化工进展 ›› 2025, Vol. 44 ›› Issue (2): 928-940.DOI: 10.16085/j.issn.1000-6613.2024-0202
收稿日期:
2024-01-26
修回日期:
2024-03-19
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
王雪莉
作者简介:
王雪莉(1996—),女,硕士,助理工程师,研究方向为气体膜分离。E-mail:wangxueli.fshy@sinopec.com。
基金资助:
WANG Xueli(), YANG Weiya, ZHANG Huicheng, WANG Shaojun, LING Fengxiang
Received:
2024-01-26
Revised:
2024-03-19
Online:
2025-02-25
Published:
2025-03-10
Contact:
WANG Xueli
摘要:
气体膜分离技术在化工行业中极为常见,与传统气体分离技术相比,具有占地小、能耗低、操作简单和节能环保等优点,应用前景广泛。膜材料作为气体膜分离技术的核心,被广泛研究,其中基于金属有机框架(MOF)材料的混合基质膜(MMM)兼具高渗透性和高选择性,是有潜力的气体分离膜材料。MOF材料种类繁多,具有孔道结构可调性和表面可修饰性,但MOF颗粒与聚合物存在性质差异,相容性较差,易分散不均匀,导致MMM中存在颗粒团聚、聚合物链段僵化和颗粒孔道堵塞等界面缺陷,进而影响膜的气体分离性能和机械性能。本文根据改性方法原理的不同,归纳了改善MOF基MMM相容性的四种方法,分别是MOF的改性、MOF表面修饰、聚合物的改性和MMM的后处理。结合研究者们的实例,阐述其制备MMM的聚合物种类、MOF种类、目标气体、改性方法的机理和改性目的,并通过对改性前后MMM的渗透率、选择性和机械性能进行数据对比,体现界面改性后达到的分离效果。最后,对目前存在的改性方法进行探讨,提出现有界面优化方法的发展空间,比如对分子本身特性、温度、老化条件的考虑,以及利用预测模型来预筛选聚合物-填料组合。未来,应重点关注MMM的工业应用场景,提升负载量,最大化多孔MOF的优势,增强膜的机械性能和耐老化性能,促进MMM进一步商业化发展。
中图分类号:
王雪莉, 杨卫亚, 张会成, 王少军, 凌凤香. 金属有机框架(MOF)基混合基质膜界面改性方法及其气体分离性能[J]. 化工进展, 2025, 44(2): 928-940.
WANG Xueli, YANG Weiya, ZHANG Huicheng, WANG Shaojun, LING Fengxiang. Interfacial modification method of MOF-based mixed matrix membrane and its gas separation performance[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 928-940.
1 | WANG Shaofei, LI Xueqin, WU Hong, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
2 | MOGHADAM Farhad, KAMIO Eiji, YOSHIOKA Tomohisa, et al. New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport[J]. Journal of Membrane Science, 2017, 530: 166-175. |
3 | HE Xuezhong, KIM Taek-Joong, May-Britt HÄGG. Hybrid fixed-site-carrier membranes for CO2 removal from high pressure natural gas: Membrane optimization and process condition investigation[J]. Journal of Membrane Science, 2014, 470: 266-274. |
4 | REIJERKERK Sander R, KNOEF Michel H, NIJMEIJER Kitty, et al. Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes[J]. Journal of Membrane Science, 2010, 352(1/2): 126-135. |
5 | HE Yuan, BENEDETTI Francesco M, LIN Sharon, et al. Polymers with side chain porosity for ultrapermeable and plasticization resistant materials for gas separations[J]. Advanced Materials, 2019, 31(21): e1807871. |
6 | SHAHID Salman, NIJMEIJER Kitty, NEHACHE Sabrina, et al. MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties[J]. Journal of Membrane Science, 2015, 492: 21-31. |
7 | FAN Yanfang, LI Cong, ZHANG Xiaosa, et al. Tröger's base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals[J]. Journal of Membrane Science, 2019, 573: 359-369. |
8 | WANG Jingyi, ZHOU Yilun, LIU Xiaolu, et al. Design and application of metal-organic framework membranes for gas and liquid separations[J]. Separation and Purification Technology, 2024, 329: 125178. |
9 | ULBRICHT Mathias. Design and synthesis of organic polymers for molecular separation membranes[J]. Current Opinion in Chemical Engineering, 2020, 28: 60-65. |
10 | PENG Fubing, LU Lianyu, SUN Honglei, et al. Hybrid organic-inorganic membrane: Solving the tradeoff between permeability and selectivity[J]. Chemistry of Materials, 2005, 17(26): 6790-6796. |
11 | ROBESON Lloyd M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
12 | ROBESON Lloyd M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. |
13 | MUBASHIR Muhammad, FONG Yeong Yin, LENG Chew Thiam, et al. Issues and current trends of hollow-fiber mixed-matrix membranes for CO2 separation from N2 and CH4 [J]. Chemical Engineering & Technology, 2018, 41(2): 235-252. |
14 | SIAGIAN Utjok W R, RAKSAJATI Anggit, HIMMA Nurul F, et al. Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 172-195. |
15 | YANG Ziqi, WU Zhongjie, Shing Bo PEH, et al. Mixed-matrix membranes containing porous materials for gas separation: From metal-organic frameworks to discrete molecular cages[J]. Engineering, 2023, 23: 40-55. |
16 | SHI Yapeng, WU Shanshan, WANG Zhenggong, et al. Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation[J]. Separation and Purification Technology, 2021, 277: 119449. |
17 | KANG Dun-Yen, LEE Jong Suk. Challenges in developing MOF-based membranes for gas separation[J]. Langmuir, 2023, 39(8): 2871-2880. |
18 | ZHU Xiang, TIAN Chengcheng, Chi-Linh DO-THANH, et al. Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation[J]. ChemSusChem, 2017, 10(17): 3304-3316. |
19 | LI Jianrong, KUPPLER Ryan J, ZHOU Hongcai. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
20 | SHI Yanshu, LIANG Bin, LIN Ruibiao, et al. Gas separation via hybrid metal-organic framework/polymer membranes[J]. Trends in Chemistry, 2020, 2(3): 254-269. |
21 | LIU Gongping, CHERNIKOVA Valeriya, LIU Yang, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations[J]. Nature Materials, 2018, 17(3): 283-289. |
22 | MA Canghai, URBAN Jeffrey J. Hydrogen-bonded polyimide/metal-organic framework hybrid membranes for ultrafast separations of multiple gas pairs[J]. Advanced Functional Materials, 2019, 29(32): 1903243. |
23 | Jin Hui JO, LEE Chang Oh, Gun Young RYU, et al. Hierarchical amine-functionalized ZIF-8 mixed-matrix membranes with an engineered interface and transport pathway for efficient gas separation[J]. ACS Applied Polymer Materials, 2022, 4(9): 6426-6439. |
24 | Miren ETXEBERRIA-BENAVIDES, DAVID Oana, JOHNSON Timothy, et al. High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer[J]. Journal of Membrane Science, 2018, 550: 198-207. |
25 | HUANG Dandan, XIN Qingping, NI Yazhou, et al. Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation[J]. RSC Advances, 2018, 8(11): 6099-6109. |
26 | Carlos ECHAIDE-GÓRRIZ, NAVARRO Marta, Carlos TÉLLEZ, et al. Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration[J]. Dalton Transactions, 2017, 46(19): 6244-6252. |
27 | XU Yuan, GAO Xueli, WANG Xiaojuan, et al. Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101 (Cr) nanoparticles for reverse osmosis application[J]. Materials, 2016, 9(11): 870. |
28 | XU Yuan, GAO Xueli, WANG Qun, et al. Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment[J]. RSC Advances, 2016, 6(86): 82669-82675. |
29 | MARTI Anne M, VENNA Surendar R, ROTH Elliot A, et al. Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24784-24790. |
30 | LIU Xinlei. Metal-organic framework UiO-66 membranes[J]. Frontiers of Chemical Science and Engineering, 2020, 14(2): 216-232. |
31 | JIANG Yunzhe, LIU Chuanyao, Jürgen CARO, et al. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance[J]. Microporous and Mesoporous Materials, 2019, 274: 203-211. |
32 | PARKES Marie V, GREATHOUSE Jeffery A, HART David B, et al. Ab initio molecular dynamics determination of competitive O2 vs. N2 adsorption at open metal sites of M2(dobdc)[J]. Physical Chemistry Chemical Physics, 2016, 18(16): 11528-11538. |
33 | BROWN Craig M, RAMIREZ-CUESTA Anibal Javier, Jae-Hyuk HER, et al. Structure and spectroscopy of hydrogen adsorbed in a nickel metal-organic framework[J]. Chemical Physics, 2013, 427: 3-8. |
34 | PARKES Marie V, SAVA GALLIS Dorina F, GREATHOUSE Jeffery A, et al. Effect of metal in M3(btc)2 and M2(dobdc) MOFs for O2/N2 separations: A combined density functional theory and experimental study[J]. The Journal of Physical Chemistry C, 2015, 119(12): 6556-6567. |
35 | DOROSTI Fatereh, OMIDKHAH Mohammadreza, ABEDINI Reza. Enhanced CO2/CH4 separation properties of asymmetric mixed matrix membrane by incorporating nano-porous ZSM-5 and MIL-53 particles into Matrimid®5218[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 88-102. |
36 | AROON M A, ISMAIL A F, MATSUURA T, et al. Performance studies of mixed matrix membranes for gas separation: A review[J]. Separation and Purification Technology, 2010, 75(3): 229-242. |
37 | DONG Guangxi, LI Hongyu, CHEN Vicki. Challenges and opportunities for mixed-matrix membranes for gas separation[J]. Journal of Materials Chemistry A, 2013, 1(15): 4610-4630. |
38 | KITAO Takashi, ZHANG Yuanyuan, KITAGAWA Susumu, et al. Hybridization of MOFs and polymers[J]. Chemical Society Reviews, 2017, 46(11): 3108-3133. |
39 | NOBLE Richard D. Perspectives on mixed matrix membranes[J]. Journal of Membrane Science, 2011, 378(1/2): 393-397. |
40 | 冯雨轩, 耿康, 曹凯鹏. 混合基质膜在CO2气体分离中的研究进展[J]. 高分子通报, 2018(8): 105-111. |
FENG Yuxuan, GENG Kang, CAO Kaipeng. Recent advances of mixed matrix membranes in CO2 separation[J]. Polymer Bulletin, 2018(8): 105-111. | |
41 | RODENAS Tania, Ignacio LUZ, PRIETO Gonzalo, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. |
42 | JUSOH Norwahyu, YEONG Yin Fong, CHEW Thiam Leng, et al. Current development and challenges of mixed matrix membranes for CO2/CH4 Separation[J]. Separation & Purification Reviews, 2016, 45(4): 321-344. |
43 | MOORE Theodore T, KOROS William J. Non-ideal effects in organic-inorganic materials for gas separation membranes[J]. Journal of Molecular Structure, 2005, 739(1/2/3): 87-98. |
44 | DUAN Cuijia, Xingming JIE, LIU Dandan, et al. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks[J]. Journal of Membrane Science, 2014, 466: 92-102. |
45 | Nguyen TIEN-BINH, Hoang VINH-THANG, CHEN Xiaoyuan, et al. Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520: 941-950. |
46 | GHALEI Behnam, SAKURAI Kento, KINOSHITA Yosuke, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles[J]. Nature Energy, 2017, 2(7): 17086. |
47 | MESHKAT Shadi, KALIAGUINE Serge, RODRIGUE Denis. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation[J]. Separation and Purification Technology, 2018, 200: 177-190. |
48 | YU Shuwen, LI Shichun, HUANG Shiliang, et al. Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation[J]. Journal of Membrane Science, 2017, 540: 155-164. |
49 | CHI Won Seok, HWANG Sinyoung, LEE Seung-Joon, et al. Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture[J]. Journal of Membrane Science, 2015, 495: 479-488. |
50 | Javier SÁNCHEZ-LAÍNEZ, ZORNOZA Beatriz, FRIEBE Sebastian, et al. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test[J]. Journal of Membrane Science, 2016, 515: 45-53. |
51 | YAHIA Mohamed, PHAN LE Quynh Nhu, ISMAIL Norafiqah, et al. Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation[J]. Microporous and Mesoporous Materials, 2021, 312: 110761. |
52 | SABETGHADAM Anahid, SEOANE Beatriz, KESKIN Damla, et al. Metal organic framework crystals in mixed-matrix membranes: Impact of the filler morphology on the gas separation performance[J]. Advanced Functional Materials, 2016, 26(18): 3154-3163. |
53 | ZHOU Yichen, JIA Mingmin, ZHANG Xiongfei, et al. Etched ZIF-8 as a filler in mixed-matrix membranes for enhanced CO2/N2 separation[J]. Chemistry-A European Journal, 2020, 26(35): 7918-7922. |
54 | FENG Shou, BU Mengqi, PANG Jia, et al. Hydrothermal stable ZIF-67 nanosheets via morphology regulation strategy to construct mixed-matrix membrane for gas separation[J]. Journal of Membrane Science, 2020, 593: 117404. |
55 | KANG Zixi, PENG Yongwu, HU Zhigang, et al. Mixed matrix membranes composed of two-dimensional metal-organic framework nanosheets for pre-combustion CO2 capture: A relationship study of filler morphology versus membrane performance[J]. Journal of Materials Chemistry A, 2015, 3(41): 20801-20810. |
56 | YANG Yanqin, Kunli GOH, WANG Rong, et al. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets[J]. Chemical Communications, 2017, 53(30): 4254-4257. |
57 | Nguyen TIEN-BINH, RODRIGUE Denis, KALIAGUINE Serge. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control[J]. Journal of Membrane Science, 2018, 548: 429-438. |
58 | Waqas ANJUM M, VERMOORTELE Frederik, KHAN Asim Laeeq, et al. Modulated UiO-66-based mixed-matrix membranes for CO2 separation[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25193-25201. |
59 | SHEN Jie, LIU Gongping, HUANG Kang, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2016, 513: 155-165. |
60 | SONG Chunfeng, LI Run, FAN Zhichao, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation[J]. Separation and Purification Technology, 2020, 238: 116500. |
61 | Raymond THÜR, VAN VELTHOVEN Niels, SLOOTMAEKERS Sam, et al. Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation[J]. Journal of Membrane Science, 2019, 576: 78-87. |
62 | REHMAN Ayesha, JAHAN Zaib, KHAN NIAZI Muhammad Bilal, et al. Graphene-grafted bimetallic MOF membranes for hazardous & toxic contaminants treatment[J]. Chemosphere, 2023, 340: 139721. |
63 | YU Caijiao, LIANG Yueyao, GUO Xiangyu, et al. Fabrication of metal-organic framework-mixed matrix membranes with abundant open metal sites through dual-induction mechanism[J]. Separation and Purification Technology, 2022, 290: 120850. |
64 | BAN Yujie, LI Yanshuo, PENG Yuan, et al. Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane-separation properties[J]. Chemistry, 2014, 20(36): 11402-11409. |
65 | XIN Qingping, OUYANG Jingyi, LIU Tianyu, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1065-1077. |
66 | XIE Ke, FU Qiang, KIM Jinguk, et al. Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles[J]. Journal of Membrane Science, 2017, 535: 350-356. |
67 | LIN Rijia, GE Lei, DIAO Hui, et al. Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 32041-32049. |
68 | LI Hao, Linghan TUO, YANG Kai, et al. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid[J]. Journal of Membrane Science, 2016, 511: 130-142. |
69 | HAN Jiuli, BAI Lu, JIANG Haiyan, et al. Task-specific ionic liquids tuning ZIF-67/PIM-1 mixed matrix membranes for efficient CO2 separation[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 593-603. |
70 | WANG Xueli, WU Lei, LI Nanwen, et al. Sealing Tröger base/ZIF-8 mixed matrix membranes defects for improved gas separation performance[J]. Journal of Membrane Science, 2021, 636: 119582. |
71 | DONG Liangliang, CHEN Mingqing, WU Xiaohui, et al. Multi-functional polydopamine coating: Simultaneous enhancement of interfacial adhesion and CO2 separation performance of mixed matrix membranes[J]. New Journal of Chemistry, 2016, 40(11): 9148-9159. |
72 | WU Wufeng, LI Zhanjun, CHEN Yu, et al. Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture[J]. Environmental Science & Technology, 2019, 53(7): 3764-3772. |
73 | DONG Guanying, ZHANG Jingjing, WANG Zheng, et al. Interfacial property modulation of PIM-1 through polydopamine-derived submicrospheres for enhanced CO2/N2 separation performance[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19613-19622. |
74 | WANG Zhenggong, WANG Dong, ZHANG Shenxiang, et al. Interfacial design of mixed matrix membranes for improved gas separation performance[J]. Advanced Materials, 2016, 28(17): 3399-3405. |
75 | AHMADIPOUYA Salman, AHMADIJOKANI Farhad, MOLAVI Hossein, et al. CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization[J]. Chemical Engineering Research and Design, 2021, 176: 49-59. |
76 | WANG Hongliang, HE Sanfeng, QIN Xuedi, et al. Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes[J]. Journal of the American Chemical Society, 2018, 140(49): 17203-17210. |
77 | KIM Ju Sung, MOON Sun Ju, WANG Ho Hyun, et al. Mixed matrix membranes with a thermally rearranged polymer and ZIF-8 for hydrogen separation[J]. Journal of Membrane Science, 2019, 582: 381-390. |
78 | MA Xiaohua, SWAIDAN Ramy J, WANG Yingge, et al. Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation[J]. ACS Applied Nano Materials, 2018, 1(7): 3541-3547. |
79 | SHAHID Salman, NIJMEIJER Kitty. Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation[J]. Separation and Purification Technology, 2017, 189: 90-100. |
80 | SMITH Zachary P, BACHMAN Jonathan E, LI Tao, et al. Increasing M2(dobdc) loading in selective mixed-matrix membranes: A rubber toughening approach[J]. Chemistry of Materials, 2018, 30(5): 1484-1495. |
81 | ASKARI Mohammad, CHUNG Tai-Shung. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. Journal of Membrane Science, 2013, 444: 173-183. |
82 | KERTIK Aylin, Lik H WEE, Martin PFANNMÖLLER, et al. Highly selective gas separation membrane using in situ amorphised metal-organic frameworks[J]. Energy & Environmental Science, 2017, 10(11): 2342-2351. |
83 | JAPIP Susilo, LIAO Kuo-Sung, XIAO Youchang, et al. Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking[J]. Journal of Membrane Science, 2016, 497: 248-258. |
84 | FAN Yanfang, YU Huiya, XU Shan, et al. Zn(Ⅱ)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations[J]. Journal of Membrane Science, 2020, 597: 117775. |
[1] | 苏宣合, 蒙仕达, 柯杰坤, 卢苇. 基于分子交换流的多级气体分离系统性能与能耗分析[J]. 化工进展, 2025, 44(1): 109-120. |
[2] | 耿秀梅, 张逢, 张翔, 单美霞, 张亚涛. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012. |
[3] | 王涛, 高翔, 高继峰, 邓海全, 余显涌, 周振华, 唐玲, 吕航. 改性Cu-BTC基混合基质膜在CO2分离中的应用[J]. 化工进展, 2024, 43(6): 3240-3246. |
[4] | 范文轩, 徐双平, 贾宏葛, 张明宇, 蘧延庆. 芴基、酰亚胺基和萘基聚合物气体分离膜的研究进展[J]. 化工进展, 2024, 43(4): 1897-1911. |
[5] | 肖翩翩, 卓超越, 钟瑾荣, 张跃飞. 用于CO2捕获的金属有机框架材料改性研究进展[J]. 化工进展, 2024, 43(12): 6944-6956. |
[6] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[7] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[8] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[9] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[10] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[11] | 胡鹏, 赵丹, 纪红兵. 温控构筑仿生契合辨识机制强化合成气提纯[J]. 化工进展, 2023, 42(12): 6133-6135. |
[12] | 李冬燕, 周剑, 江倩, 苗凯, 倪诗莹, 邹栋. 碳化硅陶瓷膜的制备及其应用进展[J]. 化工进展, 2023, 42(12): 6399-6408. |
[13] | 蔡铭威, 王知, 卢小闯, 庄俊伟, 吴嘉豪, 张诗洋, 闵永刚. 聚酰亚胺薄膜在氢气分离中的研究进展[J]. 化工进展, 2023, 42(10): 5232-5248. |
[14] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[15] | 方龙龙, 郑文姬, 宁梦佳, 张明扬, 杨雨晴, 代岩, 贺高红. 功能化Zr-MOF强化混合基质膜CO2分离[J]. 化工进展, 2022, 41(9): 4954-4962. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |