 118949. |
59 | YAO S Y, ZHANG X, ZHOU W, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science, 2017, 357(6349): 389-393. |
60 | RICO V J, HUESO J L, COTRINO J, et al. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures[J]. Chemical Communications, 2009(41): 6192-6194. |
61 | TU X, WHITEHEAD J C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature[J]. Applied Catalysis B: Environmental, 2012, 125: 439-448. |
62 | LIAN H Y, LI X S, LIU J L, et al. Methanol steam reforming by heat-insulated warm plasma catalysis for efficient hydrogen production[J]. Catalysis Today, 2019, 337: 76-82. |
63 | LI X S, WANG L Y, GONG X L, et al. Evaluation of plasma-derived heat and synergistic effect for in-plasma catalytic steam reforming of methanol[J]. Journal of Physics D: Applied Physics, 2020, 53(10): 104003. |
64 | NIZIO M, ALBARAZI A, CAVADIAS S, et al. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(27): 11584-11592. |
65 | NIZIO M, BENRABBAH R, KRZAK M, et al. Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts[J]. Catalysis Communications, 2016, 83: 14-17. |
66 | KHOJA A H, TAHIR M, SAIDINA AMIN N A. Process optimization of DBD plasma dry reforming of methane over Ni/La2O3MgAl2O4 using multiple response surface methodology[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11774-11787. |
67 | WANGKAWONG K, PHANICHPHANT S, INCEESUNGVORN B, et al. Kinetics of water gas shift reaction on Au/CeZrO4: a comparison between conventional heating and dielectric barrier discharge (DBD) plasma activation[J]. Topics in Catalysis, 2020, 63(3/4): 363-369. |
68 | 冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10): 757-773. |
FENG Aihu, YU Yang, YU Yun, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica, 2018, 76(10): 757-773. | |
69 | BACARIZA M C, BISET-PEIRÓ M, GRAÇA I, et al. DBD plasma-assisted CO2 methanation using zeolite-based catalysts: structure composition-reactivity approach and effect of Ce as promoter[J]. Journal of CO2 Utilization, 2018, 26: 202-211. |
70 | CHEN H H, GOODARZI F, MU Y B, et al. Effect of metal dispersion and support structure of Ni/silicalite-1 catalysts on non-thermal plasma (NTP) activated CO2 hydrogenation[J]. Applied Catalysis B: Environmental, 2020, 272: 119013. |
71 | JWA E, LEE S B, LEE H W, et al. Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts[J]. Fuel Processing Technology, 2013, 108: 89-93. |
72 | 张维中, 温月丽, 宋镕鹏, 等. 金属有机骨架材料应用于二氧化碳加氢催化反应的研究进展[J]. 天然气化工(C1化学与化工), 2020, 45(1): 113-119, 128. |
ZHANG Weizhong, WEN Yueli, SONG Rongpeng, et al. Research progress of metal-organic framework materials in catalytic reaction of carbon dioxide hydrogenation[J]. Natural Gas Chemical Industry, 2020, 45(1): 113-119, 128. | |
73 | TANAKA Y, UTAKA T, KIKUCHI R, et al. Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels[J]. Applied Catalysis A: General, 2003, 242(2): 287-295. |
74 | XU W W, DONG M Y, DI L B, et al. A facile method for preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation[J]. Nanomaterials, 2019, 9(10): E1432. |
75 | 杨懿. 低温等离子体催化降解甲苯的原位红外研究[D]. 广州: 华南理工大学, 2013. |
YANG Yi. In situ infrared spectroscopic studies of non-thermal plasma-catalytic degradation of toluene[D]. Guangzhou: South China University of Technology, 2013. | |
76 | 竹涛, 万艳东, 李坚, 等. 低温等离子体-催化耦合降解甲苯的研究及机理探讨[J]. 高校化学工程学报, 2011, 25(1): 161-167. |
ZHU Tao, WAN Yandong, LI Jian, et al. Study on decomposition mechanism of toluene by non-thermal plasma coupled with catalysis[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(1): 161-167. | |
77 | 孙杨, 丁豆豆, 林昌, 等. 动态现场原位(operando)表征技术在多相催化反应中的应用与进展[J]. 化工进展, 2019, 38(1): 260-277. |
SUN Yang, DING Doudou, LIN Chang, et al. Advances in operando techniques for the heterogeneous catalytic reactions[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 260-277. | |
78 | 徐锋, 朱丽华, 李创. 低温等离子体活化转化煤层甲烷机理的光谱诊断[J]. 发光学报, 2017, 38(3): 372-379. |
XU Feng, ZHU Lihua, LI Chuang. Mechanism of activation and conversion of coalbed methane under cold plasma by optical emission spectroscopy[J]. Chinese Journal of Luminescence, 2017, 38(3): 372-379. | |
79 | 张家良. 低温等离子体发射光谱学研究[D]. 大连: 大连理工大学, 2002. |
ZHANG Jialiang. Emission spectroscopy methodology for low temperature discharge plasma of low pressure gas[D]. Dalian: Dalian University of Technology, 2002. | |
80 | 罗利霞, 吴卫东, 孙卫国, 等. 低压甲烷等离子体发射光谱诊断[J]. 真空科学与技术学报, 2007, 27(3): 203-207. |
LUO Lixia, WU Weidong, SUN Weiguo, et al. Diagnosis of low-pressure methane plasma by optical emission spectroscopy[J]. Chinese Journal of Vacuum Science and Technology, 2007, 27(3): 203-207. | |
81 | AHMAD F, LOVELL E C, MASOOD H, et al. Low-temperature CO2 methanation: synergistic effects in plasma-Ni hybrid catalytic system[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1888-1898. |
82 | XU S S, CHANSAI S, SHAO Y, et al. Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide[J]. Applied Catalysis B: Environmental, 2020, 268: 118752. |
83 | STERE C, CHANSAI S, GHOLAMI R, et al. A design of a fixed bed plasma DRIFTS cell for studying the NTP-assisted heterogeneously catalysed reactions[J]. Catalysis Science & Technology, 2020, 10(5): 1458-1466. |
84 | MU Y B, XU S J, SHAO Y, et al. Kinetic study of nonthermal plasma activated catalytic CO2 hydrogenation over Ni supported on silica catalyst[J]. Industrial & Engineering Chemistry Research, 2020, 59(20): 9478-9487. |
85 | SHENG Z R, WATANABE Y, KIM H H, et al. Plasma-enabled mode-selective activation of CH4 for dry reforming: first touch on the kinetic analysis[J]. Chemical Engineering Journal, 2020, 399: 125751. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |