化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6944-6956.DOI: 10.16085/j.issn.1000-6613.2023-2143
• 资源与环境化工 • 上一篇
收稿日期:
2023-12-04
修回日期:
2024-02-14
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
张跃飞
作者简介:
肖翩翩(2000—),女,硕士研究生,研究方向为二氧化碳分离与利用。E-mail:1900413329@qq.com。
基金资助:
XIAO Pianpian(), ZHUO Chaoyue, ZHONG Jinrong, ZHANG Yuefei(
)
Received:
2023-12-04
Revised:
2024-02-14
Online:
2024-12-15
Published:
2025-01-11
Contact:
ZHANG Yuefei
摘要:
金属有机框架材料(MOF)因其高比表面积、高选择性、结构可调性以及可再生性的优势而广泛应用于CO2吸附与分离领域。首先对比了MOF与其他CO2处理方式以及CO2吸附材料的优缺点,得出MOF的独特优势。再根据MOF的结构以及化学特性,归纳了其对CO2的物理和化学吸附机理,深入揭示了MOF作为CO2吸附材料的基本原理。在此基础上,针对MOF在性能和结构上仍然存在且需要改进的缺陷,通过对比不同种类MOF的性能,对MOF的功能化改性(多金属掺杂、多材料复合、构建缺陷、胺功能化、极性基团功能化等),以及改性后MOF的CO2吸附性能的研究进展进行了归纳。通过对这些改性方式的优缺点进行评估,并考虑其适用性和经济性,旨在找到更好的MOF改性方法。MOF改性未来的发展需要对多官能团负载、合成及负载方法绿色化、比表面积与结合位点比例等进行更深入的研究,此外改性表征方法的先进性也是未来MOF改性发展的关键要素。
中图分类号:
肖翩翩, 卓超越, 钟瑾荣, 张跃飞. 用于CO2捕获的金属有机框架材料改性研究进展[J]. 化工进展, 2024, 43(12): 6944-6956.
XIAO Pianpian, ZHUO Chaoyue, ZHONG Jinrong, ZHANG Yuefei. Recent advances on modification of metal-organic frameworks for CO2 capture[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6944-6956.
MOF | 金属中心 | 比表面积/m2·g-1 | CO2吸附容量/mmol·g-1 | 压力/MPa | 选择性CO2/N2 | 参考文献 |
---|---|---|---|---|---|---|
MIL-53 | Al | 634 | 10.4 | 30 | 50 | [ |
MIL-53 | Mn0.27Al0.73 | 1748 | 11.8 | 30 | 83 | [ |
MIL-53 | Mn0.5Al0.5 | 1817 | 13.3 | 30 | 95 | [ |
MIL-53 | Mn0.6Al0.4 | 1576 | 12.8 | 30 | 45 | [ |
HKUST-1 | Cu | 1440 | 3.4 | 1 | [ | |
HKUST-1 | Li、Cu | 1000 | 2.6 | 2 | [ | |
UiO-66 | Zr | 1455 | 4.3 | 20 | [ | |
MOF-74 | Mg | 1640 | 8.0 | 1 | 233 | [ |
MOF-74 | Zn0.14Mg0.86 | 1277 | 0.5 | 1 | [ | |
MOF-74 | Zn0.48Mg0.52 | 794 | 2.1 | 1 | [ | |
MOF-74 | Zn0.75Mg0.25 | 668 | 3.2 | 1 | [ | |
MOF-74 | Ni | 1274 | 5.2 | 1.1 | 11.3 | [ |
MOF-74 | Pd、Ni | 1115 | 12.2 | 32 | 14.6 | [ |
MOF-74 | Co | 1404 | 3.7 | 1.1 | 9.7 | [ |
MOF-74 | Pd、Co | 1088 | 11.4 | 32 | 12.4 | [ |
MOF-5 | Zn | 1858 | 0.5 | 1 | [ | |
MOF-11 | Zn | 2096 | 14.7 | 35 | [ | |
MOF-210 | Zn | 6240 | 50 | [ | ||
Cu3(BTC)2 | Cu | 1781 | 10.7 | 35 | [ | |
MIL-100 | Fe | 1811 | 2.6 | 1 | 49.6 | [ |
MIL-100 | Al、Fe | 1993 | 3.3 | 1 | 76.5 | [ |
MIL-120 | Al | 3084 | 4.8 | 10 | [ | |
[Ni6(OH)4(COO)8(H2O)6] | Ni | 468 | 1.4 | 1 | [ | |
[Ni4.1Co1.9(OH)4(BTB)8/3(H2O)6] | Ni4.1Co1.9 | 491 | 1.7 | 1 | [ | |
[Ni3.1Co2.9(OH)4(BTB)8/3(H2O)6] | Ni3.1Co2.9 | 526 | 1.9 | 1 | [ | |
[Ni2.8Co3.2(OH)4(BTB)8/3(H2O)6] | Ni2.8Co3.2 | 819 | 2.3 | 1 | [ |
表1 以不同金属为中心的MOF的CO2吸附性能
MOF | 金属中心 | 比表面积/m2·g-1 | CO2吸附容量/mmol·g-1 | 压力/MPa | 选择性CO2/N2 | 参考文献 |
---|---|---|---|---|---|---|
MIL-53 | Al | 634 | 10.4 | 30 | 50 | [ |
MIL-53 | Mn0.27Al0.73 | 1748 | 11.8 | 30 | 83 | [ |
MIL-53 | Mn0.5Al0.5 | 1817 | 13.3 | 30 | 95 | [ |
MIL-53 | Mn0.6Al0.4 | 1576 | 12.8 | 30 | 45 | [ |
HKUST-1 | Cu | 1440 | 3.4 | 1 | [ | |
HKUST-1 | Li、Cu | 1000 | 2.6 | 2 | [ | |
UiO-66 | Zr | 1455 | 4.3 | 20 | [ | |
MOF-74 | Mg | 1640 | 8.0 | 1 | 233 | [ |
MOF-74 | Zn0.14Mg0.86 | 1277 | 0.5 | 1 | [ | |
MOF-74 | Zn0.48Mg0.52 | 794 | 2.1 | 1 | [ | |
MOF-74 | Zn0.75Mg0.25 | 668 | 3.2 | 1 | [ | |
MOF-74 | Ni | 1274 | 5.2 | 1.1 | 11.3 | [ |
MOF-74 | Pd、Ni | 1115 | 12.2 | 32 | 14.6 | [ |
MOF-74 | Co | 1404 | 3.7 | 1.1 | 9.7 | [ |
MOF-74 | Pd、Co | 1088 | 11.4 | 32 | 12.4 | [ |
MOF-5 | Zn | 1858 | 0.5 | 1 | [ | |
MOF-11 | Zn | 2096 | 14.7 | 35 | [ | |
MOF-210 | Zn | 6240 | 50 | [ | ||
Cu3(BTC)2 | Cu | 1781 | 10.7 | 35 | [ | |
MIL-100 | Fe | 1811 | 2.6 | 1 | 49.6 | [ |
MIL-100 | Al、Fe | 1993 | 3.3 | 1 | 76.5 | [ |
MIL-120 | Al | 3084 | 4.8 | 10 | [ | |
[Ni6(OH)4(COO)8(H2O)6] | Ni | 468 | 1.4 | 1 | [ | |
[Ni4.1Co1.9(OH)4(BTB)8/3(H2O)6] | Ni4.1Co1.9 | 491 | 1.7 | 1 | [ | |
[Ni3.1Co2.9(OH)4(BTB)8/3(H2O)6] | Ni3.1Co2.9 | 526 | 1.9 | 1 | [ | |
[Ni2.8Co3.2(OH)4(BTB)8/3(H2O)6] | Ni2.8Co3.2 | 819 | 2.3 | 1 | [ |
MOF | 改性基团 | 比表面积/m2·g-1 | CO2吸附容量/mmol·g-1 | 压力/MPa | CO2/N2选择性 | 参考文献 |
---|---|---|---|---|---|---|
Mg-MOF-74 | TEPA | 10.0 | [ | |||
MOF-177 | 2000~4500 | 1.2 | 1 | 20 | [ | |
MOF-177-PEI | PEI | 1145 | 2.8 | 1 | [ | |
MOF-177-DETA | DETA | 1225 | 2.8 | 1 | [ | |
MOF-177-TEPA | TEPA | 1380 | 3.8 | 1 | [ | |
MOF-808 | 1706 | 14 | 1 | 35.9 | [ | |
MOF-808-TEPA | TEPA | 814 | 1.1 | 1 | 84.4 | [ |
MOF-808-ED | ED | 1289 | 1.2 | 1 | 48.4 | [ |
MOF-808-DETA | DETA | 20 | 0.7 | 1 | 52.7 | [ |
CuBTTri | 1770 | 3.7 | 1 | [ | ||
Mmen-CuBTTri | Mmen | 870 | 4.2 | 1 | 327 | [ |
MIL-100 | 1170 | 1.1 | 0.8 | 12.6 | [ | |
MIL-100@PPD | PPD | 820 | 4.6 | 10 | [ | |
EN@MIL-100 | EN | 657 | 0.9 | 0.8 | [ | |
MIL-101 | 3125 | 1.0 | 1 | 2.3 | [ | |
MIL-101@PPD | PPD | 1007 | 7.3 | 10 | [ | |
MIL-101@PEI(50%) | PEI | 1802 | 3.1 | 1 | 22 | [ |
MIL-101@PEI(70%) | PEI | 1112 | 4.0 | 1 | 84 | [ |
MIL-101@PEI(100%) | PEI | 608 | 4.1 | 1 | 120 | [ |
NH2-MIL-101 | —NH2 | 1569 | 3.3 | 1 | 16 | [ |
MIL-53 | 1269 | 9.7 | 30 | [ | ||
MIL-53@NH3 | NH3 | 989 | 10.8 | 30 | [ | |
Mg2(dobpdc) | 3178 | 1.5 | 1 | [ | ||
een-Mn2(dobpdc) | een | 4.25 | 0.15 | [ | ||
En-Mg2(dobpdc) | En | 1253 | 3.6 | 0.15 | [ | |
Den-Mg2(dobpdc) | Den | 840 | 4.8 | 1 | [ | |
Men-Mg2(dobpdc) | Men | 1036 | 4.5 | 1 | [ | |
Dmen-Mg2(dobpdc) | Dmen | 675 | 3.8 | 0.15 | 554 | [ |
表2 常见MOF胺功能化改性后气体吸附参数
MOF | 改性基团 | 比表面积/m2·g-1 | CO2吸附容量/mmol·g-1 | 压力/MPa | CO2/N2选择性 | 参考文献 |
---|---|---|---|---|---|---|
Mg-MOF-74 | TEPA | 10.0 | [ | |||
MOF-177 | 2000~4500 | 1.2 | 1 | 20 | [ | |
MOF-177-PEI | PEI | 1145 | 2.8 | 1 | [ | |
MOF-177-DETA | DETA | 1225 | 2.8 | 1 | [ | |
MOF-177-TEPA | TEPA | 1380 | 3.8 | 1 | [ | |
MOF-808 | 1706 | 14 | 1 | 35.9 | [ | |
MOF-808-TEPA | TEPA | 814 | 1.1 | 1 | 84.4 | [ |
MOF-808-ED | ED | 1289 | 1.2 | 1 | 48.4 | [ |
MOF-808-DETA | DETA | 20 | 0.7 | 1 | 52.7 | [ |
CuBTTri | 1770 | 3.7 | 1 | [ | ||
Mmen-CuBTTri | Mmen | 870 | 4.2 | 1 | 327 | [ |
MIL-100 | 1170 | 1.1 | 0.8 | 12.6 | [ | |
MIL-100@PPD | PPD | 820 | 4.6 | 10 | [ | |
EN@MIL-100 | EN | 657 | 0.9 | 0.8 | [ | |
MIL-101 | 3125 | 1.0 | 1 | 2.3 | [ | |
MIL-101@PPD | PPD | 1007 | 7.3 | 10 | [ | |
MIL-101@PEI(50%) | PEI | 1802 | 3.1 | 1 | 22 | [ |
MIL-101@PEI(70%) | PEI | 1112 | 4.0 | 1 | 84 | [ |
MIL-101@PEI(100%) | PEI | 608 | 4.1 | 1 | 120 | [ |
NH2-MIL-101 | —NH2 | 1569 | 3.3 | 1 | 16 | [ |
MIL-53 | 1269 | 9.7 | 30 | [ | ||
MIL-53@NH3 | NH3 | 989 | 10.8 | 30 | [ | |
Mg2(dobpdc) | 3178 | 1.5 | 1 | [ | ||
een-Mn2(dobpdc) | een | 4.25 | 0.15 | [ | ||
En-Mg2(dobpdc) | En | 1253 | 3.6 | 0.15 | [ | |
Den-Mg2(dobpdc) | Den | 840 | 4.8 | 1 | [ | |
Men-Mg2(dobpdc) | Men | 1036 | 4.5 | 1 | [ | |
Dmen-Mg2(dobpdc) | Dmen | 675 | 3.8 | 0.15 | 554 | [ |
方法改性 | 优点 | 缺点 |
---|---|---|
多金属掺杂 | ①可以引入额外的活性位点,增加MOF与CO2之间的相互作用,提高CO2吸附能力 ②不同金属之间的协同效应可产生更好的CO2吸附性能 ③可以提高MOF的抗水性和热稳定性 | ①可能导致MOF的晶体结构变得复杂,制备过程较为烦琐,并且可能影响材料的稳定性和耐久性 ②需要对金属掺杂比例、位置和类型进行精确控制,制备工艺和实验条件较为严苛 ③表征方法复杂 |
复合材料 | ①可以利用其他功能材料的优势来增强CO2吸附性能,提高整个材料的稳定性 ②复合材料的制备相对简单,可以通过物理混合或化学修饰等方法实现 | ①复合材料的界面相互作用可能会影响材料的稳定性和吸附性能 ②复合材料的制备过程需要考虑材料的兼容性和界面的匹配,对工艺条件和材料选择有较高要求 |
构建缺陷 | ①引入缺陷,可以增加MOF的活性位点数量和表面积,提高CO2吸附能力 ②构建缺陷可以改变MOF的结构和电荷分布,增强与CO2分子之间的相互作用 ③制备方法较简单 | ①构建缺陷可能导致MOF的晶体结构不稳定,降低材料的耐久性和稳定性 ②构建缺陷的方法和效果需要进行精确控制,以避免对材料性能的不利影响 ③表征方法复杂,设计复杂 |
引入官能团 | ①引入特定的官能团可以增加MOF与CO2分子之间的化学吸附作用,提高CO2吸附能力 ②官能团的种类和密度可以根据需要进行调控,具有较高的灵活性和可控性 ③可调控性与灵活性高,适用MOF的种类以及官能团种类多 | ①引入官能团可能导致MOF的结构和晶体性质发生变化,可能降低材料的稳定性和耐久性 ②官能团的引入需要进行精确控制和优化,以确保其对CO2吸附性能的增强效果 |
表3 四种改性方法的优缺点比较
方法改性 | 优点 | 缺点 |
---|---|---|
多金属掺杂 | ①可以引入额外的活性位点,增加MOF与CO2之间的相互作用,提高CO2吸附能力 ②不同金属之间的协同效应可产生更好的CO2吸附性能 ③可以提高MOF的抗水性和热稳定性 | ①可能导致MOF的晶体结构变得复杂,制备过程较为烦琐,并且可能影响材料的稳定性和耐久性 ②需要对金属掺杂比例、位置和类型进行精确控制,制备工艺和实验条件较为严苛 ③表征方法复杂 |
复合材料 | ①可以利用其他功能材料的优势来增强CO2吸附性能,提高整个材料的稳定性 ②复合材料的制备相对简单,可以通过物理混合或化学修饰等方法实现 | ①复合材料的界面相互作用可能会影响材料的稳定性和吸附性能 ②复合材料的制备过程需要考虑材料的兼容性和界面的匹配,对工艺条件和材料选择有较高要求 |
构建缺陷 | ①引入缺陷,可以增加MOF的活性位点数量和表面积,提高CO2吸附能力 ②构建缺陷可以改变MOF的结构和电荷分布,增强与CO2分子之间的相互作用 ③制备方法较简单 | ①构建缺陷可能导致MOF的晶体结构不稳定,降低材料的耐久性和稳定性 ②构建缺陷的方法和效果需要进行精确控制,以避免对材料性能的不利影响 ③表征方法复杂,设计复杂 |
引入官能团 | ①引入特定的官能团可以增加MOF与CO2分子之间的化学吸附作用,提高CO2吸附能力 ②官能团的种类和密度可以根据需要进行调控,具有较高的灵活性和可控性 ③可调控性与灵活性高,适用MOF的种类以及官能团种类多 | ①引入官能团可能导致MOF的结构和晶体性质发生变化,可能降低材料的稳定性和耐久性 ②官能团的引入需要进行精确控制和优化,以确保其对CO2吸附性能的增强效果 |
1 | ZHANG Jun, WEBLEY Paul A, XIAO Penny. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas[J]. Energy Conversion and Management, 2008, 49(2): 346-356. |
2 | GHANBARI Taravat, ABNISA Faisal, DAUD Wan Mohd Ashri Wan. A review on production of metal organic frameworks (MOF) for CO2 adsorption[J]. The Science of the Total Environment, 2020, 707: 135090. |
3 | XIANG Shengchang, HE Yabing, ZHANG Zhangjing, et al. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions[J]. Nature Communications, 2012, 3: 954. |
4 | XIANG Zhonghua, HU Zan, CAO Dapeng, et al. Metal-organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping[J]. Angewandte Chemie International Edition, 2011, 50(2): 491-494. |
5 | XIN Chunling, REN Yang, ZHANG Zhaofei, et al. Enhancement of hydrothermal stability and CO2 adsorption of Mg-MOF-74/MCF composites[J]. ACS Omega, 2021, 6(11): 7739-7745. |
6 | 贾勐, 张嘉宾, 冯亚青, 等. 金属-卟啉框架材料在光催化领域的应用[J]. 化工学报, 2020, 71(9): 4046-4057. |
JIA Meng, ZHANG Jiabin, FENG Yaqing, et al. Application of metal-porphyrin-based frameworks in photocatalysis[J]. CIESC Journal, 2020, 71(9): 4046-4057. | |
7 | YOUNAS Mohammad, REZAKAZEMI Mashallah, DAUD Muhammad, et al. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs)[J]. Progress in Energy and Combustion Science, 2020, 80: 100849. |
8 | BELMABKHOUT Youssef, GUILLERM Vincent, EDDAOUDI Mohamed. Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials?[J]. Chemical Engineering Journal, 2016, 296: 386-397. |
9 | BOOT-HANDFORD Matthew E, ABANADES Juan C, ANTHONY Edward J, et al. Carbon capture and storage update[J]. Energy & Environmental Science, 2014, 7(1): 130-189. |
10 | ANIRUDDHA R, SREEDHAR I, REDDY Benjaram M. MOFs in carbon capture-past, present and future[J]. Journal of CO2 Utilization, 2020, 42: 101297. |
11 | XIAO Tong, LIU Dingxin. The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives[J]. Microporous and Mesoporous Materials, 2019, 283: 88-103. |
12 | ZULUAGA Sebastian, FUENTES-FERNANDEZ Erika M A, TAN Kui, et al. Understanding and controlling water stability of MOF-74[J]. Journal of Materials Chemistry A, 2016, 4(14): 5176-5183. |
13 | LOUGHRAN Ryan P, HURLEY Tara, Andrzej GŁADYSIAK, et al. CO2 capture from wet flue gas using a water-stable and cost-effective metal-organic framework[J]. Cell Reports Physical Science, 2023, 4(7): 101470. |
14 | LIN Hengyu, YANG Yihao, HSU Yu-Chuan, et al. Metal-organic frameworks for water harvesting and concurrent carbon capture: A review for hygroscopic materials[J]. Advanced Materials, 2023, 36(12): e2209073. |
15 | HOU Xinjuan, HE Peng, LI Huiquan, et al. Understanding the adsorption mechanism of C2H2, CO2, and CH4 in isostructural metal-organic frameworks with coordinatively unsaturated metal sites[J]. The Journal of Physical Chemistry C, 2013, 117(6): 2824-2834. |
16 | DAMAS Giane B, COSTA Luciano T, AHUJA Rajeev, et al. Understanding carbon dioxide capture on metal-organic frameworks from first-principles theory: The case of MIL-53(X), with X=Fe3+, Al3+, and Cu2+ [J]. The Journal of Chemical Physics, 2021, 155(2): 024701. |
17 | CHEN Tingting, WANG Fanfan, CAO Shuai, et al. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries[J]. Advanced Materials, 2022, 34(30): e2201779. |
18 | BOURRELLY Sandrine, LLEWELLYN Philip L, SERRE Christian, et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47[J]. Journal of the American Chemical Society, 2005, 127(39): 13519-13521. |
19 | 董刘毅. Al-MIL-53多孔材料的制备及其对苯系物吸附性能的研究[D]. 桂林: 广西师范大学, 2021. |
DONG Liuyi. Preparation of Al-MIL-53 porous material and its adsorption performance for benzene series[D]. Guilin: Guangxi Normal University, 2021. | |
20 | ABID Hussein Rasool, RADA Zana Hassan, LIU Lihong, et al. Striking CO2 capture and CO2/N2 separation by Mn/Al bimetallic MIL-53[J]. Polyhedron, 2021, 193: 114898. |
21 | ABID Hussein Rasool, HANIF Aamir, KESHAVARZ Alireza, et al. CO2, CH4, and H2 adsorption performance of the metal-organic framework HKUST-1 by modified synthesis strategies[J]. Energy & Fuels, 2023, 37(10): 7260-7267. |
22 | ZHOU Lingling, NIU Zhaodong, JIN Xu, et al. Effect of lithium doping on the structures and CO2 adsorption properties of metal-organic frameworks HKUST-1[J]. ChemistrySelect, 2018, 3(45): 12865-12870. |
23 | FARRANDO-PÉREZ J, MARTINEZ-NAVARRETE G, GANDARA-LOE J, et al. Controlling the adsorption and release of ocular drugs in metal-organic frameworks: Effect of polar functional groups[J]. Inorganic Chemistry, 2022, 61(47): 18861-18872. |
24 | GARZÓN-TOVAR L, CARNÉ-SÁNCHEZ A, CARBONELL C, et al. Optimised room temperature, water-based synthesis of CPO-27-M metal-organic frameworks with high space-time yields[J]. Journal of Materials Chemistry A, 2015, 3(41): 20819-20826. |
25 | 耿莹, 张默贺, 付锦, 等. MOF-74及其复合物: 多样合成与广泛应用[J]. 化学进展, 2021, 33(12): 2283-2308. |
GENG Ying, ZHANG Mohe, FU Jin, et al. MOF-74 and its compound: Diverse synthesis and broad application[J]. Progress in Chemistry, 2021, 33(12): 2283-2308. | |
26 | YANG Da-Ae, CHO Hye-Young, KIM Jun, et al. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method[J]. Energy & Environmental Science, 2012, 5(4): 6465-6473. |
27 | GAO Ziyu, LIANG Lin, ZHANG Xiao, et al. Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61334-61345. |
28 | ADHIKARI Abhijit Krishna, LIN Kuen-Song. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon[J]. Chemical Engineering Journal, 2016, 284: 1348-1360. |
29 | DENG Hexiang, DOONAN Christian J, FURUKAWA Hiroyasu, et al. Multiple functional groups of varying ratios in metal-organic frameworks[J]. Science, 2010, 327(5967): 846-850. |
30 | MILLWARD Andrew R, YAGHI Omar M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. |
31 | FURUKAWA Hiroyasu, Nakeun KO, GO Yong Bok, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428. |
32 | LE Van Nhieu, NGUYEN Van Cuong, NGUYEN Huu Trung, et al. Facile synthesis of bimetallic MIL-100(Fe, Al) for enhancing CO2 Adsorption performance[J]. Microporous and Mesoporous Materials, 2023, 360: 112716. |
33 | VOLKRINGER Christophe, LOISEAU Thierry, HAOUAS Mohamed, et al. Occurrence of uncommon infinite chains consisting of edge-sharing octahedra in a porous metal organic framework-type aluminum pyromellitate Al4(OH)8[C10O8H2](MIL-120): Synthesis, structure, and gas sorption properties[J]. Chemistry of Materials, 2009, 21(24): 5783-5791. |
34 | CUI Ping, LI Jijing, DONG Jie, et al. Modulating CO2 adsorption in metal-organic frameworks via metal-ion doping[J]. Inorganic Chemistry, 2018, 57(10): 6135-6141. |
35 | 吴栋. 金属-有机骨架材料吸附分离和膜分离性能研究[D]. 北京: 北京化工大学, 2013. |
WU Dong. Studies on adsorption and membrane separation properties of metal-organic frameworks[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
36 | ABEDNATANZI Sara, GOHARI DERAKHSHANDEH Parviz, DEPAUW Hannes, et al. Mixed-metal metal-organic frameworks[J]. Chemical Society Reviews, 2019, 48(9): 2535-2565. |
37 | 胡建波. 金属有机骨架材料(MOFs)改性对CO2吸附性能的模拟研究[D]. 武汉: 华中科技大学, 2018. |
HU Jianbo. Simulation study on CO2 adsorption performance modified by metal-organic framework materials (MOFs)[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
38 | GOYAL Prateek, PARUTHI Archini, MENON Dhruv, et al. Fe doped bimetallic HKUST-1 MOF with enhanced water stability for trapping Pb(Ⅱ) with high adsorption capacity[J]. Chemical Engineering Journal, 2022, 430: 133088. |
39 | PANDEY Ratnesh K. Bimetallic metal-organic frameworks (BMOFs) and their potential applications[M]//Metal-Organic Frameworks for Carbon Capture and Energy. American Chemical Society, 2021: 3-15. |
40 | LIN Li-Chiang, KIM Jihan, KONG Xueqian, et al. Understanding CO2 dynamics in metal-organic frameworks with open metal sites[J]. Angewandte Chemie International Edition, 2013, 52(16): 4410-4413. |
41 | SUMIDA Kenji, ROGOW David L, MASON Jarad A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 724-781. |
42 | TRICKETT Christopher A, HELAL Aasif, AL-MAYTHALONY Bassem A, et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nature Reviews Materials, 2017, 2(8): 17045. |
43 | RANI Poonam, KASNERYK Valeryia, OPANASENKO Maksym. MOF-inorganic nanocomposites: Bridging a gap with inorganic materials[J]. Applied Materials Today, 2022, 26: 101283. |
44 | LI Yang, KARIMI Meghdad, GONG Yunnan, et al. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications[J]. Matter, 2021, 4(7): 2230-2265. |
45 | RANGNEKAR N, MITTAL N, ELYASSI B, et al. Zeolite membranes—A review and comparison with MOFs[J]. Chemical Society Reviews, 2015, 44(20): 7128-7154. |
46 | YUAN Ning, ZHANG Xinling, WANG Longsheng. The marriage of metal-organic frameworks and silica materials for advanced applications[J]. Coordination Chemistry Reviews, 2020, 421: 213442. |
47 | CHEN Chong, LI Bingxue, ZHOU Lijin, et al. Synthesis of hierarchically structured hybrid materials by controlled self-assembly of metal-organic framework with mesoporous silica for CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 23060-23071. |
48 | SUI Ruohong, CHARPENTIER Paul. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids[J]. Chemical Reviews, 2012, 112(6): 3057-3082. |
49 | LIN Li-Chiang, PAIK Dooam, KIM Jihan. Understanding gas adsorption in MOF-5/graphene oxide composite materials[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(18): 11639-11644. |
50 | 王亮, 田聃, 刘安琪, 等. GO@MIL-101的制备及其对水中Cr(Ⅵ)的去除[J]. 化工学报, 2017, 68(5): 2105-2111. |
WANG Liang, TIAN Dan, LIU Anqi, et al. Preparation of graphene oxide@MIL-101 composite and its performance in Cr(Ⅵ) removal from aqueous solution[J]. CIESC Journal, 2017, 68(5): 2105-2111. | |
51 | 孙雪娇. 一种新型MOF/氧化石墨复合材料及其对油气的吸附性能[D]. 广州: 华南理工大学, 2015. |
SUN Xuejiao. A novel MOF/graphite oxide composite and its adsorption performance toward oil vapor[D]. Guangzhou: South China University of Technology, 2015. | |
52 | YAO Bing, WANG Yuqi, FANG Zhou, et al. Electrodepositing MOFs into laminated graphene oxide membrane for CO2 capture[J]. Microporous and Mesoporous Materials, 2023, 361: 112758. |
53 | ZHANG Yiqiong, TAO Li, XIE Chao, et al. Defect engineering on electrode materials for rechargeable batteries[J]. Advanced Materials, 2020, 32(7): e1905923. |
54 | YUAN Meng, KERMANIAN Mehraneh, AGARWAL Tarun, et al. Defect engineering in biomedical sciences[J]. Advanced Materials, 2023, 35(38): e2304176. |
55 | ZHENG Yun, SLADE Tyler J, HU Lei, et al. Defect engineering in thermoelectric materials: What have we learned?[J]. Chemical Society Reviews, 2021, 50(16): 9022-9054. |
56 | Marleny RODRÍGUEZ-ALBELO L, Elena LÓPEZ-MAYA, HAMAD Said, et al. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series[J]. Nature Communications, 2017, 8: 14457. |
57 | AN Haifei, TIAN Weijian, LU Xin, et al. Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74[J]. Chemical Engineering Journal, 2023, 469: 144052. |
58 | FANG Zhenlan, BUEKEN Bart, DE VOS Dirk E, et al. Defect-engineered metal-organic frameworks[J]. Angewandte Chemie International Edition, 2015, 54(25): 7234-7254. |
59 | Jaewoong LIM, LEE Seonghwan, SHARMA Amitosh, et al. Ligand functionalization of defect-engineered Ni-MOF-74[J]. RSC Advances, 2022, 12(48): 31451-31455. |
60 | JIANG Danni, HUANG Chao, ZHU Jian, et al. Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs)[J]. Coordination Chemistry Reviews, 2021, 444: 214064. |
61 | LIU Yang, LIU Jing, CHANG Ming, et al. Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks[J]. Fuel, 2012, 95: 521-527. |
62 | SU Xiao, BROMBERG Lev, MARTIS Vladimir, et al. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: Structural characterization and enhanced CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 11299-11306. |
63 | KIM Hye Ryeon, YOON Tae-Ung, KIM Seung-Ik, et al. Beyond pristine MOFs: Carbon dioxide capture by metal-organic frameworks (MOFs)-derived porous carbon materials[J]. RSC Advances, 2017, 7(3): 1266-1270. |
64 | GAIKWAD Sanjit, KIM Yeonhee, GAIKWAD Ranjit, et al. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105523. |
65 | Hyeok Joon JUN, YOO Dong Kyu, JHUNG Sung Hwa. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure[J]. Journal of CO2 Utilization, 2022, 58: 101932. |
66 | MCDONALD Thomas M, D’ALESSANDRO Deanna M, KRISHNA Rajamani, et al. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri[J]. Chemical Science, 2011, 2(10): 2022-2028. |
67 | STEENHAUT Timothy, FUSARO Luca, ROBEYNS Koen, et al. Functionalization of mono and bimetallic MIL-100(Al, Fe) MOFs by ethylenediamine: Postfunctionalization, brønsted acido-basicity, and unusual CO2 sorption behavior[J]. Inorganic Chemistry, 2021, 60(21): 16666-16677. |
68 | BABAEI Majideh, SALEHI Samira, ANBIA Mansoor, et al. Improving CO2 adsorption capacity and CO2/CH4 selectivity with amine functionalization of MIL-100 and MIL-101[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1657-1662. |
69 | LIN Yichao, YAN Qiuju, KONG Chunlong, et al. Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture[J]. Scientific Reports, 2013, 3: 1859. |
70 | LIN Yichao, KONG Chunlong, CHEN Liang. Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture[J]. RSC Advances, 2012, 2(16): 6417-6419. |
71 | 杨琰, 王莎, 张志娟, 等. 氨气改性的NH3@MIL-53(Cr)吸附CO2和CH4的性能[J]. 化工学报, 2014, 65(5): 1759-1763. |
YANG Yan, WANG Sha, ZHANG Zhijuan, et al. CO2 and CH4 adsorption performance of modified MIL-53(Cr) via ammonia vapor[J]. CIESC Journal, 2014, 65(5): 1759-1763. | |
72 | BOSE Saptasree, SENGUPTA Debabrata, MALLIAKAS Christos D, et al. Suitability of a diamine functionalized metal-organic framework for direct air capture[J]. Chemical Science, 2023, 14(35): 9380-9388. |
73 | KANG Minjung, KIM Jeong Eun, KANG Dong Won, et al. A diamine-grafted metal-organic framework with outstanding CO2 capture properties and a facile coating approach for imparting exceptional moisture stability[J]. Journal of Materials Chemistry A, 2019, 7(14): 8177-8183. |
74 | LEE Woo Ram, HWANG Sang Yeon, Dae Won RYU, et al. Diamine-functionalized metal-organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism[J]. Energy & Environmental Science, 2014, 7(2): 744-751. |
75 | Hyuna JO, LEE Woo Ram, KIM Nam Woo, et al. Fine-tuning of the carbon dioxide capture capability of diamine-grafted metal-organic framework adsorbents through amine functionalization[J]. ChemSusChem, 2017, 10(3): 541-550. |
76 | LEE Woo Ram, Hyuna JO, YANG Liming, et al. Exceptional CO2 working capacity in a heterodiamine-grafted metal-organic framework[J]. Chemical Science, 2015, 6(7): 3697-3705. |
77 | ZHANG Hui, YANG Liming, GANZ Eric. Adsorption properties and microscopic mechanism of CO2 capture in 1,1-dimethyl-1,2-ethylenediamine-grafted metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18533-18540. |
78 | 张会. 烷基乙二胺功能化的M2(dobpdc)系列捕获CO2微观机理的第一性原理研究[D]. 武汉: 华中科技大学, 2021. |
ZHANG Hui. First-principles study on the microscopic mechanism of CO2 capture by alkylethylenediamine-functionalized M2(dobpdc) series[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
79 | YE Sheng, JIANG Xin, RUAN Linwei, et al. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal-organic frameworks: Adsorption, separation and regeneration investigations[J]. Microporous and Mesoporous Materials, 2013, 179: 191-197. . |
80 | ZELENKA Tomas, SIMANOVA Klaudia, SAINI Robin, et al. Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine[J]. Scientific Reports, 2022, 12(1): 17366. |
81 | CHOI Sunho, WATANABE Taku, Tae-Hyun BAE, et al. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases[J]. The Journal of Physical Chemistry Letters, 2012, 3(9): 1136-1141. |
82 | SIEGELMAN Rebecca L, MCDONALD Thomas M, GONZALEZ Miguel I, et al. Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(30): 10526-10538. |
83 | MCDONALD Thomas M, MASON Jarad A, KONG Xueqian, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks[J]. Nature, 2015, 519(7543): 303-308. |
84 | LIN Yichao, KONG Chunglong, ZHANG Qiuju, et al. Metal-organic frameworks for carbon dioxide capture and methane storage[J]. Advanced Energy Materials, 2017, 7(4): 1601296. |
85 | BAHAMON Daniel, WEI Anlu, BUILES Santiago, et al. Effect of amine functionalization of MOF adsorbents for enhanced CO2 capture and separation: A molecular simulation study[J]. Frontiers in Chemistry, 2021, 8: 574622. |
86 | CHANG Guanjun, XU Yewei, ZHANG Lin, et al. Enhanced carbon dioxide capture in an indole-based microporous organic polymer via synergistic effects of indoles and their adjacent carbonyl groups[J]. Polymer Chemistry, 2018, 9(35): 4455-4459. |
87 | HU Jianbo, LIU Yang, LIU Jing, et al. Computational screening of alkali, alkaline earth, and transition metals alkoxide-functionalized metal-organic frameworks for CO2 capture[J]. The Journal of Physical Chemistry C, 2018, 122(33): 19015- 19024. |
88 | 黄宏亮. 金属-有机骨架材料的合成与吸附分离性能研究[D]. 北京: 北京化工大学, 2014. |
HUANG Hongliang. Studies on synthesis and adsorption separation property of metal-organic frameworks[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
89 | FEDOROV Dmitry V, SADHUKHAN Mainak, Martin STÖHR, et al. Quantum-mechanical relation between atomic dipole polarizability and the van der Waals radius[J]. Physical Review Letters, 2018, 121(18): 183401. |
90 | LI Haiying, MENG Bo, MAHURIN Shannon M, et al. Carbohydrate based hyper-crosslinked organic polymers with —OH functional groups for CO2 separation[J]. Journal of Materials Chemistry A, 2015, 3(42): 20913-20918. |
91 | LI Xiuyuan, LI Yongzhi, YANG Yun, et al. Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes[J]. Chemical Communications, 2017, 53(96): 12970-12973. |
92 | SUN Yiyang, DU Qiuzheng, WANG Fangqi, et al. Active metal single-sites based on metal-organic frameworks: Construction and chemical prospects[J]. New Journal of Chemistry, 2021, 45(3): 1137-1162. |
93 | WANG Zhenqiang, COHEN Seth M. Postsynthetic modification of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1315-1329. |
94 | James CLAIRE F, SOLOMOS Marina A, KIM Jungkil, et al. Structural and electronic switching of a single crystal 2D metal-organic framework prepared by chemical vapor deposition[J]. Nature Communications, 2020, 11(1): 5524. |
95 | LEE Jiyoung, Dae-Woon LIM, DEKURA Shun, et al. MOP × MOF: Collaborative combination of metal-organic polyhedra and metal-organic framework for proton conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12639-12646. |
96 | CHEN Changwei, FENG Xiangbo, ZHU Qing, et al. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture[J]. Inorganic Chemistry, 2019, 58(4): 2717-2728. |
97 | ZHAO Zhimin, DING Jiawei, ZHU Rongmei, et al. The synthesis and electrochemical applications of core-shell MOFs and their derivatives[J]. Journal of Materials Chemistry A, 2019, 7(26): 15519-15540. |
98 | YU Yanping, PAN Mengmeng, JIANG Ming, et al. Facile synthesis of self-assembled three-dimensional flower-like Cu-MOF and its pyrolytic derivative Cu-N-C450 for diverse applications[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109400. |
99 | MOORE Samuel C, SMITH Michael R, TRETTIN James L, et al. Kinetic impacts of defect sites in metal-organic framework catalysts under varied driving forces[J]. ACS Energy Letters, 2023, 8(3): 1397-1407. |
100 | FU Yao, FORSE Alexander C, KANG Zhengzhong, et al. One-dimensional alignment of defects in a flexible metal-organic framework[J]. Science Advances, 2023, 9(6): eade6975. |
101 | MOHAMEDALI Mohanned, IBRAHIM Hussameldin, HENNI Amr. Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture[J]. Chemical Engineering Journal, 2018, 334: 817-828. |
102 | KIM Se-Na, LEE Yuri, HONG Seung-Hwan, et al. Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis[J]. Catalysis Today, 2015, 245: 54-60. |
[1] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[2] | 张浩, 刘世钰, 沈卫华, 方云进. Ca-ZSM-5催化尿素脱水制备单氰胺[J]. 化工进展, 2024, 43(S1): 365-373. |
[3] | 陈高祥, 王荣昌, 蒋佳承. 微生物电合成系统阴极电子传递机制和氢介导强化措施[J]. 化工进展, 2024, 43(S1): 504-516. |
[4] | 万震, 王绍庆, 李志合, 赵天生. HZSM-5分子筛催化木质素热解制芳烃研究进展[J]. 化工进展, 2024, 43(S1): 517-532. |
[5] | 陈慕华, 嵇震, 王芳, 黄凯健, 付博, 刘博, 刘绍忠, 朱新宝. 纤维素基共聚型聚羧酸减水剂的合成及其性能[J]. 化工进展, 2024, 43(S1): 564-570. |
[6] | 王博葳, 郑明朕, 王乐萌, 付东, 王珊, 朱生俊, 赵昆, 张盼. Na2SO4电解制备NaOH捕集CO2[J]. 化工进展, 2024, 43(S1): 604-614. |
[7] | 石磊, 王倩, 赵晓胜, 刘宏臣, 车远军, 段玉, 李庆. 油页岩灰基分子筛的制备及对亚甲基蓝的吸附[J]. 化工进展, 2024, 43(S1): 650-661. |
[8] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
[9] | 杨新衡, 纪志永, 郭志远, 刘萁, 张盼盼, 汪婧, 刘杰, 毕京涛, 赵颖颖, 袁俊生. 锂铝层状双金属氢氧化物的制备及其锂脱嵌过程[J]. 化工进展, 2024, 43(9): 5262-5274. |
[10] | 孙燕, 谢晓阳, 冯倩颖, 郑璐, 何皎洁, 杨利伟, 白波. 基于单宁酸-铁(Ⅲ)改性正渗透膜制备及抗污染性能[J]. 化工进展, 2024, 43(9): 5309-5319. |
[11] | 张巍, 宋权斌, 周运河, 董梦瑶, 李婕, 伍乔, 付业昊, 梁垚城, 尹艳山, 成珊, 宋健. 全钒液流电池离子导电膜的选择性[J]. 化工进展, 2024, 43(9): 4859-4870. |
[12] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[13] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
[14] | 刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078. |
[15] | 欧红香, 闵政, 薛洪来, 曹海珍, 毕海普, 王钧奇. 疏水改性纳米氧化镁对短氟碳链泡沫性能影响[J]. 化工进展, 2024, 43(9): 5177-5184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |